Damage rules and the patent hold-up problem:
Lost Profit versus Unjust Enrichment*

Bertrand CHOPARD†, Thomas CORTADE‡ and Eric LANGLAIS§

January 9, 2014

Abstract

This paper provides an analysis of two damage rules (Lost Profit versus Unjust Enrichment) introduced in the French Code de la Propriété Intellectuelle in 2007 (Loi du 27 Octobre 2007, Art. L. 615-7). We use a simple sequential game where both the decisions to infringe and to enforce the patent, as well as the decisions to accommodate, settle or litigate the case, and the outputs decisions (Cournot competition) are endogenous. We characterize the equilibria associated with each rule, and compare their properties. We show that: 1/ the Unjust Enrichment rule provides Patentees with higher damages compensation than the Lost Profit one; however, 2/ Lost Profit induces more deterrence of infringement, and is associated with less trials than Unjust Enrichment; 3/ Unjust Enrichment may deter the Patentee to enforce his right; 4/ when there is a positive probability that the case settles, Patentee’s expected utility is higher under Lost Profit than under Unjust Enrichment.

Keywords: lost profit rule, unjust enrichment rule, intellectual property rights, patent litigations, pretrial negotiations.

JEL classification: O3, L1, L4, D8, K2, K4.

*We thank Saïd Souam and the participants to the AFSE Conference 2013 for their comments and suggestions. We also have benefited of discussions with Béatrice Dumont and Sylviane Durrande. All remaining errors are ours.

†EconomiX UMR 7235 CNRS & Paris Ouest Nanterre, 200 Avenue de la République, 92001 Nanterre cedex, France. Telephone : + 33 (0) 140 977 824. Email: Bertrand.Chopard@u-paris10.fr.

‡BETA UMR CNRS 7522 and Universités de Lorraine et de Strasbourg, UFR Droit-Economie-Administration, Ile de Sauley, 57045 Metz Cedex 1, France. Telephone: +33 (0)3 87 31 57 47. Email: thomas.cortade@univ-lorraine.fr.

§Corresponding author : EconomiX UMR 7235 CNRS & Paris Ouest Nanterre, 200 Avenue de la République, 92001 Nanterre cedex, France. Telephone : + 33 (0) 140 975 914. Email: Eric.Langlais@u-paris10.fr.
Résumé

Cet article propose une analyse de deux règles de dommages (Profits Perdus versus Enrichissement Indu) introduites dans le Code de la Propriété Intellectuelle français en 2007 (Loi du 27 Octobre 2007, Art. L. 615-7). Nous utilisons un jeu séquentiel très simple où nous endogénéisons à la fois la décision d’enfreindre une licence et celle de la faire respecter, comme nous endogénéisons les décisions de s’accommoder d’une infraction, de régler le litige à l’amiable et de le défendre en justice, ou encore les décisions de production des firmes (concurrence à la Cournot). Nous caractérisons les équilibres associés à chacune des règles et discutons leurs propriétés. Nous montrons que: 1/ la règle d’Enrichissement Indu procure au propriétaire de la licence une compensation en termes de dommages plus élevée; en revanche, 2/ la règle de Profits Perdus permet une meilleure dissuasion des infractions, et est associée à un nombre de procès plus faible; en outre, 3/ la règle d’Enrichissement Indu peut amener le propriétaire à renoncer à défendre son droit en justice ; 4/ lorsqu’il y a une probabilité positive d’un règlement amiable, l’utilité espérée du propriétaire est plus élevée lorsque les dommages sont basés sur les Profits Perdus.

Mots-Crés: règle de Profit Perdu; règle d’Enrichissement Indu; droits de proriété intellectuelle; litiges sur les licences; négociations avant procès.

1 Introduction

The reform of the French Code de la Propriété Intellectuelle passed in 2007 (see Art. L. 615-7) has provided Courts with a set of rules that may be used for assessing the value of damages awarded to plaintiffs, retaining a large definition for the loss of business. French Jurisdictions have now the opportunity to consider the loss of business and profits borne by the patentee (Lost Profit rule), as well as the illegal benefits obtained by the infringer (Unjust Enrichment rule). The main motivation for such a reform was that the former code (Loi No 68-1 du 2 janv. 1968, Art. 57) only considered that the damages paid by the infringer to the patentee must be set according to the value of forfeiting goods (i.e. the illegal profits obtained by the infringer if they have been successfully sold). A practical consequence was that the compensations obtained by plaintiffs were

1 The law of 2007, October 29, states both for industrial property (Art. L. 615-7, L.622-7, L.623-28 and L.716-4) and copyright (Art. L.331-1-3) that “Pour fixer les dommages et intérêts, la juridiction prend en considération les conséquences économiques négatives, dont le manque à gagner, subies par la partie lésée, les bénéfices réalisés par le contrefacteur et le préjudice moral causé au titulaire des droits du fait de l’atteinte [...]”.
generally set at a very low level in France (Baudry and Dumont, 2005), and it may be suspected that this has prevented many patentee(s) to sue their infringer(s), given the high costs and delays associated with legal disputes in IPR infringement cases\(^2\).

In this paper, we analyze some of the effects of the Lost Profit and Unjust Enrichment rules\(^3\). In our model, we focus on the case of an Intellectual Property Right that normally would be licensed, and which is probabilistic, i.e. there is a risk that the litigated IPR be found invalid. This is now the standard assumption adopted in the literature\(^4\) (see Anton and Yao, 2003, 2006; Choi, 2009; Crampes and Langnier, 2002; Farrell and Shapiro, 2008; Meurer, 1989; Schankerman and Scotchmer, 2001; Shapiro, 2010). On the other hand, our model departs in several respects from this literature in the sense that: 1/ we consider for both players a richer set of strategies than usually considered: both the decision to enforce the patent, and the decision to infringe it, are endogenous here; 2/ we assume that pretrial negotiations operate under asymmetric information between litigants, the legal costs of the Infringer being private information. Such an assumption may be seen as an analytical short-cut capturing that parties opposed in a litigation may initially be unequally endowed in terms of skill or ability to predict the verdict at trial (see also Chopard and ali, 2010). This is consistent with the assumption that the occurrence of a trial is not certain, nor is certain the verdict in case of trial.

Section 2 introduces the basic framework. Section 3 discusses the properties of the equilibria when Lost Profit is awarded by Courts, and section 4 considers the same issues when the Unjust Enrichment rule is applied. Section 5 compares the different effects of these damage rules at equilibrium: on 1/ the value of damages awarded to plaintiffs in case they prevail at trial, 2/ the level of deterrence of IPR infringement, 3/ the level of deterrence of IPR enforcement, 4/ the frequency of trials, and 5/ the level of plaintiffs’ total expected utility/profits associated with IPR litigations. Section 6 concludes.

\(^2\)Another issue is the risk of forum shopping since other European countries have long before adopted the Lost Profits and Unjust Enrichment rules. These rules also exist in USA (Anton and Yao, 2006) or Israel (Elkin-Koren and Salzberger, 2000).

\(^3\)The 2007 reform also introduces a third possible rule, called "Ideal Royalties": "Toutefois, la juridiction peut, à titre d’alternative et sur demande de la partie lésée, allouer à titre de dommages et intérêts une somme forfaitaire qui ne peut être inférieure au montant des redevances ou droits qui auraient été dus si le contrefacteur avait demandé l’autorisation d’utiliser le droit auquel il a porté atteinte." (Loi du 29 octobre 2007; for both industrial property : Art. L. 615-7, L.622-7; L.623-28 and L.716-4; and copyright : Art. L.331-1-3). We let it aside for further research.

\(^4\)It has strong empirical supports, since many studies have reported the dramatic increase in the number of patent litigation cases over the two last decades (Lanjouw and Lerner, 1998; Bessen and Meurer, 2005; Baudry and Dumont, 2005), and Allison and Lemley (1998) found a figure close to 50% for the plaintiffs’ rate of success considering all litigated patents.
2 Model and assumptions

We consider here that the Patentee holds an IPR on a drastic innovation. The game between the Infringer and the Patentee has four main stages. At stage 1, Nature chooses the legal cost (i.e. type) of the Infringer c_e which is a private information. The Patentee only knows that the value of the Infringer’s cost is a random variable $c_e \in [c_{eL}, c_{eU}]$ distributed according to a cumulative function $G(c_e)$ and a density $g(c_e)$. In contrast, the Patentee’s litigation costs, denoted c_h, are common knowledge. At stage 2, the Infringer has to decide whether he enters and imitates the patent without a license (chooses Infringe), and competes à la Cournot with the Patentee (the potential market is a duopoly); or he does not enter and earns 0 (chooses Non Infringe) such that the Patentee earns π^M (the potential market is a monopoly). In case of infringement, the game reaches the next to last stage. At stage 3, the Patentee chooses either Accommodate to adapt the entry of the Infringer (thus, they earn their duopoly profits, respectively π^A_e for the Infringer and π^A_h for the Patentee), or Litigate such that the Patentee earns at least the market profit π^L_h, while the Infringer earns at best π^L_e, knowing that the case may be defended at trial or be settled. When the case is litigated, the game reaches the last stage. At stage 4, the pretrial bargaining process takes place: the Patentee makes a (take-it-or-leave-it) licensing price Offer ℓ to the Infringer, corresponding to a price for the patent agreement (or fees for the normal use of the patent). On the one hand, if the Infringer chooses Accept, they settle amicably their dispute - and they earn their duopoly profits, up to the cost and price of licensing, respectively $u_e(\ell) = \pi^L_e - \ell$ for the Infringer and $u_h(\ell) = \pi^L_h + \ell$ for the Patentee. On the other hand, if the Infringer chooses Reject, then a trial occurs. The Court sets for the Patentee/plaintiff with probability $\theta \in [0,1]$, i.e. claims that the patent is valid. The verdict consists in a damage that the Infringer must pay to the Patentee, denoted as $D \in \{D_{LP} = \pi^M - \pi^L_h, D_{UE} = \pi^L_e\}$ depending on whether the Lost Profit rule or the Unjust Enrichment rule is applied; thus, the expected profit for each party is respectively $u_e(c_e) = \pi^L_e - \theta D - c_e$ for the Infringer, and $u_h(c_h) = \pi^L_h + \theta D - c_h$ for the Patentee (i.e. duopoly profits minus legal cost incurred at trial, up to the expected award θD).

The market demand is linear with a demand price given by: $P = a - b(y_h + y_e)$, where $a, b > 0$ and y_h, y_e denoting the quantity produced by the Patentee and the Infringer, respectively. The technology of production entails constant marginal costs of production, respectively: $k < a$ (after innovation occurs, for both firms). Note that when the patent is not infringed, the Patentee produces $y^M = \frac{a-k}{2b}$ and earns his monopoly profit $\pi^M = b \left(\frac{a-k}{2b} \right)^2$, while the Infringer produces nothing and earns 0. We will also make the following assumptions, in order to let aside technical difficulties (existence, uniqueness of equilibrium) which are not at the heart of our point here:
Assumption 1: the ratio $\frac{1-G}{g}$ is decreasing on $[c_e, \bar{c}_e]$, and satisfies: $\left(\frac{1-G}{g}\right)_{|c_e} > c_h + \bar{c}_e$ and $\left(\frac{1-G}{g}\right)_{|\bar{c}_e} < c_h + \bar{c}_e$.

The next assumption means that Plaintiff’s claim is credible at trial:

Assumption 2: $\theta D - c_h > 0$.

Before proceeding to the analysis, let us discuss two assumptions of our model, that may be seen as restrictive. First, we consider a screening game. The reason is that when legal costs are private information, their signalling role typically does not exist under the fee shifting rule introduced here (see Chopard and Ali, 2010); however, our objective was to analyze the pure effects of damages rules, and thus a complete analysis of fee shifting, or the study of policies substituting damages with legal costs, are beyond the scope of this paper. Second, we introduce a one-shot pretrial negotiations game; but this is wlog, since the generality of this set up for pretrial negotiations is well known in the Law and Economics literature (see Daughety and Reinganum, 2012; Spier, 2007).

3 Equilibria under the Lost Profit rule

The two following propositions give the results for the Lost Profit rule, under which $D_{LP} = \pi^M - \pi^L_h$. By $(\pi^L_i)_{LP}$ for $i = h, e$ we will denote the value of firm i’s profit at equilibrium under the Lost Profit rule.

Proposition 1 If $\theta \leq \frac{(\pi^L_h)_{LP} - c_e^*}{\pi^M - (\pi^L_h)_{LP}}$, where c_e^* satisfies $\left(\frac{1-G}{g}\right)_{|c_e^*} = c_e^* + c_h$, the next profile of strategies is an equilibrium:

- the Patentee produces $(y^L_h)_{LP} = \frac{a-k}{b(3-\theta)}$, chooses Litigate, and makes the licensing offer $\ell^* = \theta \left[\pi^M - (\pi^L_h)_{LP}\right] + c_e^* > 0$.

- the Infringer chooses Infringe, produces $(y^L_e)_{LP} = \frac{(1-\theta)(e-k)}{b(3-\theta)}$, and chooses Reject if $c_e \in [c_e, c_e^*]$, or Accept if $c_e \in [c_e^*, \bar{c}_e]$.

The proof is in the appendix. Proposition 1 illustrates a situation with a strong strategic interaction between the litigants: when the patent is weak – in the sense that $\theta \leq \frac{(\pi^L_h)_{LP} - c_e^*}{\pi^M - (\pi^L_h)_{LP}}$ – the Patentee always enforces his property right since it is always infringed. As the Patentee litigates and settles, he has the opportunity to extract a licensing price ℓ^* and obtains a payoff.
larger than at trial, \((\pi_h^L)_{LP} + \ell^*\). The counterpart is that all Infringer’s types have an incentive to chose Infringe rather than Non Infringe, and the highest types \(c_e \in [c_e^*, \bar{c}_e]\) obtain an informational rent in settling the case \((\pi_e^L)_{LP} - \ell^* > (\pi_e^L)_{LP} - \theta D_{LP} - c_e\) for all \(c_e \in [c_e^*, \bar{c}_e]\).

Remark that the threat of a trial introduces a distortion in the sharing of the market output between firms despite identical marginal costs, as shown by the first order conditions:

\[
(1-\theta) \frac{\partial \pi_h^L}{\partial y_h} = 0
\]

\[
\frac{\partial \pi_e^L}{\partial y_e} + \theta \frac{\partial \pi_h^L}{\partial y_e} = 0
\]

(1)-(2) illustrate the general property that along the equilibrium path where the Patentee chooses Litigate (hence, either the case is settled, or there is a trial), his best response function is not affected under Lost Profit by the occurrence of a trial as compared to the standard Cournot-Nash equilibrium (same FOC). In contrast, the Infringer’s best response function displays lower incentives to produce \(\frac{\partial \pi_e^L}{\partial y_e} + \theta \frac{\partial \pi_h^L}{\partial y_e} < \frac{\partial \pi_e^L}{\partial y_e}\). In word, the threat of a trial produces a negative externality at the market stage, and the Lost Profit rule posits this externality on the Infringer.

As a result, the Patentee produces more than the Infringer \((y_h^L)_{LP} > (y_e^L)_{LP}\) under the Lost Profit rule.

The following proposition considers cases associated with a strong patent (proof in appendix):

Proposition 2 If \(\theta > \frac{(\pi_e^L)_{LP} - c_e^*}{\pi^M - (\pi_h^L)_{LP}}\), and if it exists \(\bar{c}_e \in [c_e, c_e^*]\) which satisfies \(\bar{c}_e = (\pi_e^L)_{LP} - \theta [\pi^M - (\pi_h^L)_{LP}]\), the next profile of strategies is an equilibrium:

- the Patentee produces \(y_e = \frac{a_{-k}}{2b}\) conditional on \(c_e > \bar{c}_e\); he chooses Litigate and produces \((y_h^L)_{LP} = \frac{a_{-k}}{b(3-\theta)}\) conditional on \(c_e \leq \bar{c}_e\), and makes a licensing offer \(\ell > \ell = \theta [\pi^M - (\pi_h^L)_{LP}] + \bar{c}_e\).

- the Infringer chooses (Infringe, Reject) and produces \((y_e^L)_{LP}\) if \(c_e \in [c_e^*, \bar{c}_e]\); while he chooses Non Infringe if \(c_e \in [\bar{c}_e, c_e]\).

Proposition 2 illustrates that when the patent is strong enough (i.e. \(\theta > \frac{(\pi_e^L)_{LP} - c_e^*}{\pi^M - (\pi_h^L)_{LP}}\)), infringement may be deterred at least when the Infringer has a high legal cost. Moreover, (the proof of) proposition 2 shows interestingly that the distortion in profits, that follows from the distortion in outputs levels due to the threat of a trial, is not monotonic in \(\theta\): it increases for \(\theta \in [0, 1/3]\) (i.e. for \(\theta\) small enough), and decreases for \(\theta \in [1/3, 1]\) (i.e. for \(\theta\) large enough). However, under Cournot competition where firms produce a homogenous good, infringement always entails a dilution of monopoly profit, since at equilibrium we have: \(\pi^M \geq (\pi_h^L + \pi_e^L)_{LP}\).
4 Equilibria under the Unjust Enrichment rule

The three next propositions focus on the Unjust Enrichment rule, for which $D_{UE} = \pi^L_{UE}$. By $(\pi^L_i)_{UE}$ for $i = h, e$ we will denote the value of firm i's profit at equilibrium under the Unjust Enrichment rule.

Proposition 3 If
\[
\frac{\pi^L_h - \pi^L_e + G(c_e)(c_h + c_e)}{(\pi^L_e)_{UE}} - \frac{c_e^*}{(\pi^L_e)_{UE}} \leq \theta \leq 1 - \frac{c^*_e}{(\pi^L_e)_{UE}},
\]
the next profile of strategies is an equilibrium:
- the Patentee chooses Litigate, produces $(y^L_h)_{UE} = (y^L_e)_{LP}$, and makes a licensing offer whose value is $\ell^{**} = \theta (\pi^L_e)_{UE} + c^*_e > 0$.
- the Infringer chooses Infringe, produces $(y^L_e)_{UE} = (y^L_h)_{LP}$, and chooses Reject if $c_e \in [c_e, c^*_e]$, or Accept if $c_e \in [c^*_e, \hat{c}_e]$.

Remark that proposition 3 (proof in appendix) means that under the Unjust Enrichment rule, if the patent is weak enough but in a sense not too weak, it is always enforced since it is always infringed: the Patentee has always the opportunity to extract the licensing fees $\ell^{**} = \theta (\pi^L_e)_{UE} + c^*_e > 0$. Once more, all Infringer’s types have thus an incentive to choose Infringe rather than Non Infringe.

Remark also that under the Unjust Enrichment rule, the negative externality of a trial is now shifted to the Patentee at the market stage, since the first order conditions are:

\[
\frac{\partial \pi^L_h}{\partial y_h} + \theta \frac{\partial \pi^L_e}{\partial y_e} = 0 \quad (3)
\]
\[
(1 - \theta) \frac{\partial \pi^L_e}{\partial y_e} = 0 \quad (4)
\]

According to (3)-(4), the threat of a trial introduces a distortion in the sharing of the output between firms, explaining that the Patentee now produces less than the Infringer: $(y^L_h)_{UE} < (y^L_e)_{UE}$.

The next proposition discusses the case with a strong patent.

Proposition 4 If $\theta > \max \left\{ 1 - \frac{c^*_e}{(\pi^L_e)_{UE}}, \frac{\pi^L_h - (1-G(\hat{c}_e))\pi^M - G(\hat{c}_e)(\pi^L_h)_{UE} - c^*_h}{G(c_e)(\pi^L_e)_{UE}} \right\}$, where $\hat{c}_e \in [c_e, c^*_e]$ satisfies $\hat{c}_e = (1 - \theta) (\pi^L_e)_{UE}$, the next profile of strategies is an equilibrium:
- the Patentee produces $y^M = \frac{a-k}{2\theta}$ conditional on $c_e > \hat{c}_e$; he chooses Litigate and produces $(y^L_h)_{UE} = (y^L_e)_{LP}$ conditional on $c_e \leq \hat{c}_e$, and makes a licensing offer $\hat{\ell} > \hat{\ell} = (\pi^L_e)_{UE}$.
- the Infringer chooses Infringe, produces $(y^L_e)_{UE} = (y^L_h)_{LP}$, and then he chooses Reject if his type is $c_e \in [c_e, \hat{c}_e]$; while he chooses Non Infringe if his type is $c_e \in [\hat{c}_e, c^*_e]$.

The consequence of proposition 4 (proof in appendix) is that, when the patent is (too) strong, infringement may be deterred, under the Unjust Enrichment rule, at least in case where the Infringer pertains to the highest types. As shown in the next proposition, the counterpart of the two previous results is that the Patentee may prefer to accommodate the infringement of his right under the Unjust Enrichment rule. The proof is straightforward since at stage 3, the Patentee chooses Accommodate rather than Litigate if

\[\pi_h^A \Leftrightarrow \theta < \frac{\pi^{U_E}(\pi^L_U)_{U_E} + G(c_e^*)c_h + (1 - G(c_e^*))c_e^* - \pi^L_U}{(\pi^L_U)_{U_E}} \].

Hence, the result:

Proposition 5 If \(\theta < \frac{\pi^{U_E}(\pi^L_U)_{U_E} + G(c_e^*)c_h + (1 - G(c_e^*))c_e^* - \pi^L_U}{(\pi^L_U)_{U_E}} \), the next profile of strategies is an equilibrium: the Patentee chooses Accommodate, the Infringer chooses Infringe whatever his type, and both firms produce \(y^A = \frac{a-k}{3\theta} \).

Proposition 5 means that when the patent is too weak, enforcing his right may be a strategy too costly for the Patentee under the Unjust Enrichment rule, albeit it is always infringed; thus, it may be worth to accommodate the infringement. Note that this equilibrium occurs under the Unjust Enrichment rule (while it does not under the Lost Profit rule) despite the Patentee’s claim is credible at trial.

5 Discussion

In the next graph, we report for each rule the outcome associated with the equilibrium strategies of the Infringer and of the Patentee\(^5\), for different intervals of \(\theta \) (patent strength):

\(^5\)We have numerically solved the inequalities (see proposition 1) \((\pi^L_U)_{U_E} - \ell^* \geq 0 \Leftrightarrow 4(1-\theta)^2 - \theta + \frac{\theta^2}{\pi^L_U} (3-\theta)^2 + 4\theta \geq 0 \) and (see proposition 3) \((\pi^L_U)_{U_E} - \ell^{**} \geq 0 \Leftrightarrow 4(1-\theta)^2 - \frac{\theta^2}{\pi^L_U} (3-\theta)^2 \geq 0 \) for \(\frac{\theta^2}{\pi^L_U} = 20\% \); the numerical resolution of the inequality (see proposition 3) \(U_h(\ell^{**}; c_e^*) \geq \pi_h^A \Leftrightarrow 9(1-\theta)^2 + 9\theta + (\frac{1 - G(c_e^*)c_e^* - G(c_e^*)c_h}{\pi_h^A} - 1) (3-\theta)^2 \geq 0 \) has been performed for \(\frac{(1 - G(c_e^*)c_e^* - G(c_e^*)c_h)}{\pi_h^A} = 0 \). As a matter of comparison, Lanjouw and Lerner (1998) found that the ratio of legal costs over R&D expenditures is close to 20%.
By conditional infringement, we mean that some Infringer’s types do infringe (those having the smallest c_e) while others do not. By conditional trial, we mean that a trial occurs conditional on Infringer’s types who infringe. Except for the highest values of θ where the outcome is the same under both rules, we observe that the features of equilibria associated with the different intervals are generally very different. More generally, we obtain five main conclusions which allow to shed some lights on the consequences of the 2007 reform.

The first conclusion is that the Unjust Enrichment rule does not yield more deterrence than the Lost Profit – yet, we obtain the opposite result: the threshold of infringement under Lost Profit is smaller than under Unjust Enrichment, implying that the first rule is more effective in deterring infringement than the second.

The second conclusion is that the Unjust Enrichment rule has another unfortunate deterrent effect the Lost profit has not: the Patentee may be deterred from enforcing his right under the Unjust Enrichment rule soon as the patent is weak enough. The driving force is that, despite the claim of the Patentee is credible at trial, his total expected profit (utility) associated with the enforcement strategy is smaller than his market profit when infringement is accommodated.

The third conclusion is that the frequency of trial is higher under the Unjust Enrichment rule; we give a general proof of this result in the next proposition.

Proposition 6 The Unjust Enrichment rule yields a frequency of trials which is as least as large as the Lost Profit rule.

Proof. Let us first compare the equilibria of propositions 1 and 3 (i.e. assume a solution where the case may be settled out of Court under both rules). In this case, a trial occurs with the same

6 It can be shown that this structure is also obtained for different values of the parameters.
frequency under both rules: \(G(c^*_e) \).

Now, let us compare the equilibria of propositions 2 and 4 (i.e. assume a solution where the Infringer may choose Non Infringe with some positive probability under both rules). By construction, we have:

\[
\tilde{c}_e - \hat{c}_e = (\pi^L_{LP}) - \theta [\pi^M - (\pi^L_{LP})] - (1-\theta)(\pi^L_{UE})
\]

(5)

and it can easily be verified that the sign of \(\tilde{c}_e - \hat{c}_e \) is the same as the sign of \(h(\theta) = \theta (-\theta^2 + 10\theta - 9) \), as \(g(0) = 0, h(1) = 0 \) and \(h(\theta) \) is convex on \([0,1]\), we obtain that \(\tilde{c}_e < \hat{c}_e \Rightarrow G(\tilde{c}_e) \leq G(\hat{c}_e) \)

As \(\hat{c}_e < \tilde{c}_e \Rightarrow G(\hat{c}_e) < G(\tilde{c}_e) \) for any \(\theta \in [0,1] \), and \(\hat{c}_e = \tilde{c}_e \) at \(\theta = 1 \). ■

This result also implies that the Unjust Enrichment rule is associated with a larger (private) legal cost for IPR litigation cases, than the Lost Profit rule.

The fourth conclusion is focused on the size of the damages awarded to the plaintiff/ Patentee when he prevails at trial: the Unjust Enrichment rule warrants higher damages than the Lost Profit one:

Proposition 7 When a trial occurs at equilibrium, then \(D_{LP} < D_{UE} \) for realistic values of \(\frac{(1-G(c^*_e))c^*_e-G(c^*_e)c_h}{\pi^h} \).

Proof. Given that \((\pi^L_{UE}) = (\pi^L_{LP}) \), we have \(D_{LP} - D_{UE} = \pi^M - 2(\pi^L_{LP}) \). Thus it is easy to verify that the sign of \(\pi^M - 2(\pi^L_{LP}) \) is the same as the sign of \(g(\theta) = 1 - 6\theta + \theta^2 \), with \(g(0) = 1 \) and \(g(1) = -4 \). Moreover \(g'(\theta) = -6 + 2\theta < 0 \), for any \(\theta \in [0,1] \). Hence, it comes that for any \(\theta < 3 - 2\sqrt{2} \) (\(\approx 0.17157 \)), then \(g(\theta) > 0 \Rightarrow D_{LP} > D_{UE} \), while for any \(\theta > 3 - 2\sqrt{2} \), then \(g(\theta) < 0 \Rightarrow D_{LP} < D_{UE} \).

On the other hand, the numerical resolution of the inequality \(U_h(\ell^*; c^*_e) \geq \pi^h \iff 9(1 - \theta)^2 + 9\theta + \left(\frac{(1-G(c^*_e))c^*_e-G(c^*_e)c_h}{\pi^h} - 1 \right) (3 - \theta)^2 \geq 0 \), has been performed under different assumptions about the value of \(\frac{(1-G(c^*_e))c^*_e-G(c^*_e)c_h}{\pi^h} \), making a distinction between cases with negative values as provided in the next table:

<table>
<thead>
<tr>
<th>(\frac{(1-G(c^_e))c^_e-G(c^*_e)c_h}{\pi^h})</th>
<th>(\theta \geq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-20%)</td>
<td>0.60943</td>
</tr>
<tr>
<td>(-10%)</td>
<td>0.52203</td>
</tr>
<tr>
<td>(-3%)</td>
<td>0.43221</td>
</tr>
<tr>
<td>(-2%)</td>
<td>0.41523</td>
</tr>
<tr>
<td>(-1%)</td>
<td>0.39638</td>
</tr>
</tbody>
</table>

and positive ones, as in the next table:

\(^7 \) Note that this implies that \(\ell^* < \ell^{**} \).
Note that Bessen and Meurer (2005) find that in around 1/4 of IPR litigation cases both the infringer and the patentee are innovators (and thus \(\frac{c_e^b}{c_e} \)) is close to \(\frac{\theta}{\pi_h}\)), and that in a majority of cases, the plaintiff is a large firm (thus \(\frac{1-G(c_e^b))c_e^b-G(c_e)_{ue}}{\pi_h}\) < 0). Thus, our simulations suggest that for values of \(\frac{1-G(c_e^b))c_e^b-G(c_e)_{ue}}{\pi_h}\) that are realistic, the probability threshold for which the Patentee litigates the case rather than accommodates it, is larger than 0.17157. Hence the result.

The fifth conclusion is connected to Patentee’s total expected gain in case of litigation (expected utility), and appears as less clear-cut.

Proposition 8 i) When the case settles with a positive probability at equilibrium, Patentee’s expected utility is larger under the Lost Profit rule than under the Unjust Enrichment rule. ii) When at least some Infringers’ types do not infringe the patent at equilibrium, Patentee’s expected utility under the Lost Profit rule may be larger or smaller than under the Unjust Enrichment rule.

Proof. i) We have:

\[
U_h(\ell^*; c_e^*) - U_h(\ell^{**}; c_e^*) = \left[(\pi_h^L)_{LP} - (\pi_h^L)_{UE} \right] + \theta \left(\pi^M - (\pi_h^L)_{LP} - (\pi_e^L)_{UE} \right)
\]

and thus using (5), we obtain that: \(U_h(\ell^*; c_e^*) - U_h(\ell^{**}; c_e^*) = -(\hat{c}_e - \hat{c}_e)\). Hence the result.

ii) We have:

\[
U_h(\ell; \hat{c}_e) - U_h(\hat{\ell}; \hat{c}_e) = (G(\hat{c}_e) - G(\hat{c}_e)) \left(\pi^M + c_h \right)
+ (\pi_h^L)_{LP} - G(\hat{c}_e) \left(\pi_h^L \right)_{UE}
+ \theta \left(G(\hat{c}_e) \left[\pi^M - (\pi_h^L)_{LP} \right] - G(\hat{c}_e) \left(\pi_e^L \right)_{UE} \right)
\]

still remembering that \((\pi_h^L)_{LP} = (\pi_e^L)_{UE} > (\pi_e^L)_{LP} = (\pi_h^L)_{UE}\). Thus, the term on the first line is always positive, while the term of the second line is positive only when \(G(\hat{c}_e) > 1\) is not too large. Finally, the term on the third line is negative given proposition 7 and \(G(\hat{c}_e) > 1\).

Note that the comparison performed here requires that we focus on values of \(\theta\) for which the same equilibrium outcome occurs whatever the rule; but this may have no sense for some values of \(\frac{c_e^b}{\pi_h}\). To insist, it is clear that when \(\frac{c_e^b}{\pi_h}\) is large (for example, \(\frac{c_e^b}{\pi_h} = 20\%) case ii) must only be
considered for a consistent comparison – which means that only a large value for \(\theta \geq 0.74597 \) is relevant (see graph 1)\(^8\).

Part i) of proposition 8 shows interestingly that focusing on the size of the damages awarded to the Patentee but ignoring the feedback effects at the market stage, is misleading when we turn to the comparison of Patentee’s total expected utility (profits). The difference \(U_h (\ell^*; c^*_e) - U_h (\ell^{**}; c^*_e) \) is driven by two terms which have opposite signs (see (6)): on the one hand, we have \((\pi^L_h)_{LP} - (\pi^L_h)_{UE} > 0 \); on the other hand, we found that \(\theta (\pi^M_h - (\pi^L_h)_{LP} - (\pi^L_e)_{UE}) = \theta (D_{LP} - D_{UE}) < 0 \).

Thus, we have shown that despite \(D_{LP} < D_{UE} \), the Lost Profit rule has a large and positive feedback effect at the market stage, which is beneficial to the Patentee, and detrimental to the Infringer. In a sense, the advantage of the Lost profit rule is explained by the market discipline it imposes to the Infringer, which prevents him from producing a large quantity despite he holds the same production costs as the Patentee. But note that case i) requires that there is a positive probability that the case settles amicably (and thus, infringement is never deterred).

In contrast, part ii) of proposition 8 means that the superiority of the Lost Profit rule may not hold soon as the probability that infringement is deterred is positive. Under conditional infringement, the choice/comparison between both rules reflects the existence of a trade-off\(^9\): roughly speaking, the Lost Profit rule is associated with a larger probability that the Patentee earns his monopoly profit, whereas the Unjust Enrichment rule yields a higher probability that higher damages are awarded in case of trial.

6 Conclusion

For practical purposes, French Jurisdictions may be prone to choose between one rule or the other just because of the available and quality of information regarding Infringers’ profits or Patentees’ profits. Indeed, as the reform of the French IPR law passed in 2007, a major argument that some legal commentators put in favor of the Unjust Enrichment rule was that it is consistent with the idea that "infringement must not pay". Moreover, the introduction of the Unjust Enrichment rule was seen as a substitute for punitive damages (as the European Commission forbid their use) since it allows the disgorgement of the illegal benefits obtained by the infringer, thus creating the conditions to improve the deterrence of infringers\(^10\). However, our analysis shows that these ideas are not

\(^8\) In contrast, case i) only occurs for small values of \(\frac{c^*_e}{\pi^M_h} \) (for example at 1%). The result is available on request.

\(^9\) This is a rough interpretation of the sum of the second and third lines in condition (7), which may be written as: \(G(\varepsilon_1) ((\pi^L_h)_{LP} + \theta [\pi^M_h - (\pi^L_h)_{LP}]) - G(\varepsilon_2) ((\pi^L_h)_{UE} + \theta (\pi^L_e)_{UE}) \).

correct. The Unjust Enrichment rule entails less deterrence and at the same time, is associated with more trials, than the Lost Profit rule. Moreover, a main flaw of the Unjust Enrichment rule is that it may also deter the Patentee from enforcing his right (which we find not possible to occur under Lost Profit). Finally, regarding the preservation of Patentees total (expected) utility/profit, the comparison is less obvious, no rule being better than the other11. However, we find that when there is a positive probability that the case settles, Patentee’s expected utility under Lost Profit is higher than under Unjust Enrichment.

Our paper has also shown that the features of the equilibria may be very different under both rules, as they are associated with different values of the patent strength, which makes harder their comparison. To overcome these problems, we will consider the issue of an endogenous patent strength in future research.

APPENDIX

Proof of proposition 1. The proof consists in three main stages.

- At stage 4, assume the Patentee believes that all types of Infringer have chosen Infringe (we will verify this is consistent). Hence, assume he offers a licensing price $\ell > 0$, associated with a cut-off value $c_{\ell} \in [c_e, \bar{c}_e]$ satisfying $u_e(\ell) = u_e(c_{\ell})$ with $D_{LP} = \pi^M - \pi^L_h$; thus any Infringer $c_e < c_{\ell}$ rejects ℓ (a trial occurs with probability $G(c_{\ell})$), while any Infringer $c_e \geq c_{\ell}$ accepts ℓ (the case is settled with probability $1 - G(c_{\ell})$). The maximization of:

$$U_h (\ell; c_{\ell}) = (1 - G(c_{\ell})) u_h(\ell) + G(c_{\ell}) u_h(c_h) \quad \text{s.t.} \quad u_e(\ell) = u_e(c_{\ell})$$

yields the solution (ℓ^*, c_e^*) corresponding to the best licensing price $\ell^* = \theta \left[\pi^M - (\pi^L_h)_{LP} \right] + c_e^* > 0$ (given by $u_e(c_e^*) = u_e(\ell^*)$) associated with the cut-off value c_e^* (which satisfies $\left(\frac{1 - G}{\theta} \right)_{c_e^*} = c_e^* + c_h$).

- At stage 3, if the Patentee chooses Litigate and the Infringer chooses Infringe whatever his type, Cournot competition between both firms yields the output levels $(y_h^L)_{LP} = \frac{a - k}{b(3 - \theta)}$, $(y_e^L)_{LP} = \frac{(1 - \theta)(a - k)}{b(3 - \theta)}$ which solve the system12:

11Note that the comparison of the welfare consequences of both rules may also be quite complex; see our companion paper Chopard, Cortade and Langlais (2013).

12The best response functions are defined as:

$$y_h^L = \underset{y_h}{\text{arg max}} \{ U_h (\ell^*; c_e^* \} \quad \text{s.t.} \quad P = a - b(y_h + y_e) \}$$

$$y_e^L = \underset{y_e}{\text{arg max}} \{ u_e(c_e) \} \quad \text{s.t.} \quad P = a - b(y_h + y_e) \}$$
at stage 3, this yields him:

\[\text{Litigate type satis…es,} \]

\[0 \quad \text{equilibrium of proposition 1 breaks. Then, consider the threshold value } y \]

\[a \quad \text{equilibrium at the market stage corresponds to the output level } y^A = \frac{a-k}{3b} (= y_h^A = y^A) \text{ which is the solution to the (usual) system}^{13}: \]

\[
(1 - \theta) \frac{\partial \pi^L_h}{\partial y_h} = 0 \\
\frac{\partial \pi^L_e}{\partial y_e} + \theta \frac{\partial \pi^L_h}{\partial y_e} = 0
\]

On the other hand, if the Patentee chooses *Accommodate* and the Infringer chooses *Infringe*, the symmetric Cournot-Nash equilibrium at the market stage corresponds to the output level

\[y^A = \frac{a-k}{3b} (= y_h^A = y_e^A) \text{ which is the solution to the (usual) system}^{13}: \]

\[
\frac{\partial \pi^L_h}{\partial y_h} = 0 \\
\frac{\partial \pi^L_e}{\partial y_e} = 0
\]

Thus, the Patentee chooses *Litigate* rather than *Accommodate* if \(U_h (\ell^*; c_e^*) = (\pi^L_h + \theta (\pi^M - (\pi^L_h)_LP) - G(c_e^*)c_h + (1 - G(c_e^*))c_e^* \geq \pi^A_h \text{; this inequality holds under assumption 2, given that the Lost Profit rule implies } \pi^M > (\pi^L_h)_LP > \pi^A_h. \]

- At stage 2, the Infringer knows that at the pretrial negotiation stage he will obtain at least \(u_e (\ell^*) = (\pi^L_e)_LP - \ell^* \text{ (if Infringe is chosen) whatever his type, rather than 0 (if Non Infringe is chosen). Thus, Infringe is the best decision if } (\pi^L_e)_LP - \ell^* \geq 0 \Leftrightarrow \theta \leq \frac{(\pi^L_e)_LP - c_e^*}{\pi^M - (\pi^L_h)_LP}. \text{ If this condition holds, then all Infringers’ types choose Infringe, and thus Patentee’s belief is also consistent.} \]

Proof of proposition 2. We only provide here a brief sketch of the proof. If \(\theta > \frac{(\pi^L_e)_LP - c_e^*}{\pi^M - (\pi^L_h)_LP} \), then at stage 2 all Infringer’s types cannot choose Infringe since \(u_e (\ell^*) < 0 \), and thus the equilibrium of proposition 1 breaks. Then, consider the threshold value \(\tilde{c}_e \) for which \(u_e (\tilde{c}_e) = 0 \Leftrightarrow (\pi^L_e)_LP - \theta [\pi^M - (\pi^L_h)_LP] = \tilde{c}_e \text{ (assuming that } \tilde{c}_e \in [c_e, \tilde{c}_e] \text{) and let us compare two alternative situations. Case 1:} \text{ at stage 4, assume that the Patentee offers } \tilde{\ell} < \ell^* \text{ defined as } \tilde{\ell} = (\pi^L_e)_LP = \theta [\pi^M - (\pi^L_h)_LP] + \tilde{c}_e; \text{ then the Infringer chooses either (Infringe, Accept) if his type satisfies } c_e \geq \tilde{c}_e, \text{ or (Infringe, Reject) if his type satisfies } c_e < \tilde{c}_e. \text{ When the Patentee chooses Litigate at stage 3, this yields him:} \]

\[
U_h (\tilde{\ell}, \tilde{c}_e) = (1 - G(\tilde{c}_e)) ((\pi^L_h)_LP + \tilde{\ell}) + G(\tilde{c}_e) ((\pi^L_h)_LP + \theta [\pi^M - (\pi^L_h)_LP] - c_h)
\]

\[{13} \text{The best response functions are defined as:} \]

\[
y^A_h = \arg \max_{y_h} \left\{ \pi^A_h = (P - k)y_h \text{ s.t. } P = a - b(y_h + y_e) \right\}
\]

\[
y^A_e = \arg \max_{y_e} \left\{ \pi^A_e = (P - k)y_e \text{ s.t. } P = a - b(y_h + y_e) \right\}
\]
It is easy to see that \(U_h(\ell; \tilde{c}_e) = (\pi^L_h)_{LP} + \theta \left[\pi^M - (\pi^L_h)_{LP} \right] - G(\tilde{c}_e)c_h + (1 - G(\tilde{c}_e))\tilde{c}_e > \pi^A_h \) (given assumption 2) since: \(\pi^M > (\pi^L_h)_{LP} > \pi^A_h \). But this cannot be an equilibrium; to see why, let us investigate the second case. **Case 2**: assume that the Patentee makes a licensing offer \(\ell > \hat{\ell} \) at the pretrial stage. Then, the Infringer chooses (Infringe) if his type is \(c_e \leq \tilde{c}_e \); otherwise, he chooses Non Infringe. Then, conditionally on the Infringer's type, the Patentee chooses Litigate (conditional on Infringe) and produces \((y^L_h)_{LP} \), or he produces his output \(y^M \) (conditional on Non Infringe). This yields him:

\[
U_h(\ell; \tilde{c}_e) = (1 - G(\tilde{c}_e))\pi^M + G(\tilde{c}_e) \left[(\pi^L_h)_{LP} + \theta \left[\pi^M - (\pi^L_h)_{LP} \right] - c_h \right]
\]

Once more it is easy to see that \(U_h(\ell; \tilde{c}_e) = (1 - G(\tilde{c}_e))\pi^M + G(\tilde{c}_e) \left((\pi^L_h)_{LP} + G(\tilde{c}_e) \left(\theta \left[\pi^M - (\pi^L_h)_{LP} \right] - c_h \right) > \pi^A_h \), given assumption 2 and given that \((1 - G(\tilde{c}_e))\pi^M + G(\tilde{c}_e) \left((\pi^L_h)_{LP} - \pi^M \right) \). Then we have:

\[
U_h(\ell; \tilde{c}_e) - U_h(\ell; \tilde{c}_e) = (1 - G(\tilde{c}_e)) \left[(\pi^L_h + \pi^L_e)_{LP} - \pi^M \right].
\]

It is easy to verify that the sign of \(\pi^M - (\pi^L_h + \pi^L_e)_{LP} \) is the same as the sign of \(f(\theta) = 1 + 2\theta - 3\theta^2 \), with \(f(0) = 1 \) and \(f(1) = 0 \); moreover, \(f(\theta) \) increases for \(\theta \in [0, 1/3] \) and decreases for \(\theta \in [1/3, 1] \). This implies \(\pi^M - (\pi^L_h + \pi^L_e)_{LP} > 0 \) for all \(\theta \in [0, 1] \), and \(\pi^M - (\pi^L_h + \pi^L_e)_{LP} = 0 \) for \(\theta = 1 \). Hence, the result. ■

Proof of proposition 3. We only give a sketch of the proof, since it is very close to the one of proposition 1.

- At stage 4, assume the Patentee expects that all types of Infringer have chosen Infringe. The maximization of:

\[
U_h(\ell; c_e) = (1 - G(c_e))u_h(\ell) + G(c_e)u_h(c_h) \quad s.t. \quad u_e(\ell) = u_e(c_e)
\]

yields the solution \((\ell^{**}, c^*_e) \) corresponding to the best licensing price \(\ell^{**} = \theta \left(\pi^L_e \right)_{UE} + c^*_e > 0 \) (which solves \(u_e(c^*_e) = u_e(\ell^{**}) \)) still associated with the cut-off value \(c^*_e \) (which satisfies \(\left. \frac{1 - G(\theta)}{\theta} \right|_{c^*_e} = c^*_e + c_h \)).

- At stage 3, if the Patentee chooses Litigate and the Infringer chooses Infringe, Cournot competition between both firms yields the output levels \(\left((y^L_h)_{UE} = \frac{(1 - \theta)(a - k)}{b(3 - \theta)}, (y^L_e)_{UE} = \frac{a - k}{b(3 - \theta)} \right) \) which solve the system\(^{14}\):

\[
\begin{align*}
y^L_h &= \arg \max_{y_h} \left\{ U_h(\ell^{**}; c^*_e) \ s.t. \ P = a - b(y_h + y_e) \right\} \\
y^L_e &= \arg \max_{y_e} \left\{ u_e(c_e) \ s.t. \ P = a - b(y_h + y_e) \right\}
\end{align*}
\]

\(^{14}\)The best response functions are now:
\[
\frac{\partial \pi^L_h}{\partial y_h} + \theta \frac{\partial \pi^L_c}{\partial y_c} = 0 \\
(1-\theta) \frac{\partial \pi^L_c}{\partial y_c} = 0
\]

But the Patentee chooses *Litigate* rather than *Accommodate* only if \(U_h(\ell^*; c^*_e) \equiv (\pi^L_c)_{UE} + \theta \left((\pi^L_c)_{UE} - G(\hat{c}_e) c_h + (1 - G(\hat{c}_e)) c^*_e \right) \geq \pi^A \Leftrightarrow \theta \geq \frac{\pi^A - (\pi^L_c)_{UE} + G(\hat{c}_e)(c_h + c^*_e)}{(\pi^L_c)_{UE}} - \frac{c^*_e}{(\pi^L_c)_{UE}} \), which may not hold given assumption 2, since under the Unjust Enrichment rule we have now \(\pi^M > \pi^A > (\pi^L_h)_{UE} \).

- At stage 2, the Infringer knows that if the Patentee enforces his right, then at the pretrial negotiation stage he will obtain at least \(u_e(\ell^*) = (\pi^L_c)_{UE} - \ell^* \) (if *Infringe* is chosen) whatever his type, rather than 0 (if *Non Infringe* is chosen). Thus, *Infringe* is the dynamic consistent decision if \((\pi^L_c)_{UE} - \ell^* \geq 0 \Leftrightarrow \theta \leq 1 - \frac{c^*_e}{(\pi^L_c)_{UE}} \). If this condition holds, Patentee’s belief is also consistent.

Proof of proposition 4. Let us simply highlight that at stage 2, it comes now that if \((\pi^L_c)_{UE} - \ell^* < 0 \Leftrightarrow \theta > 1 - \frac{c^*_e}{(\pi^L_c)_{UE}} \), *Non Infringe* is the dynamic consistent decision at least for the highest Infringer’s types, conditional on the fact that the Patentee chooses *Litigate*. The end of the proof is very similar to the one of proposition 2, excepted that \(\hat{c}_e = (1 - \theta)(\pi^L_c)_{UE} \) is the new cut-off value which allows to separate Infringer’s types between the decisions *Infringe* (and *Reject*) and *Non Infringe*. Whether the Patentee proposes \(\hat{\ell} = (\pi^L_c)_{UE} \) or \(\hat{\ell} > \hat{\ell} \) depends on the sign of \(U_h(\hat{\ell}; \hat{c}_e) - U_h(\hat{\ell}; \hat{c}_e) = (1 - G(\hat{c}_e)) \left((\pi^L_h + \pi^L_c)_{UE} - \pi^M \right) \), with once again \((\pi^L_h + \pi^L_c)_{UE} - \pi^M < 0 \). Thus, the equilibrium is such that the Patentee offers \(\hat{\ell} = U_h(\hat{\ell}; \hat{c}_e) = (1 - G(\hat{c}_e))\pi^M + G(\hat{c}_e) \left((\pi^L_h + \pi^L_c)_{UE} + \theta (\pi^L_c)_{UE} - c_h \right) \geq \pi^A \Leftrightarrow \theta \geq \frac{\pi^A - (1 - G(\hat{c}_e))\pi^M - G(\hat{c}_e)((\pi^L_h)_{UE} - c_h)}{G(\hat{c}_e)(\pi^L_c)_{UE}} \).

Under assumption 2 this condition may not hold since under the Unjust Enrichment rule we have now \(\pi^M > \pi^A > (\pi^L_h)_{UE} \). Hence the result.

References

CRAMPES C. and LANGINIER C. [2002], "Litigation and settlement in patent infringement cases", RAND Journal of Economics, 33/2, 258-274.

FARREL J. and SHAPIRO C. [2008], "How strong are weak patents?", American Economic Review, 98/4, 1347-1369.

SCHANKERMAN M. and SCOTCHMER S. [2001], "Damages and injunctions in protecting intellectual property", RAND Journal of Economics, 32/1, 199-220.
