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Abstract 

 

The aim of this research paper is to evaluate hedge fund returns Value-at-Risk by using 

GARCH models. To perform the empirical analysis, one uses the HFRX daily performance 

hedge fund strategy subindexes and spans the period March 2003 – March 2008. I found that 

skewness and kurtosis are substantial in the hedge fund returns distribution and the clustering 

phenomenon is pointed out. These features suggest the use of GARCH models to model the 

volatility of hedge fund return indexes. Hedge fund return conditional variances are estimated 

by using linear models (GARCH) and non-linear asymmetric models (EGARCH and 

TGARCH). Performance of several Value at Risk models is compared; the Gaussian VaR, the 

student VaR, the cornish fisher VaR, the normal GARCH-type VaR, the student GARCH-

type VaR and the cornish fisher GARCH-type VaR. Our results demonstrate that the normal 

VaR underestimates accurate hedge fund risks while the student and the cornish fisher 

GARCH-type VaR are more reliable to estimate the potential maximum loss of hedge funds. 
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Since the 1990’s, a substantial growth of hedge funds has been observed. According to 

HedgeFund Intelligence, assets under management accounted for $2, 65 trillion in 2007. 

Since 2000, investors have been looking for new investments. Fuelled by the prospect of 

double and triple-digit returns and the losses caused by the 2000 “dot-com bubble”, a wide 

range of them have sought exposure to hedge funds. They have been getting more and more 

importance within the financial community since the beginning of this decade. It is thus 

important to keep an eye on hedge funds particularly because they have attracted a growing 

share of institutional investors capital. This share has been constantly progressing as a result 

of the growth of incoming liquidity under their management, then delegate to hedge funds. 

The institutionalization of hedge funds raises the issue of a good risk management because 

public savings are concerned.  

In the same way, as hedge funds seek positive absolute returns they therefore engage in 

aggressive strategies leading to extreme losses. Their potential impact on systemic risk is real. 

This is particularly true in regard of the leverage hedge funds undertake. It may raise financial 

stability issues. Its use has been drawn to the attention since the beginning of the nineties. In 

1993/94, several highly-leveraged funds were said to have amplified volatility in the US bond 

market because of the forced liquidation of their positions. When the Federal Reserve 

unexpectedly raised interest rates, funds were forced to deleverage causing bond prices to fall. 

Additionally, to meet margin calls, these funds had to sell off their long positions in European 

securities markets, transmitting the disturbance to European markets. In the same way, in 

1997/98, hedge funds had been able to take substantial short positions in Asian markets as a 

result of the leverage provided by their counterparties. Those episodes fuelled complaints that 

hedge funds using leverage destabilize the markets. Concerns about hedge fund leverage 

reach its highest point with the collapse of Long-Term Capital Management in 1998. In order 

to deliver attractive returns, the fund had highly leveraged positions as price discrepancies in 

US securities market were small. In September 1998, LTCM’s leverage was very high. It had 

600 million in capital to offset positions worth $1 billion. With a high probability of failure, 

fears arose that the distressed sales of its positions in US securities markets might destabilize 

financial markets. These fears led to the rescue of LTCM by the FED. In 2007, hedge funds 

own most of the risky CDO tranches (around 46%, OECD). As they are very big players, the 

counterparty credit exposures are very large. Problems arose when hedge funds started failing. 

Hedge funds have been experiencing extreme funding liquidity risk since banks were short on 

capital, especially because they relied on leverage. They then faced higher margins. The 

interaction between the liquidity risk and leverage lead to extreme losses. 
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Thus, the use of leverage by hedge funds to a considerable extent raises the debate about the 

implications of hedge fund operations for systemic stability and increases their exposure to 

market risk. The objective of absolute performance conducts them to such a fragile situation. 

And the fact that they implicitly manage public savings justifies this need of a good risk 

management that has never been more pressing. 

 

All these worries highlight the importance of a reliable way to evaluate hedge fund risks. 

However, the traditional measures of risk are not suitable for hedge funds as they not deal 

with some of hedge funds specificities. Indeed, under the mean-variance approach, hedge 

funds are very attractive as they generate high returns with low risk. But, the expansive 

literature about hedge fund returns analysis concludes that the mean-variance approach is not 

adequate to investigate hedge funds risk. Fung and Hsieh [1997], Brook and Kat [2001] or 

Amenc, Curtis and Martellini [2003] demonstrated that the monthly returns distribution of 

hedge fund strategies present negative skewness and excess kurtosis. Thus, according to Kat 

[2003], volatility underestimates hedge fund risks since volatility does not give any 

information about asymmetric distribution of returns and extreme losses. But, as noticed by 

Scott and Horvath [1980], investors are interested in higher moments of the distribution 

function. These drawbacks underline the importance of an adequate measure of hedge funds 

risk that accounts for extreme losses in order to capture as much as possible their 

characteristics. This paper is focused on this concern. One aims to go further the traditional 

measures of risk and introduce a more appropriate method to hedge funds.  

 

While we point out that positions undertake by directional hedge funds strategies
3
 increase the 

market risk and extreme losses have to be considered, we decided to focus on Value at Risk 

(VaR). VaR is widely used in the practice of risk management within the financial industry. 

Its popularity is mainly due to the expression of the market risk in only one figure. For a 

methodology to be considered sound, the probability of loss should be reflected accurately. 

Different types of VaR have been introduced. Riskmetrics assumes that the continuously 

compounded daily return of a portfolio follows a conditional normal distribution. But in the 

case of skewed and fat-tails returns, estimates result in an underestimation of the true risk. 

Favre and Galeano [2002] introduced the modified VaR that is based on the cornish fisher 

expansion quantile in order to take into account the asymmetry and the kurtosis of the 

distribution. The historical estimation methodology in turn provides a non-parametric 

estimate of VaR. It does not make any assumption about the distribution of the portfolio 

                                                 
3
 Fund positions are based on the evolution of the market as a whole. 



 - 4 - 

return. It assumes that the distribution of returns will remain the same in the past and in the 

future. While these methods have a real contribution, they are not forward-locking and not 

adapted to capture hedge fund specificities. And as we seek to predict VaR, GARCH-type 

VaR appears to be more appropriate. In the same way, hedge fund returns exhibit nonlinear 

dependencies (Fung and Hsieh [1997]). These nonlinearities are caused by the use of 

derivatives, leverage and illiquid assets. It is thus important to capture time-variation in hedge 

fund returns. GARCH-type VaR allows the inclusion of time-varying conditional volatility in 

the VaR and deals with asymmetric and leptokurtosism phenomenon. Nonlinearities also 

often arise from the presence of dynamic strategies as hedge fund managers are able to shift 

their exposures rapidly. To account for the nonlinearity aspect and to analyze the dynamics of 

hedge fund risk, one also considers asymmetric GARCH models to trace hedge fund returns 

volatility process more effectively.  

 

On the other hand, because of their private nature, hedge funds do not have to disclose their 

results. Most of researches on hedge funds are based on monthly data. The “democratisation” 

of hedge funds has encouraged them to provide data with higher frequency. Another 

contribution of this paper is the use of daily data to measure all hedge fund strategies risks.  

 

This article is organised as follows: Firstly, I present hedge fund strategies according to 

Hedge Fund Research data provider. Secondly, one introduces the Value at Risk concept and 

the conventional variance models considered. While the normal distribution is widespread, it 

however cannot describe fat-tails returns. Hence, the student-t distribution of returns is also 

applied dealing with leptokurtosis. GARCH, EGARCH and TGARCH process take into 

account the observed volatility clustering of returns. Thirdly, the GARCH models are applied 

to forecast a 1 day-ahead Value at Risk for various thresholds (5%, 2.5% and 1%). The 

forecasts are compared with the VaR based on the standard deviation. Finally, one backtests 

the different VaR approaches to test the relevance of the VaR models considered. 

 

Hedge fund Strategies Description 

Hedge fund strategies may be grouped in three different areas; directional, arbitrage and 

specific situations. Directional strategies entail a bet on the direction of the overall market. 

They involve taking positions on forward and option markets, and in global markets. 

Arbitrage strategy managers seek to exploit price discrepancies. Finally specific situations 

strategy managers tend to benefit from events affecting companies such a merger arbitrage 

and a restructuration.  
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Directional strategies Arbitrage strategies Specific situation strategies 

Equity hedge 

Macro 

 

Convertible arbitrage 

Equity market neutral 

Relative value arbitrage 

Distressed securities 

Event driven 

Merger arbitrage 

 

 

 

To perform the empirical analysis, one uses the HFRX hedge fund indexes. The description of 

hedge fund strategies is directly taken from HFR documentation. 

 

Global Index 

The HFRX Global Hedge Fund Index is designed to be representative of the overall 

composition of the hedge fund universe. It is comprised of eight strategies; convertible 

arbitrage, distressed securities, equity hedge, equity market neutral, event driven, macro, 

merger arbitrage, and relative value arbitrage. The strategies are asset weighted based on the 

distribution of assets in the hedge fund industry.  

 

Convertible arbitrage  

Convertible Arbitrage involves taking long positions in convertible securities and hedging 

those positions by selling short the underlying common stock. A manager will, in an effort to 

capitalize on relative pricing inefficiencies, purchase long positions in convertible securities, 

generally convertible bonds, convertible preferred stock or warrants, and hedge a portion of 

the equity risk by selling short the underlying common stock.  

 

Distressed Securities 

Distressed Securities managers invest in, and may sell short, the securities of companies 

where the security's price has been, or is expected to be, affected by a distressed situation. 

Managers will seek profit opportunities arising from inefficiencies in the market for such 

securities and other obligations.  

 

Equity Hedge 

Equity Hedge, also known as long/short equity, combines core long holdings of equities with 

short sales of stock or stock index options. Equity hedge portfolios may be anywhere from net 

long to net short depending on market conditions. Equity hedge managers generally increase 

net long exposure in bull markets and decrease net long exposure or even are net short in a 
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bear market 

 

Equity Market Neutral 

Equity Market Neutral strategies strive to generate consistent returns in both up and down 

markets by selecting positions with a total net exposure of zero. Trading managers will hold a 

large number of long equity positions and an equal, or close to equal, dollar amount of 

offsetting short positions for a total net exposure close to zero. By taking long and short 

positions in equal amounts, the equity market neutral manager seeks to neutralize the effect 

that a systematic change will have on values of the stock market as a whole.  

 

Event driven 

Event Driven investment strategies or "corporate life cycle investing" involves investments in 

opportunities created by significant transactional events, such as spin-offs, mergers and 

acquisitions, industry consolidations, liquidations, reorganizations, bankruptcies, 

recapitalizations and share buybacks and other extraordinary corporate transactions. Event 

driven trading involves attempting to predict the outcome of a particular transaction as well as 

the optimal time at which to commit capital to it.  

 

Macro 

Macro strategies attempt to identify extreme price valuations in stock markets, interest rates, 

foreign exchange rates and physical commodities, and make leveraged bets on the anticipated 

price movements in these markets. Profits are made by correctly anticipating price 

movements in global markets and having the flexibility to use any suitable investment 

approach to take advantage of extreme price valuations 

 

Merger Arbitrage 

Merger Arbitrage, also known as risk arbitrage, involves investing in securities of companies 

that are the subject of some form of extraordinary corporate transaction, including acquisition 

or merger proposals, exchange offers, cash tender offers and leveraged buy-outs. Typically, a 

manager purchases the stock of a company being acquired or merging with another company, 

and sells short the stock of the acquiring company. A manager engaged in merger arbitrage 

transactions will derive profit (or loss) by realizing the price differential between the price of 

the securities purchased and the value ultimately realized when the deal is consummated.  
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Relative Value Arbitrage 

Relative Value Arbitrage is a multiple investment strategy approach. The overall emphasis is 

on making "spread trades" which derive returns from the relationship between two related 

securities rather than from the direction of the market. Generally, trading managers will take 

offsetting long and short positions in similar or related securities when their values, which are 

mathematically or historically interrelated, are temporarily distorted. Profits are derived when 

the skewed relationship between the securities returns to normal.  

 

Methodology 

VaR is defined by the following relationship: 
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It describes the estimated maximum potential loss of an asset not exceeded with a given 

probability defined as the confidence level, over a given period of time. 

 

It is computed as follows:    
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The VaR is the result of a product of the scalar denoted )(z representing a quantile 

depending on the level of confidence with the volatility in 1t  at horizon .t  

According to Wilmott [1998], the assumption of zero mean is valid over short-term horizons. 

This assumption is based on the conjecture that the magnitude of mean is substantially smaller 

than the magnitude of the standard deviation and therefore can be ignored. 
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Therefore, the VaR formula considered is:  

)3()()()(
1
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           1.               2. 

To evaluate hedge fund risks, one considers different types of VaR. The difference is made 

upon the quantile and the volatility model considered.  

1. Types of quantile. 

 Normal quantile 

 Student quantile. The Student’s t distribution deals with the phenomenon of excess 

kurtosis by modelling tail thickness by a parameter called “degree of freedom”. 

 Cornish fisher quantile. Favre and Galeano [2002] introduced the modified VaR 

that is based on the cornish fisher expansion quantile. It is an expansion around the 

normal distribution in order to take into account the asymmetry and the fat tails of 

the distribution.  
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2. Types of volatility model.  

 Volatility estimate is based on standard deviation 

 Volatility estimate is based on GARCH models. In forecasting a GARCH model of a 

time series of returns Rt, three distinct specifications have to be provided; one for the 

conditional mean equation, one for the conditional variance, and one for the 

conditional error distribution, conditional on 1t , the information set available at time 

t-1. 

       GARCH models assume that the conditional mean equation is modelled as follows: 
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However, when returns exhibit serial dependence structure, the mean equation is 

modelled as an AR, MA or ARMA process. 
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We first focus on GARCH model introduced by Bollerslev [1986]: 
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We also considered Nelson [1991] exponential GARCH model (EGARCH) in which    

the logarithm of conditional variance is specified as: 
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Finally we deal with Zakoian [1990] threshold GARCH model (TGARCH) in which 

the conditional variance is specified as follows: 
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An assumption about the conditional distribution of the error term 



t  is required. 

While the normal (Gaussian) distribution is widespread; it however cannot describe 

fat-tails returns. Hence the student’s t distribution is also applied, modelling tail 

thickness by a parameter called “degree of freedom”. 

 

To sum up, 21 VaRs are computed; those based on standard deviation and computed with 

normal, student and cornish fisher quantile and those based on conditional volatility models 

(GARCH, TGARCH and EGARCH under the assumption of both normal and student 

assumption) computed with the same quantiles. 

 

Empirical Analysis of Hedge Fund Return Indexes Volatility 

 

Data 

Hedge fund providers licence their indexes to partners who can then create investable 

products. These products track the index by investing in a weighted portfolio of its 

constituents. To this end, only a limited numbers of liquid hedge funds are selected which 

leads to a sub-representativity bias. 
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Investable indexes providers have very strict hedge fund selection criterion in order to end up 

with a product easy to manage. However, very few hedge funds fulfil them. Consequently, the 

whole universe of hedge funds is not represented. Investable indexes are less representative 

than non investable indexes. 

 

To perform the empirical analysis, one uses the HFRX (investable Hedge Fund Research 

indices) daily performance subindexes split by an investment style and an aggregate index 

which encompasses all hedge fund strategies and spans the period March 31
st
 2003 - March 

3
rd

 2008 (1241 observations). 

 

The HFRX indexes are based on the Hedge Fund Research (HFR) database. The indexes 

measure the net of fee returns denominated in US dollar. Funds included must be currently 

open to new transparent investment, have at least $50 Million under management and meet 24 

month track record. The HFRX indexes consist of eight single strategies presented above; 

convertible arbitrage, distressed securities, equity hedge, equity market neutral, event driven, 

macro, merger arbitrage and relative value arbitrage. The HFRX global hedge fund index 

encompasses over 55 funds. 

 

Summary Statistics 

Globally it can be noticed that hedge fund index returns
4
 are quite favourably compared to 

stocks and bonds (appendix A). HFRX global index has an average mean return of 5.73 %. 

Amongst investment styles, event driven exhibits the highest average mean return with 7.78 

% followed by macro (7.58 %). Convertible arbitrage and equity market neutral strategies 

exhibit the lowest returns. 

 

Appendix A shows that standard deviations of stock market indexes and JP Morgan EMU 

Bond Index are much higher than those of hedge funds. Russell 2000 has an average standard 

deviation of 18.50%, followed by NASDAQ (16.59%) and Dow Jones EURO STOXX 50 

(16.21%), while HFRX global index exhibits a weak average standard deviation of 3.74%. 

                                                 
4 Returns of hedge fund indexes at time t are computed as follows: 
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The most attractive strategies in term of volatility are distressed securities (2.36%), merger 

arbitrage (3.55%) and convertible arbitrage (3.61%). 

 

None of the hedge fund returns distributions seem to be symmetric. As a matter of fact, their 

skewness coefficients are different from zero and negative. The same conclusion is reached 

when we look at the stock and bond market indexes. 

Globally, hedge funds, stocks and bonds show evidence of fat tails, since the kurtosis exceeds 

3, which is the normal value. It means that extreme returns (either losses or gains) are more 

likely than they are with the normal distribution. The returns distribution is leptokurtic. The 

combination of negative skewness and excess kurtosis denote a high probability of negative 

returns. Equity market neutral strategy exhibits the highest kurtosis coefficient with 38.03 

followed by relative value arbitrage with 14.62 and merger arbitrage with 13.96.  

 

According to those findings, hedge fund returns distribution seems to be far from normally 

distributed. According to the Jarcque-Bera test of normality, the null hypothesis of normally 

distributed returns is not accepted for none of the indexes. Indeed, the results show that the 

statistic is higher than theoretical value read in Chi-Square table with two degrees of freedom 

at the significant value of 5% (5.99) for all hedge fund return indexes and stock and bond 

market indexes. These results demonstrate that measures based on mean-variance approach 

are not reliable. On the other hand, table 1 below shows the existence of ARCH effects for 

most hedge fund strategies. This might be linked to the non-normality of the returns but also 

to the conditional distribution. That’s why, one decided to go further the normal distribution 

and consider the Skewness one and the Cornish-Fisher expansion. 

 

Table 1: ARCH Test of Hedge Fund Return Indexes 

 

  

 

  

Convertible Arbitrage 28.25 (0.00)  19.28 (0.00) 33.76 (0.00) 

Distressed Securities 5.36 (0.25) 84.75 (0.00) 115.70 (0.00) 

Event Driven 122.75 (0.00) 30.00 (0.00) 38.65 (0.00) 

Equity Hedge 202.79 (0.00) 47.18 (0.00) 58.46 (0.00) 

Equity Market Neutral 429.76 (0.00) 43.86 (0.00) 49.68 (0.00) 

Macro 191.88 (0.00) 42.57 (0.00) 51.25 (0.00) 

Merger Arbitrage 269.26 (0.00) 14.42 (0.01) 28.85 (0.00) 

Relative Value Arbitrage 282.26 (0.00) 11.49 (0.04) 24.21 (0.01) 

Global 240.90 (0.00) 79.74 (0.00) 94.30 (0.00) 

 

 

)(2 probRT  )()5( probQ )()10( probQ
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Volatility clustering is exhibited in appendix B. We can see that periods of high and low 

volatility are grouped together. These stylized facts are typical features of financial time series 

and demonstrate that the volatility of hedge funds varies through time. This suggests the use 

of non-linear time series structures to model the volatility of hedge fund returns.  

 

Volatility Forecasting Using GARCH Models 

As hedge fund strategies exhibit serial correlation induced by discontinuous trading (table 1), 

we represent the return generating process in the mean equation of the GARCH-type model 

with an ARMA-like component
5
 in order to desmooth hedge fund returns. A lag structure of 

p=1 and q=1 seems to be the most suitable (for equity market neutral, merger arbitrage and 

relative value arbitrage, the appropriate lag structure is p=2 and q=2). The autocorrelation and 

partial autocorrelation functions are used to identify the form of the mean equation. The 

choice of the adequate mean equation is based on selection criterion
6
. 

Then, one models the hedge fund strategies conditional variance as a GARCH, TGARCH and 

EGARCH process as they deal with nonlinearities and asymmetries. The conditional 

variances were estimated under the assumption that residuals t follow the normal and the 

student law. A lag structure of p=1 and q=1 is also considered. 

Appendixes D and E present the hedge fund strategies parameters estimates. Whatever the 

distribution followed by residuals t , the conditional variance parameters are significant in all 

cases. The Ljung-Box and the ARCH-LM tests confirm that models considered take the 

heteroscedasticity into account for almost all hedge fund strategies. 

 

GARCH(1;1) process exhibit 1ˆˆ
11   which means that hedge fund strategies show a 

mean-reverting behaviour. 

TGARCH(1;1) model  shows a value of 0ˆ
1   (excepted for macro strategy), which indicates 

that bad news have larger impact on the volatility of the returns. 

We observe that EGARCH(1;1) process display a value of 0ˆ
1   and 01̂  . Bad news 

increase hedge fund strategies volatility at time 1t  and the extent of bad news on the 

volatility is important. 

                                                 
5
 Either an AR, a MA or an ARMA.  

6
 R², AIC, SIC and Log Likelihood. 
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According to these findings, all hedge fund strategies present asymmetric effects. This feature 

is in line with the negative skewness, nonlinearities and dynamic trading strategies that 

characterise hedge fund returns. 

 

Table 2: Value at Risk Forecasts Results 

 

Normal quantiles 

 
  Standard 

Deviation 
GARCH  TGARCH  EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,529% -0,656% -0,678% -0,703% 

Distressed Securities -0,346% -0,350% -0,351% -0,366% 

Event Driven -0,647% -0,646% -0,619% -0,676% 

Equity Hedge -0,842% -0,949% -1,008% -0,910% 

Equity Market Neutral -0,604% -0,739% -0,796% -0,738% 

Macro -1,094% -1,574% -1,897% -1,856% 

Merger Arbitrage -0,521% -0,334% -0,343% -0,349% 

Relative Value Arbitrage -0,512% -0,816% -0,876% -0,816% 

Global Index -0,548% -0,653% -0,637% -0,599% 

 

Student quantiles 

 

 1% 
 Standard Deviation GARCH  TGARCH  EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,562% -0,702% -0,723% -0,753% 

Distressed Securities -0,394% -0,429% -0,424% -0,430% 

Event Driven -0,705% -0,704% -0,688% -0,733% 

Equity Hedge -0,886% -1,014% -1,080% -0,978% 

Equity Market Neutral -0,646% -0,808% -0,854% -0,802% 

Macro -1,207% -1,743% -2,131% -2,098% 

Merger Arbitrage -0,583% -0,378% -0,397% -0,400% 

Relative Value Arbitrage -0,573% -0,898% -0,971% -0,919% 

Global Index -0,591% -0,701% -0,718% -0,639% 
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Cornish fisher quantiles
7
 

 
 1% 

  Standard Deviation GARCH  TGARCH  EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,690% -0,857% -0,885% -0,918% 

Distressed Securities -0,404% -0,408% -0,409% -0,427% 

Event Driven -0,990% -0,988% -0,947% -1,034% 

Equity Hedge -1,125% -1,268% -1,346% -1,216% 

Equity Market Neutral -2,774% -3,395% -3,660% -3,392% 

Macro -2,207% -3,173% -3,825% -3,743% 

Merger Arbitrage -1,171% -0,750% -0,771% -0,786% 

Relative Value Arbitrage -1,136% -1,811% -1,945% -1,812% 

Global Index -0,862% -1,027% -1,001% -0,942% 

 

Table 2 reports results of 1 day-ahead VaR forecasts computed for 1 % threshold using 

normal, student and cornish fisher quantiles.  

 

Among investment styles, equity hedge, merger arbitrage and relative value exhibit the 

highest VaR for almost all methods. These strategies seek to benefit from a spread which 

leads to a significant use of leverage increasing the level of risk. This is particularly true for 

relative value arbitrage (cf LTCM). Managers experience small price discrepancies and use a 

high level of leverage in order to generate returns. In the same way, merger arbitrage 

managers are exposed to market risk. Indeed when the market is down, merger arbitrage 

activity suffers.  

Results show that VaR based on the normal quantile underestimate market risk. Those based 

on student and cornish fisher quantiles seem to be more relevant methods as their values are 

higher.  

Among VaR methods, whatever the quantile may be, TGARCH and EGARCH-type VaR 

exhibit the highest values. 

If one has a glance to the appendixes G, H and I, we can see that the GARCH/TGARCH and 

EGARCH-type VaR do react immediately to small or large price changes.  

 

 

 

 

                                                 
7
 GARCH, TGARCH and EGARCH parameters are estimated under the assumption that residuals follow the 

normal law 
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Backtesting VaR Models 

To support the conclusions found above, it is necessary to test these VaR models. The quality 

of the VaR forecasts depends on the quality of the VaR method. One has to judge whether our 

VaR forecasts are consistent with subsequently realized returns given the confidence level. 

When the number of realized observations falling outside VaR predictions is in line with the 

confidence level, the VaR model is adequate.  

 

The tests start from a hit sequence function. It describes whether or not a loss in excess of the 

reported VaR has been realized. The function is defined as follows: 
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A VaR model will be accurate if and only if the hit sequence function satisfies both the 

unconditional coverage property and the independence property
8
 (Christoffersen [1998]). 

 

Backtesting Results 

The number of observations for each hedge fund index is 1241. One uses the last 250 

observations for out-of-sample forecasting. For each model, the first 991 daily returns are 

used to form a VaR forecast for day 992. Then, data from day 2 to day 992 are used to form a 

VaR forecast for day 993 and so on. 250 out-of-sample forecasts are generated recursively by 

moving the estimation-window forward through time. 

 

Table 3: Number and Proportion of Hedge Funds VaR Failures 

 

Normal quantiles 

 

 1% 

 Standard Deviation GARCH TGARCH  EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,53% -0,66% -0,68% -0,70% 

Distressed Securities -0,35% -0,35% -0,35% -0,37% 

Event Driven -0,65% -0,65% -0,62% -0,68% 

                                                 
8
 These tests are presented in appendix G. 



 - 16 - 

Equity Hedge -0,84% -0,95% -1,01% -0,91% 

Equity Market Neutral -0,60% -0,74% -0,80% -0,74% 

Macro -1,09% -1,57% -1,90% -1,86% 

Merger Arbitrage -0,52% -0,33% -0,34% -0,35% 

Relative Value Arbitrage -0,51% -0,82% -0,88% -0,82% 

Global Index -0,55% -0,65% -0,64% -0,60% 

 

Student quantiles9 

 

  1% 

 Standard Deviation GARCH  
TGARCH  

EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,56% -0,70% -0,72% -0,75% 

Distressed Securities -0,39% -0,43% -0,42% -0,43% 

Event Driven -0,71% -0,70% -0,69% -0,73% 

Equity Hedge -0,89% -1,01% -1,08% -0,98% 

Equity Market Neutral -0,65% -0,81% -0,85% -0,80% 

Macro -1,21% -1,74% -2,13% -2,10% 

Merger Arbitrage -0,58% -0,38% -0,40% -0,40% 

Relative Value Arbitrage -0,57% -0,90% -0,97% -0,92% 

Global Index -0,59% -0,70% -0,72% -0,64% 

 

Cornish fisher quantiles 

 

  1% 

 Standard Deviation GARCH  
TGARCH  

EGARCH 

     

VaR VaR VaR VaR 

    

Convertible Arbitrage -0,69% -0,86% -0,89% -0,92% 

Distressed Securities -0,40% -0,41% -0,41% -0,43% 

Event Driven -0,99% -0,99% -0,95% -1,03% 

Equity Hedge -1,13% -1,27% -1,35% -1,22% 

Equity Market Neutral -2,77% -3,40% -3,66% -3,39% 

Macro -2,21% -3,17% -3,83% -3,74% 

Merger Arbitrage -1,17% -0,75% -0,77% -0,79% 

Relative Value Arbitrage -1,14% -1,81% -1,95% -1,81% 

Global Index -0,86% -1,03% -1,00% -0,94% 

 

 

A glance to table 3 shows that the ex-post violations rate is larger than the initial coverage 

rate. For most of the models, losses in excess of the reported VaR occurred more frequently, 

no matter the threshold. This suggests that VaR understates the actual level of risk.  

Under the cornish fisher GARCH-type (2.5% and 1%), losses in excess occurred less 

frequently for several hedge fund strategies. This means that VaR is too conservative. 

 

                                                 
9
 No reported conditional variance for several GARCH and TGARCH estimations 
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Table 4: Unconditional Coverage, Independence and Conditional Coverage Test  

 

Normal quantiles 

 

 1% 

  Standard Deviation GARCH TGARCH EGARCH 

         

Nb of F POF Nb of F POF Nb of F POF Nb of F POF 

        

Convertible Arbitrage 11 4.40% 6 2.40% 6 2.40% 7 2.80% 

Distressed Securities 4 1.60% 3 1.20% 3 1.20% 3 1.20% 

Event Driven 17 6.80% 7 2.80% 8 3.20% 7 2.80% 

Equity Hedge 23 9.20% 5 2.00% 7 2.80% 11 4.40% 

Equity Market Neutral 15 6.00% 11 4.40% 10 4.00% 10 4.00% 

Macro 16 6.40% 5 2.00% 4 1.60% 4 1.60% 

Merger Arbitrage 16 6.40% 12 4.80% 12 4.80% 12 4.80% 

Relative Value Arbitrage 22 8.80% 8 3.20% 9 3.60% 9 3.60% 

Global Index 24 9.60% 8 3.20% 11 4.40% 10 4.00% 

 

Student quantiles
10

 

 

 1% 

 Standard Deviation GARCH TGARCH EGARCH 

         

Nb of F POF Nb of F POF Nb of F POF Nb of F POF 

        

Convertible Arbitrage 9 3,60% 5 2,00% 6 2,40% 5 2,00% 

Distressed Securities 3 1,20% - - - - 2 0,80% 

Event Driven 11 4,40% 6 2,40% 4 1,60% 4 1,60% 

Equity Hedge 21 8,40% 4 1,60% 6 2,40% 6 2,40% 

Equity Market Neutral 13 5,20% 10 4,00% 9 3,60% 10 4,00% 

Macro 15 6,00% 4 1,60% 3 1,20% 4 1,60% 

Merger Arbitrage 15 6,00% - - - - 11 4,40% 

Relative Value Arbitrage 19 7,60% - - 4 1,60% 6 2,40% 

Global Index 21 8,40% 2 0,80% 4 1,60% 5 2,00% 

 

Cornish fisher quantiles
11

 

 

 1% 

 Standard Deviation GARCH TGARCH EGARCH 

         

Nb of F POF Nb of F POF Nb of F POF Nb of F POF 

        

Convertible Arbitrage 6 2,40% 3 1,20% 2 0,80% 2 0,80% 

Distressed Securities 2 0,80% 3 1,20% 2 0,80% 3 1,20% 

Event Driven 4 1,60% 2 0,80% 1 0,40% 2 0,80% 

Equity Hedge 8 3,20% 1 0,40% 1 0,40% 0 0,00% 

Equity Market Neutral 1 0,40% 0 0,00% 0 0,00% 0 0,00% 

Macro 4 1,60% 0 0,00% 0 0,00% 0 0,00% 

Merger Arbitrage 4 1,60% 0 0 0 0 1 0,40% 

                                                 
10

 No reported conditional variances for several GARCH and TGARCH estimations 
11

 GARCH, TGARCH and EGARCH parameters are estimated under the assumption that residuals follow the 

normal law 
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Relative Value 
Arbitrage 

2 0,80% 0 0 0 0,00% 0 0,00% 

Global Index 7 2,80% 1 0,40% 1 0,40% 1 0,40% 

 

 

The first table exhibits results when VaRs are computed using the normal quantile. The worst 

VaR model is performed by the one based on the standard deviation. It fails the unconditional 

and conditional coverage tests for all the hedge fund strategies (except distressed securities). 

However, it passes the independence test for most of the strategies (except equity market 

neutral, macro and global index). 

On the opposite side, all GARCH-type VaR models pass successfully all the tests for most of 

the hedge fund strategies. GARCH and TGARCH-type VaR do not pass the unconditional 

and conditional coverage for equity market neutral and merger arbitrage. EGARCH-type VaR 

fails these tests for equity hedge, equity market neutral, merger arbitrage and global index.  

 

When VaRs are computed using the student quantile, the best performers models are still 

GARCH-type VaR. Again the VaR model based on standard deviation fails almost all tests 

(except for distressed securities and independence test for several hedge fund strategies).  

VaRs models pass all the tests except the GARCH and TGARCH type VaR (it fails the 

unconditional coverage for equity market neutral and merger arbitrage. The EGARCH-type 

VaR does not pass the conditional coverage for merger arbitrage). 

 

When VaRs are computed using the cornish fisher quantile, the worst performer model is 

once more the one based on the standard deviation. The GARCH, TGARCH and EGARCH -

type VaR pass all tests. 

 

Conclusion 

This research paper aimed to investigate hedge funds market risk. One demonstrates that daily 

hedge fund return distributions are asymmetric and leptokurtic. Furthermore, volatility 

clustering phenomenon and the existence of ARCH effects demonstrate that hedge funds 

volatility varies through time. These features suggest the modelisation of their volatility   

using symmetric (GARCH) and asymmetric models (EGARCH and TGARCH).  

 

The conditional variances were estimated under the assumption that residuals t follow the 

normal and the student law. The conditional variance of hedge fund strategies exhibits 

asymmetric effects and mean reversion among investment styles.  
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The knowledge of the conditional variance was used to forecast 1-day-ahead ahead VaR. The 

estimations are compared with the Gaussian, the student and the modified VaR. The results 

demonstrate that VaR models based on normal quantile underestimate risk while those based 

on student and cornish fisher quantiles seem to be more relevant measurements. GARCH-type 

VaR are very sensitive to changes in the return process. 

 

Backtesting results show that the choice of the model used to forecast volatility is important. 

Indeed, the VaR based on standard deviation is not relevant to measure hedge funds risks as it 

fails the appropriate tests.  On the opposite side, GARCH, TGARCH and EGARCH-type VaR 

are accurate as they pass successfully the backtesting tests. The quantile used has also an 

impact on the relevance of the VaR models considered. GARCH-type VaR computed with the 

student and especially cornish fisher quantiles lead to better results. 
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Appendix A: Summary statistics for Hedge Fund Daily Return Indexes from 

March 2003 to March 2008 

 

 

 

 

 

 
   

Mean 
12

 
 

 
Volatility 

13
 

 
Skewness 

 
Kurtosis 

 
Jarque Bera Test 

 
Probability 

 
Normality 

HF Strategies         

 HFRX Convertible Arbitrage 0.44% 3.61% -0.44 4.97 241.01 0.00 No 

 HFRX Equity Hedge 5.53% 5.74% -0.62 5.02 289.12 0.00 No 

 HFRX Equity Market Neutral 0.70% 4.12% -0.28 38.03 63454.58 0.00 No 

 HFRX Merger Arbitrage 5.16% 3.55% -1.17 13.96 6489.18 0.00 No 

 HFRX Relative Value Arbitrage 3.62% 3.49% -0.18 14.62 6987.81 0.00 No 

 HFRX Event Driven 7.78% 4.42% -0.71 6.84 867.56 0.00 No 

 HFRX Distressed Securities 7.52% 2.36% 0.36 5.99 488.82 0.00 No 

 HFRX Macro 7.58% 7.47% -1.35 11.80 4385.33 0.00 No 

 HFRX Gobal Index 5.73% 3.74% -1.09 7.18 1147.09 0.00 No 

Stock Market Indexes         

Dow Jones 8.25% 12.28% -0.28 4.26 98.31 0.00 No 

Russel 2000 11.69% 18.50% -0.21 3.26 13.14 0.00 No 

Nasdaq 9.78% 16.59% -0.16 3.51 18.67 0.00 No 

S&P 500 8.72% 12.88% -0.32 4.50 137.21 0.00 No 

DJ EUROSTOXX 50 13.82% 16.21% -0.41 7.94 1298.84 0.00 No 

Bond Market Indexes         

JP Morgan EMU Bond Index 2.92% 1.06% -0.29 5.12 250.68 0.00 No 

Lehman Bond Composite US Index 4.46% 3.93% -0.11 9.98 2525.08 0.00 No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

12
 Annualized returns are computed as follows: 1)1(  n

scale

Rprod   

13
Annualized standard deviation is computed as follows: periods   
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Appendix B: Continuously Compounded Hedge Fund Daily Return Indexes 
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Appendix C: Hedge Fund Strategies Mean Equation Modelling 

 

 

 

 

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  2.20E-04 1.99E-05 2.60E-04 2.95E-04 2.16E-04 3.91E-05 2.99E-04 2.03E-04 1.44E-04 

  (9.09E-05) (6.08E-05) (1.03E-04) (1.06E-04) (1.24E-04) (5.86E-05) (1.76E-04) (6.68E-05) (6.59E-05) 

1̂  0.470 -0.061 0.960 0.750 0.187 0.645 0.616 0.498 0.432 

  (0.105) (0.028) (0.019) (0.105) (0.028) (0.127) (0.123) (0.059) (0.108) 

1̂  -0.261  -0.838 -0.661  -0.480  -0.438 -0.440 

  (0.114)  (0.034) (0.119)  (0.120)  (0.055) (0.095) 

2̂        0.166 -0.488 -0.859 -0.689 

        (0.125) (0.137) (0.053) (0.108) 

2̂     -0.064   -0.368  0.879 0.773 

     (0.030)   (0.118)  (0.048) (0.095) 

                    

R² 0.053 0.004 0.058 0.018 0.035 0.041 0.026 0.019 0.016 

AIC -9.314 -9.336 -10.236 -8.944 -8.439 -9.106 -7.902 -9.376 -9.408 

SIC -9.301 -9.328 -10.220 -8.932 -8.431 -9.086 -7.889 -9.356 -9.388 

Log Likelihood 5777.519 5790.334 6350.500 5548.312 5234.034 5646.316 4902.126 5813.718 5833.495 

Q(5) 1.2311 17.029** 2.077 2.279 0.951 2.526 4.151 4.7959** 0.249 

Q(10) 21.026** 33.379** 14.546** 12.159 12.806 9.769 13.883 10.370 13.016** 

ARCH LM-Test 240.904** 28.253** 5.358 122.754** 202.789** 429.757** 191.881** 269.260** 282.266** 
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Appendix D: Hedge Fund Strategies Parameters Estimates  

(errors follow the normal law)   

 

 

 

 

 

ARMA - GARCH(1;1) modelling
14

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  2.75E-04 1.36E-04 3.15E-04 4.02E-04 3.23E-04 8.10E-05 2.81E-04 2.74E-04 2.67E-04 

 (7.65E-05) (5.32E-05) (1.15E-04) (8.59E-05) (1.15E-04) (4.67E-05) (1.30E-04) (4.85E-05) (6.64E-05) 

1̂  0.405 -0.107 0.962 0.706 0.190 1.144 0.382 0.201 0.113 

  (0.111) (0.031) (0.019) (0.126) (0.031) (0.101) (0.202) (0.007) (0.156) 

1̂  -0.185  -0.825 -0.619  -1.094 -0.254 -0.207 -0.122 

  (0.122)  (0.037) (0.143)  (0.097) (0.212) (0.004) (0.166) 

2̂        -0.257  -0.976 0.837 

        (0.147)  (0.006) (0.155) 

2̂     -0.074   0.193  0.995 -0.799 

     (0.033)   (0.144)  (0.003) (0.163) 

             

Variance Equation                   

0̂  1.13E-07 9.52E-08 2.86E-08 2.25E-07 3.97E-07 2.77E-07 7.82E-07 2.34E-07 7.19E-08 

  (3.32E-08) (4.10E-08) (9.51E-09) (6.36E-08) (1.20E-07) (5.49E-08) (1.77E-07) (3.97E-08) (1.70E-08) 

1̂  0.068 0.057 0.031 0.077 0.079 0.144 0.118 0.164 0.147 

  (0.010) (0.010) (0.006) (0.014) (0.013) (0.017) (0.018) (0.015) (0.014) 

1̂  0.909 0.925 0.956 0.892 0.888 0.801 0.847 0.783 0.849 

  (0.015) (0.016) (0.008) (0.021) (0.020) (0.024) (0.023) (0.019) (0.013) 

             

R² 0.053 -0.002 0.057 0.017 0.034 0.017 0.024 0.009 -0.004 

AIC -9.563 -9.448 -10.266 -9.120 -8.610 -9.550 -8.195 -9.764 -9.845 

SIC -9.538 -9.427 -10.237 -9.095 -8.589 -9.517 -8.170 -9.731 -9.812 

Log Likelihood 5935.133 5862.712 6371.816 5660.325 5343.113 5924.464 5086.696 6056.671 6107.113 

Q(5) 0.896 9.125 2.7275 2.321 2.0362 3.1429 0.419 6.547** 1.521 

Q(10) 11.800 22.743** 10.959 6.607 7.1936 10.872 7.192 13.895** 8.574 

ARCH LM-Test 12.676 7.047 15.167 8.746 5.609 6.451 16.183 15.361 9.841** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
14

 ** no significant at 5% confidence level 
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ARMA - TGARCH(1;1) modelling
15

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  2.55E-04 1.23E-04 3.09E-04 2.88E-04 2.15E-04 7.17E-06 3.02E-04 2.50E-04 2.25E-04 

  (8.12E-05) (5.37E-05) (1.15E-04) (1.44E-04) (1.15E-04) (5.74E-05) (1.23E-04) (4.84E-05) (9.13E-05) 

1̂  0.446 -0.109 0.962 0.971 0.201 0.418 0.255 -0.655 0.129 

  (0.107) (0.031) (0.019) (0.017) (0.032) (0.671) (0.227) (0.034) (0.145) 

1̂  -0.221  -0.826 -0.945  -0.358 -0.143 0.644 -0.139 

  (0.119)  (0.037) (0.023)  (0.671) (0.234) (0.036) (0.154) 

2̂        0.035  -0.901 0.838 

        (0.434)  (0.034) (0.143) 

2̂     -0.073   -0.064  0.898 -0.795 

     (0.033)   (0.413)  (0.034) (0.150) 

                    

Variance Equation                   

0̂  1.98E-07 1.41E-07 2.72E-08 3.05E-07 7.10E-07 3.14E-07 2.24E-07 1.97E-07 7.82E-08 

  (4.12E-08) (4.94E-08) (9.38E-09) (6.26E-08) (1.34E-07) (5.87E-08) (6.33E-08) (3.11E-08) (1.58E-08) 

1̂  0.038 0.037 0.027 0.014 -0.018 0.051 0.109 0.052 0.089 

  (0.025) (0.010) (0.007) (0.014) (0.022) (0.021) (0.017) (0.016) (0.020) 

1̂  0.066 0.038 0.007 0.097 0.158 0.176 -0.086 0.142 0.097 

  (0.028) (0.015) (0.009) (0.021) (0.031) (0.031) (0.018) (0.026) (0.023) 

1̂  0.883 0.915 0.957 0.891 0.869 0.798 0.930 0.825 0.853 

  (0.021) (0.019) (0.008) (0.020) (0.026) (0.027) (0.009) (0.016) (0.014) 

            

                    

R² 0.053 -0.001 0.057 0.012 0.035 0.016 0.022 0.004 -0.004 

AIC -9.564 -9.450 -10.265 -9.128 -8.628 -9.569 -8.207 -9.770 -9.851 

SIC -9.535 -9.425 -10.231 -9.099 -8.604 -9.532 -8.178 -9.732 -9.814 

Log Likelihood 5936.803 5864.869 6372.012 5666.274 5355.654 5936.974 5095.600 6061.265 6111.762 

Q(5) 0.709 8.125 2.7426 9.123** 2.2849 2.5914 2.750 6.530** 1.505 

Q(10) 12.012 20.878** 11.066 12.499 7.4772 10.354 9.813 14.028** 7.958 

ARCH LM-Test 11.375 9.331 15.552 7.270 2.361 5.764 12.570 17.593 5.240 
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 ** no significant at 5% confidence level 
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ARMA - EGARCH(1;1) modelling 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  2.90E-04 1.05E-04 3.32E-04 3.40E-04 2.52E-04 8.25E-06 2.73E-04 2.38E-04 2.18E-04 

  (7.70E-05) (5.39E-05) (1.01E-04) (9.33E-05) (1.16E-04) (5.35E-05) (1.21E-04) (4.66E-05) (4.47E-05) 

1̂  0.463 -0.105 0.955 0.780 0.197 1.108 0.322 -1.676 -0.813 

  (0.104) (0.031) (0.021) (0.089) (0.032) (0.418) (0.216) (0.219) (0.243) 

1̂  -0.260  -0.830 -0.699  -1.058  1.685 0.812 

  (0.114)  (0.037) (0.104)  (0.419)  (0.217) (0.245) 

2̂        -0.472 -0.202 -0.703 -0.735 

        (0.228) (0.224) (0.212) (0.258) 

2̂     -0.060   0.432  0.713 0.737 

     (0.033)   (0.227)  (0.210) (0.257) 

                    

Variance Equation                   

0̂  -0.423 -0.477 -0.331 -0.530 -0.705 -0.890 -0.384 -0.718 -0.595 

  (0.094) (0.129) (0.088) (0.127) (0.138) (0.166) (0.081) (0.087) (0.078) 

1̂  0.144 0.132 0.097 0.144 0.126 0.244 0.186 0.239 0.281 

  (0.023) (0.023) (0.017) (0.025) (0.030) (0.028) (0.023) (0.019) (0.023) 

1̂  -0.021 -0.039 -0.007 -0.040 -0.100 -0.108 0.038 -0.096 -0.048 

  (0.016) (0.010) (0.009) (0.016) (0.020) (0.017) (0.016) (0.015) (0.014) 

1̂  0.975 0.969 0.980 0.965 0.947 0.943 0.978 0.957 0.969 

  (0.007) (0.010) (0.006) (0.010) (0.011) (0.012) (0.006) (0.007) (0.006) 

                    

R² 0.053 0.000 0.057 0.018 0.035 0.010 0.023 0.004 0.001 

AIC -9.561 -9.439 -10.275 -9.120 -8.615 -9.566 -8.205 -9.761 -9.857 

SIC -9.532 -9.415 -10.242 -9.091 -8.590 -9.528 -8.177 -9.724 -9.820 

Log Likelihood 5934.727 5858.412 6378.497 5661.190 5347.394 5934.838 5094.360 6055.782 6115.459 

Q(5) 1.719 8.994 2.6167 1.583 2.3516 3.1758 1.492 6.963** 2.728 

Q(10) 12.489 22.524** 10.855 5.882 8.4889 9.5340 7.824 13.396** 7.800 

ARCH LM-Test 2.992 11.469** 17.044 6.459 5.677 2.750 9.769 15.310 7.177** 
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Appendix E: Hedge Fund Strategies Parameters Estimates  

(errors follow the student law)   

 

 

 

 

 

ARMA - GARCH(1;1) modelling
16

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  3.86E-04 1.32E-04 2.06E-04 4.76E-04 4.40E-04 8.29E-05 3.58E-04 3.25E-04 3.72E-04 

  (6.70E-05) (5.03E-05) (7.52E-05) (7.91E-05) (1.05E-04) (4.55E-05) (1.10E-04) (4.29E-05) (1.83E-04) 

1̂  0.397 -0.111 0.952 0.603 0.179 1.109 0.373 -0.665 0.314 

  (0.113) (0.029) (0.019) (0.150) (0.031) (0.129) (0.266) (0.040) (0.611) 

1̂  -0.187  -0.843 -0.504  -1.062 -0.283 0.656 -0.315 

  (0.122)  (0.034) (0.164)  (0.127) (0.276) (0.037) (0.618) 

2̂        -0.230  -0.876 0.676 

        (0.144)  (0.032) (0.607) 

2̂     -0.052   0.168  0.893 -0.660 

     (0.028)   (0.142)  (0.029) (0.608) 

                    

Variance Equation                   

0̂  1.18E-07 8.31E-08 5.98E-08 2.01E-07 3.70E-07 2.50E-07 6.88E-07 2.62E-07 8.65E-08 

  (4.19E-08) (4.38E-08) (3.05E-08) (7.69E-08) (1.36E-07) (7.38E-08) (2.34E-07) (7.70E-08) (2.92E-08) 

1̂  0.097 0.049 0.064 0.090 0.091 0.144 0.115 0.140 0.135 

  (0.020) (0.012) (0.019) (0.021) (0.020) (0.026) (0.025) (0.030) (0.025) 

1̂  0.880 0.935 0.913 0.885 0.878 0.809 0.853 0.799 0.856 

  (0.023) (0.018) (0.025) (0.025) (0.025) (0.032) (0.029) (0.038) (0.022) 

            

DOF  8 10 4 7 11 8 6 5 5 

                    

R² 0.050 -0.002 0.057 0.015 0.032 0.017 0.021 0.002 -0.001 

AIC -9.620 -9.471 -10.380 -9.167 -8.634 -9.583 -8.270 -9.835 -9.927 

SIC -9.591 -9.446 -10.347 -9.138 -8.609 -9.546 -8.241 -9.797 -9.890 

Log Likelihood 5971.602 5878.178 6443.856 5690.284 5358.774 5945.494 5134.469 6101.563 6158.984 

Q(5) 1.382 9.867** 3.811 2.096 2.607 3.227 1.870 4.240** 2.015 

Q(10) 11.536 23.826** 10.207 6.555 7.727 10.911 8.116 13.069** 8.134 

ARCH LM-Test 9.255 7.938 13.770 6.903 4.236 5.955 16.090 3.650 11.613** 
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 ** no significant at 5% confidence level 



 - 29 - 

 

 

 

 

ARMA - TGARCH(1;1) modelling
17

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  3.54E-04 1.26E-04 1.94E-04 4.32E-04 3.41E-04 3.39E-05 3.88E-04 3.10E-04 4.05E-04 

  (7.04E-05) (5.06E-05) (7.61E-05) (8.15E-05) (1.06E-04) (5.39E-05) (1.06E-04) (4.31E-05) (3.02E-04) 

1̂  0.460 -0.111 0.952 0.642 0.192 0.453 0.080 -0.670 0.373 

  (0.103) (0.029) (0.019) (0.137) (0.031) (0.453) (0.313) (0.042) (0.662) 

1̂  -0.241  -0.844 -0.542  -0.396 0.008 0.661 -0.376 

  (0.113)  (0.033) (0.151)  (0.451) (0.315) (0.040) (0.671) 

2̂       0.080  -0.873 0.621 

       (0.381)  (0.032) (0.659) 

2̂    -0.051   -0.124  0.888 -0.602 

    (0.028)   (0.371)  (0.029) (0.661) 

                    

Variance Equation                   

0̂  1.98E-07 1.16E-07 6.32E-08 2.95E-07 6.26E-07 3.04E-07 3.35E-07 2.32E-07 9.47E-08 

  (5.11E-08) (5.11E-08) (3.13E-08) (8.89E-08) (1.44E-07) (7.94E-08) (1.42E-07) (5.98E-08) (2.89E-08) 

1̂  0.037 0.031 0.052 0.036 -0.015 0.064 0.135 0.040 0.084 

  (0.030) (0.016) (0.019) (0.023) (0.027) (0.029) (0.033) (0.030) (0.029) 

1̂  0.120 0.031 0.040 0.103 0.171 0.168 -0.098 0.132 0.096 

  (0.039) (0.018) (0.029) (0.035) (0.037) (0.043) (0.031) (0.041) (0.040) 

1̂  0.854 0.929 0.908 0.869 0.865 0.792 0.906 0.828 0.853 

  (0.026) (0.019) (0.026) (0.027) (0.028) (0.035) (0.021) (0.030) (0.022) 

            

DOF  8 10 4 7 13 9 6 5 5 

                    

R² 0.052 -0.002 0.057 0.016 0.034 0.019 0.018 0.002 -0.001 

AIC -9.626 -9.472 -10.381 -9.174 -8.651 -9.593 -8.279 -9.841 -9.930 

SIC -9.593 -9.443 -10.344 -9.141 -8.622 -9.551 -8.246 -9.800 -9.888 

Log Likelihood 5975.947 5879.471 6445.054 5695.612 5370.694 5952.649 5141.284 6106.575 6161.533 

Q(5) 1.156 8.687 3.736 3.894 2.633 3.430 5.613 3.802 1.720 

Q(10) 11.661 21.638** 10.548 6.803 7.763 11.141 12.461 11.322 7.125 

ARCH LM-Test 8.151 10.076 15.265 49.782** 2.184 5.468 9.712 20.387 5.384 
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 ** no significant at 5% confidence level 
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ARMA - EGARCH(1;1) modelling
18

 

 
 Global CA DS ED EH EMN M MA RVA 

Mean Equation ARMA(1;1) AR(1) ARMA(1;2) ARMA(1;1) AR(1) ARMA(2;2) ARMA(1;1) ARMA(2;2) ARMA(2;2) 

ĉ  3.60E-04 1.12E-04 1.93E-04 4.20E-04 3.61E-04 3.00E-05 3.93E-04 2.95E-04 2.40E-04 

  (6.74E-05) (5.09E-05) (7.45E-05) (8.07E-05) (1.05E-04) (5.24E-05) (1.06E-04) (5.81E-05) (3.53E-05) 

1̂  0.445 -0.107 0.951 0.637 0.191 0.487 0.330 0.036 -0.454 

  (0.106) (0.029) (0.019) (0.125) (0.031) (0.355) (0.278) (0.072) (0.796) 

1̂  -0.233  -0.847 -0.530  -0.430 -0.244 -0.022 0.473 

  (0.116)  (0.033) (0.139)  (0.354) (0.286) (0.078) (0.797) 

2̂       0.076  0.882 0.061 

       (0.281)  (0.062) (0.567) 

2̂    -0.049   -0.124  -0.870 -0.029 

    (0.028)   (0.276)  (0.067) (0.569) 

                    

Variance Equation                   

0̂  -0.576 -0.381 -0.576 -0.549 -0.643 -0.897 -0.396 -0.747 -0.717 

  (0.133) (0.140) (0.227) (0.149) (0.142) (0.216) (0.117) (0.166) (0.025) 

1̂  0.196 0.116 0.160 0.169 0.149 0.261 0.198 0.226 0.363 

  (0.036) (0.028) (0.041) (0.036) (0.037) (0.042) (0.035) (0.041) (0.044) 

1̂  -0.059 -0.030 -0.029 -0.066 -0.108 -0.095 0.045 -0.093 -0.025 

  (0.023) (0.014) (0.022) (0.023) (0.023) (0.023) (0.020) (0.026) (0.025) 

1̂  0.966 0.976 0.965 0.965 0.954 0.944 0.977 0.954 0.966 

  (0.010) (0.011) (0.016) (0.011) (0.011) (0.016) (0.009) (0.012) (0.003) 

            

DOF  8 9 4 7 12 9 6 5 5 

            

R² 0.051 0.000 0.057 0.017 0.034 0.019 0.020 0.005 -0.001 

AIC -9.624 -9.464 -10.385 -9.172 -8.643 -9.590 -8.276 -9.834 -9.921 

SIC -9.591 -9.435 -10.348 -9.139 -8.614 -9.549 -8.243 -9.793 -9.880 

Log Likelihood 5974.683 5874.854 6447.829 5694.718 5365.801 5950.979 5139.411 6102.300 6156.288 

Q(5) 1.087 9.638** 3.361 0.722 2.641 3.593 4.156 4.954** 1.152 

Q(10) 11.782 23.406** 10.683 5.009 8.604 10.252 10.174 9.578 5.704 

ARCH LM-Test 7.503 12.299** 18.020 42.953 1.581 6.815 9.756 3.004 4.016 
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 ** no significant at 5% confidence level 
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Appendix F: Backtesting VaR model tests 

 

Test of Unconditional Coverage  

This test examines how many times an estimated VaR is violated in a given time period. 

When the number of violations differs from %100 , the estimated VaR method either 

understates or overstates the risk. It states that the probability of realizing a loss in excess of 

the reported VaR, )(tVaR must be precisely % : 

 

   )20(1Pr 1  tI

 

Kupiec’s Proportion of Failures Test [1995] 

The Kupiec’s POF statistic is computed as follows: 

nsobservatioofnumbertheT

T

I

II

POF

T

t

t

IIT















































)(
ˆ

)()(

)21(
ˆ

1

ˆ1
log2

1

)()(















 

Under the null of the unconditional coverage test, the POF statistic is distributed as a 2 with 

one degree of freedom. 

 

The LR test of unconditional coverage [1998] 

Christoffersen developed an equivalent test; the likelihood ratio test of unconditional 

coverage. The test is: 
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The likelihood ratio ucLR has an asymptotic )1(2 distribution. 
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Test of Independence 

VaR violations at various periods must be independent over time. Christoffersen [1998] 

introduced the likelihood ratio of independence which examines the serial independence of 

the hit sequence function given the confidence level. It is expressed as follows: 
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The LR  test of independence is asymptotically distributed as a )1(2 . 

 

Test of Conditional Coverage 

Christoffersen [1998] combined the unconditional coverage test and the independence test to 

form a test of conditional coverage. It is written as follows: 

 

)24(induccc LRLRLR 

 

The distribution of the conditional coverage test is asymptotically 2 with two degrees of 

freedom. 
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Appendix G: Hedge Fund Historical Returns and VaR Forecasts (normal quantile, 1% 

confidence level) 

 

 

 

 

1 day-ahead Distressed Securities VaR
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1 day-ahead Convertible Arbitrage VaR
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1 day-ahead Equity Hedge VaR
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1 day-ahead Global Index VaR
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1 day-ahead Event Driven VaR
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1 day-ahead Macro VaR
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Appendix H: Hedge Fund Historical Returns and VaR Forecasts (student quantile, 1% 

confidence level) 
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Appendix I: Hedge Fund Historical Returns and VaR Forecasts (cornish fisher quantile, 

1% confidence level) 
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