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Bargaining with intertemporal maximin payoffs

Abstract

We present a new class of dynamic bargaining problems, called

“bargaining problems with intertemporal maximin payoffs,” that may

reflect sustainability problems having to encompass conflicting issues

in the long-run. Each bargainer (or stake-holder) has a representative

indicator, namely a function of the state and decisions, and aims at

maximizing its minimal value over time. Bargaining on sustainability

issues consists in defining the vector of stake-holder’s payoffs. We are

interested in defining the set of feasible outcomes of such problems.

This set is interpreted as a support for a social choice of sustainabil-

ity objectives. We introduce a MONDAI condition – Monotonicity of

Dynamics And Indicators – consistent with many economic problems

and, in particular, “environmental economic” sustainability issues. We

characterize the set of feasible outcomes for problems satisfying these

monotonicity properties, and the bargaining solutions under the ax-

ioms of Pareto efficiency and Independence of Irrelevant Alternatives.

We also provide a “satisficing” common decision rule to achieve any

given solution. We then examine the time-consistency of the solution

under the axioms of Veto Power and Individual Rationality.

Keywords: bargaining theory, dynamics, maximin, monotonicity, feasi-

bility set, sustainability
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1 Introduction

We present a new class of dynamic bargaining problems inspired by sustain-

able development issues. A group of stake-holders can agree on a common

sequence of actions (intertemporal path of consumption or investment for

instance), as in Fershtman [1983]. These actions modify the state of the

economy (capital stocks) according to a dynamics representing production

possibilities. Each stake-holder gets an intertemporal payoff which depends

on the resulting economic trajectory. If they do not agree, they get a reference

payoff given by the status-quo, or business-as-usual economic trajectory (this

is the equivalent of the disagreement point of static bargaining problems).

In Fershtman [1983], the intertemporal payoffs were given by the discounted

utility criterion. The novelty of the present paper is that we consider in-

tertemporal maximin payoff functions [Solow, 1974, Cairns and Long, 2006,

Long, 2006]. The payoff of each stake-holder is defined as the minimal level

over time of an individual indicator (representing a sustainability issue). The

payoffs are not directly transferable between stake-holders as the indicators

can be of different nature, with different units. At each time, the levels of

the indicators depend on the state of the economy and the commonly agreed

decision at that time.

The set of feasible outcomes represents all the achievable stake-holders

payoffs (minimal level of the indicators over time). This set depends on

the economic state and dynamics, which makes the problem environment-

dependent [Roemer, 1986, 1988, Chen and Maskin, 1999], and is not “com-

prehensive.”1 This makes its characterization difficult, which is an obstacle

to the resolution of the bargaining problem.

1The set of feasible outcomes in not comprehensive when having a given payoff vector

in the set does not mean that lower payoffs are achievable [Kalai, 1977, Zhou, 1996]. This

can occur in particular when payoffs are not transferable between agents. We give a formal

definition in Section 3.
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Considering the classical axioms of Pareto efficiency and Independence of

irrelevant alternatives, we show that the solution of the bargaining problem

is the same as the solution of a more tractable problem based on a com-

prehensive set containing the set of feasible outcomes of the original prob-

lem. In particular, the Pareto frontiers of both set coincide. We characterize

this auxiliary comprehensive set under some monotonicity properties – called

MONDAIk (Monotonicity of the dynamics and k indicators). Roughly speak-

ing, these monotonicity properties correspond to a requirement that capital

stocks are “productive” (in the sense that having more capital stocks makes

it possible to produce more, and does not reduce the payoff of any stake-

holder), and that some (not all) indicators depend in a monotonic way on

the action (i.e., decreasing), which makes the stake-holders having payoffs

depending on these indicators belong to some “interest group.” When there

is such an interest group, the Pareto frontier of the set of feasible outcomes

is shown to be of a lower dimension than the number of stake-holders.

We then provide an interpretation of the bargaining problem in terms of

social choice, and describe the corresponding social planner problem (Social

Welfare Function). We also characterize the evolution of the bargaining solu-

tion over time, showing that it exhibits “time-monotonicity” (the payoff of all

stake-holders is non-decreasing over time) if stake-holders are “individually

rational” and have a “veto power.”

To our knowledge, this class of problems has never been studied. Our

paper is therefore an original contribution to the bargaining literature. The

closest analyses are that of Fershtman [1983], who studied the same kind

of dynamic bargaining on a sequence of actions, but with payoffs defined

by discounted utility, and that of Long [2006], who considered a dynamic

game with intertemporal maximin preferences. This latter problem differs

from ours as each player has his own decision, and the solution depends on

the strategic interactions between players, relating his paper to the field of
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dynamic games while we adopt the bargaining theory approach.

The paper is organized as follows. In the next section, we present the

motivation for studying such dynamic bargaining problems, and their inter-

pretation in terms of sustainable development. In Section 3, we present the

general dynamic bargaining problem, the axioms, and the equivalence of its

solution with that of another, more tractable problem. All results are ob-

tained without any specification on the functional forms. In Section 4, we

introduce the MONDAIk monotonicity properties, and characterize the set of

outcomes of the auxiliary problem, along with a “satisficing” feedback deci-

sion rule making it possible to achieve any Pareto solution. We then provide,

in Section 5, the social choice problem equivalent to our bargaining problem,

and examine the time-consistency of solutions. We conclude in Section 6 on

future research avenues. Proofs and examples are given in the appendix.

2 Motivation and settings

The new class of dynamic bargaining problems introduced in this paper is

inspired by sustainable development issues. This section first describes the

general issue at stake, and then relates this issue and the proposed problem

to the existing literature on bargaining.

Sustainable development issues are dynamical and encompass several (po-

tentially conflicting) dimensions, such as environmental and economic issues.

In practice, multicriteria approaches based on sustainability indicators and

thresholds are used.2 Sustainability indicators, depending on the state and

2For example, the climate change issue is addressed by defining a limit thresholds for

GHG atmospheric concentration [UN, 1998]. Regarding biodiversity, a somehow similar

approach is applied worldwide, with the creation of reserves to protect natural habitat

of species [UN, 2010]. These reserves are constraints on the development of land-use

for alternative economic use such as agriculture or urban development. Other examples

include minimal stock size for fisheries [FAO, 2005], or thresholds for pollution of air and
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decisions of the economy, follow the dynamic evolution of quantities repre-

senting the various issues (e.g., the per capita GDP, the employment rate,

the greenhouse gases (GHG) atmospheric concentration, the spawning stock

biomass of a targeted species in a fishery). Thresholds represent constraints

which should not be overshot (e.g., minimal per capita income, minimal em-

ployment, maximal GHG concentration, minimal stock for a fishery). These

thresholds are chosen socially.3 “Any social decision is the ultimate out-

come of some kind of collective bargaining process” [Kalai et al., 1976, p.233].

There are necessary trade-offs between these environmental issues and other

issues, e.g., economic development. We are interested in representing these

trade-offs and the underlying bargaining process. We argue that the defini-

tion of thresholds that sustainability indicators should not overshoot can be

seen as a bargaining problem, the thresholds being interpreted as the payoffs

of some representative stake-holders (being they real, or virtual as is public

opinion).

Bargaining problems have been widely studied since their formulation

by Nash [1950, 1953]. Traditional bargaining theory assumes that p stake-

holders may agree on an allocation within a set of feasible outcomes, or end

up at a disagreement point. The usual assumption in static bargaining theory

water. These approaches are based on quantities (indicators and thresholds) rather than

on prices. From an economic point of view, damage or benefit functions could be defined

and used for cost-benefit analyses. However, as sustainability concerns are often related to

non-market goods whose value is difficult to assess, and involve future generations which

are not present to state their preferences, such an approach is not always possible and

physical indicators are used [Stiglitz et al., 2009]. As there is no “easy” common currency

between the various issues at stake, each issue is tackled on its own.
3These thresholds often have scientific basis (as the IPCC advices for the climate change

issue), but also account for economic and social issues. A clear argument showing that

sustainability thresholds are socially chosen is that they differ between countries, and in

particular with the level of development. Environmental standards are higher in developed

countries with high income than in developing countries [Dasgupta et al., 2001].

7



is to consider that the set of feasible outcomes is a compact and convex (and

usually comprehensive) subset of R
p. In static problems, defining such a set

is not an issue. In particular, if the cooperative solution is implemented and

monetary transfers between stake-holders are possible, the Pareto frontier of

the feasibility set is defined by a “budget” line. For some problems however,

this set may me non-convex, which makes the definition of solutions more

difficult [Zhou, 1996, Mariotti, 2000, Denicolò and Mariotti, 2000]. There

are several solutions to the bargaining problem, depending on the definition

of preferences over feasible outcomes [Border and Segal, 1997]. Pareto effi-

ciency implies that solutions are located on the frontier of the set of feasible

outcomes.

Bargaining problems based on a dynamical system have received less at-

tention than static problems.4 Fershtman [1983] introduced “dynamic bar-

gaining problems” in which stakeholders have to agree on a time path of

actions, i.e., a common set of decision parameters for the system, and have

intertemporal payoffs depending on the economic path. In such dynamic

bargaining problems, the set of feasible outcomes is not straightforward to

characterize. In particular, it depends on the dynamics of the system, which

will strongly influence the results. The usual assumption on the existence

of a convex set of feasible outcomes is thus stronger than in the static case

and, in the dynamic case, the description of this set is an issue in and of

itself. This is particularly true when no (intertemporal) transfers between

stake-holders are possible, as in the sustainability issue described above.

Following Fershtman [1983], we consider a dynamic bargaining problem in

4Rubinstein [1982] considered the cost of bargaining to define equilibrium solutions in

repeated propositions. In the dynamic framework, attention has been devoted either to

repeated or iterative static bargaining, such as price negotiation, or to dynamic games.

In dynamic games, each player has a decision parameter [Jørgensen and Zaccour, 2007],

which is not the case when stake-holders bargain over a set of decision parameters for a

dynamic system.
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which stake-holders have to agree on a time path of actions. Fershtman [1983]

considered discounted utility payoff functions. In the sustainability issue, the

discounted utility criterion has been criticized and qualified as a “dictator-

ship of the present” [Chichilnisky, 1996]. An alternative criterion proposed to

address the sustainability issue is the maximin [Solow, 1974], which treats all

generations with anonymity. In an economy using sustainability indicators,

what is sustained (i.e., supported from below, literally) is the minimal level

of the indicators over time. The usual formulation of a maximin problem

is in utilitarian terms, but the maximin criterion can also be applied to the

sustainment of environmental indicators [Cairns and Long, 2006]. We thus

assume that stake-holders have maximin intertemporal payoffs depending on

the minimal level over time of an indicator.5 Such formalization results in

a new class of dynamic bargaining problems in which payoffs are not trans-

ferable between stake-holders [Kalai and Samet, 1985]. We are interested in

bargaining problems involving a dynamic system and several stake-holders

whose intertemporal payoff are represented by maximin functions. Given the

initial state of the system, we aim at defining the set of feasible outcomes of

our dynamic problem, and the solutions of a bargaining problem satisfying

the axioms of Pareto efficiency and Independence to irrelevant alternatives.

The reader would note that this problem is slightly different from the

issue of defining thresholds that sustainability indicators should not over-

shoot, which was the problem described at the beginning of this section.

However, we shall prove that the two problems are in fact very interrelated.

They have the same solution, and their Pareto frontiers coincide. In terms

of economic interpretations, this means that addressing sustainability using

indicators and thresholds is equivalent to considering (virtual) stake-holders

5Without loss of generality, it is always possible to take the negative level of an indicator

representing a “bad,” such as pollution, to be able to consider that the payoff is the minimal

level over time of the indicator.
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with intertemporal maximin payoff.

How the society makes its final choice among the set of feasible outcomes

is beyond the scope of this paper. We however emphasize the correspondence

between intertemporal dynamic multi-objective problems and dynamic bar-

gaining, and its implications on the definition of sustainability thresholds.

We refer to the corresponding social criterion for sustainable development

and interpret the solution of the bargaining problem in terms of the under-

lying social choice rule. The kind of problem described here can be used

to i) define the set of negotiation between stake-holders having intertempo-

ral maximin utility functions, ii) define the distributional possibilities of a

policy maker between such stake-holders, and then describe the necessary

trade-offs between sustainability issues to be satisfied over time, and iii) de-

fine the decision rule to be implemented to achieve a given Pareto efficient

outcome.

3 Bargaining problem with intertemporal max-

imin payoff

3.1 Overview of the bargaining problem

Suppose that p ≥ 2 stake-holders identified by i = 1, . . . , p have to agree on a

common decision which will have consequences on their individual payoff. In

an intertemporal context where time t is discrete and runs as t = t0, t0+1, . . .,

the bargaining is upon a sequence of actions a(·) :=
(
a(t0), a(t0 + 1), . . .

)
,

where each action a(t) is taken in a set A. Stake-holders’ payoffs will depend

on that sequence.

Now, consider that the sequence of decisions and the payoffs are related by

the evolution of an economic state x(t), in a dynamic framework x(t+ 1) =

g
(
x(t), a(t)

)
. Past decisions influence the dynamic state of the economy,
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resulting in an economic trajectory x(·) :=
(
x(t0), x(t0 + 1), . . .

)
where at

each period, x(t) belongs to the state space X.

For i = 1, . . . , p, an indicator Ii : X×A 7→ R, depending on the economic

state x(t) and decision a(t), represents the measurement of the ith bargainer

interest at each time t. Each indicator has its own unit, which does not allow

direct transfers between bargainers.

In this paper, we consider that bargainers have intertemporal payoffs

inft=t0,t0+1,... Ii
(
x(t), a(t)

)
, equal to the minimal level over time of their indi-

cator. The stake-holders bargain on a sequence of actions a(·) which, given

the initial economic state x0, defines an outcome within a set of feasible out-

comes. Note that the bargained sequence of actions a(·) can be given by an

open-loop decision, namely a function of time a(t), or by a state-dependent

decision rule, namely a mapping a : ×X 7→ A giving each decision as a

function of the state by a(t) = a

(
x(t)
)
.

3.2 The dynamic model

The evolution of the system is described by a nonlinear discrete-time dynam-

ical control system through the difference equation





x(t+ 1) = g

(
x(t), a(t)

)
, t = t0, t0 + 1, . . .

x(t0) = x0 given,
(1)

where the state variable x(t) belongs to the finite dimensional state space

X ⊂ R
nX, the decision variable a(t) is an element of the decision set A ⊂ R

nA

while the dynamics g maps X × A into X (for the sake of simplicity, we

consider the time-autonomous case).

When the sequence of actions is defined by a Markovian feedback rule,

i.e., a mapping a : X → A giving each decision as a function of the state by
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a(t) = a

(
x(t)
)
, one gets the closed-loop dynamics






x(t0) = x0

a(t) = a

(
x(t)
)

x(t+ 1) = g
(
x(t), a(t)

)
.

(2)

Given a bargained sequence of actions a(·), the intertemporal payoff of

the ith stake-holder is defined according to

Jai(·)(x0) = inf
t=t0,t0+1,...

Ii
(
x(t), a(t)

)
i = 1, . . . , p (3)

where Ii : X × A 7→ R is an instantaneous indicator (i.e., a measurement

of interest for the ith stake-holder). Bargainer i aims at maximizing his

intertemporal payoff, which leads to consider a maximin problem.

3.3 The bargaining problem

A bargaining problem is characterized by a set of feasible outcomes and a

disagreement point. A bargaining solution consists in choosing a particular

element of the set, under some axioms. The more restrictive the axioms, the

more reduced the possible solutions.

In our context, both the set of feasible outcomes and the disagreement

point depend on the initial state of the economy and on the dynamics of

the system. They thus depend on the economic environment.6 Moreover, a

bargaining solution, which is a vector of payoffs receiving the agreement of

all the stake-holders, is only defined by an associated sequence of actions to

achieve it.
6Classical bargaining theory is based only up on the shape of the set of feasible out-

comes. Roemer [1986, 1988] criticized this approach as it does not account for the eco-

nomic environment and the nature of the goods to be shared. Chen and Maskin [1999]

enriched the economic context of the bargaining problem by considering the possibility of

production. We go one step further by considering the whole economic dynamics, in an

intertemporal framework.
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The set of feasible outcomes. The set F(x0) of all feasible outcomes

starting from x0 is the collection of achievable intertemporal payoffs (3):

F(x0) :=






θ = (θ1, . . . , θp) ∈ R
p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ (a(t0), a(t0 + 1), . . .) and

(x(t0), x(t0 + 1), . . .)

satisfying x(t0) = x0

x(t+ 1) = g
(
x(t), a(t)

)

∀ t = t0, t0 + 1, . . . and

inft=t0,t0+1,... Ii
(
x(t), a(t)

)
= θi

∀ i = 1, . . . , p.






. (4)

Note that this set is not necessarily comprehensive (i.e., a lower set7) in

the space R
p.

Disagreement point. If there is no agreement, the economy stays on the

business as usual trajectory (BAU). This defines a disagreement outcome

vector (θBAU1 , . . . , θBAUp ).

The axioms. We assume that the bargaining solution satisfies the axioms

of Pareto efficiency and Independence of Irrelevant Alternatives defined as

follows.

Definition 1 (Weak Pareto Efficiency)

Let A ⊂ R
p be given. A vector of outcomes θ = (θ1, . . . , θp) ∈ A is said to

be weakly Pareto efficient in A if, for any σ = (σ1, . . . σp) such that σi > θi,

for all i = 1, . . . , p, one has σ /∈ A.

All weakly Pareto efficient points are on the boundary of A. We shall

denote by PwA the set of all weak Pareto boundary points of A.

7If a point (θ1, . . . , θp) is in F(x0), a point (θ′1, . . . , θ
′
p) ≤ (θ1, . . . , θp) (component-wise)

may not be in F(x0), i.e., may not be feasible.
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Definition 2 ((Strong) Pareto Efficiency)

A vector of outcomes θ = (θ1, . . . , θp) ∈ A ⊂ R
p is (strongly) Pareto efficient

– Pareto efficient for short – in A if, for any σ = (σ1, . . . σp) such that σi ≥ θi

for all i = 1, . . . , p and σi > θi for some i, one has σ /∈ A.

We shall denote by PA the set of all Pareto boundary points of A. Note

that PA ⊂ P
w
A . An outcome (θ1, . . . , θp) ∈ P

w
A\PA is dominated in the

sense that one can increase the payoff of at least one stake-holder without

decreasing that of the others.

Definition 3 (Independence of Irrelevant Alternatives)

Consider two sets A and A′ such that A′ ⊂ A. A bargaining solution satisfies

the property of independence of irrelevant alternatives if, whenever a solution

σ of the bargaining problem on A satisfies σ ∈ A′, then σ is also the solution

of the bargaining problem on A′.

This axiom means that, if the solution of a bargaining problem belongs to

a subset of the set of feasible outcomes, the solution of the bargaining problem

on this subset is the same as the solution on the whole set. Reducing the set

feasible outcomes by suppressing “irrelevant alternatives” (i.e., elements of

the set which were not solution of the bargaining problem) does not change

the solution.

3.4 An auxiliary bargaining problem.

As we consider Pareto efficient solutions, we are interested in the Pareto

frontier of the set F(x0). As this set is not comprehensive, we rather turn

toward the following more practical set of satisficing outcomes. We shall

see that this set defines an alternative problem which has the same (strong)

Pareto solutions as our bargaining problem.

14



Another bargaining problem: satisficing outcomes. We define the

set of satisficing outcomes8 S(x0) starting from x0 as follows

S(x0) :=






θ = (θ1, . . . , θp) ∈ R
p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ (a(t0), a(t0 + 1), . . .) and

(x(t0), x(t0 + 1), . . .)

satisfying x(t0) = x0

x(t+ 1) = g
(
x(t), a(t)

)

∀ t = t0, t0 + 1, . . . and

Ii
(
x(t), a(t)

)
≥ θi ∀ i = 1, . . . , p






.

(5)

The only difference between the above satisficing outcomes set (5) and the

feasible outcomes set (4) is an equality replaced by an inequality in the

final lines of their definitions. Notice that if θ ∈ S(x0) then, θ′ ≤ θ (with

the componentwise order) also belongs to S(x0) and therefore, this set is

comprehensive (lower set). The following proposition states that this set

encompasses the set of feasible outcomes of our bargaining problem with

intertemporal maximin payoffs.

Proposition 1

F(x0) ⊂ S(x0)

This result is obvious.

Equivalence of solutions. The following Proposition 2 states that the

Pareto solutions of the original bargaining problem (i.e., part of frontier of

8Satisficing means that these outcomes are guaranteed in the sense actual payoff is

greater than or equal to these levels. Replaced in our initial motivation of defining the

necessary trade-offs in the definition of sustainability thresholds, this set corresponds the

the set of achievable sustainability thresholds.
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F(x0)) correspond to the Pareto frontier of the set S(x0).

Proposition 2

The Pareto frontiers of F(x0) and S(x0) are the same. That is

PF(x0) = PS(x0) .

The interpretation of this proposition is quite simple. When thresh-

olds (θ1, . . . , θp) ∈ S(x0) are Pareto efficient, these thresholds are actually

achieved in the sense that the constraint is eventually binding. They are

thus feasible outcomes for the dynamic bargaining problem with intertem-

poral maximin payoffs. In fact, the following proposition states that the

solution of a bargaining on S(x0) is the same as the solution of a bargaining

problem on F(x0).

Proposition 3

Under the axioms of Pareto efficiency and Independence of Irrelevant Al-

ternatives, and given Propositions 1 and 2, the solution of the bargaining

problem on S(x0) is also solution of the bargaining problem on F(x0).

This result means that it is equivalent, from the solution point of view, to

bargain on minimal values of an indicator or on a threshold which should not

be overshot. As we stated in Section 2, there is a strong link between the two

problems. An interesting remark is that addressing the sustainability issue

by defining thresholds which should be overshot by sustainability indicators

is equivalent to considering (virtual) stake-holders having intertemporal max-

imin payoffs.

The general setting of the bargaining problem does not allow us to dis-

cuss its solution in more detail without specifying some general properties of

the functions under consideration. In particular, one needs to know the set

of feasible outcomes. In the next section, we show that, under some mono-

tonicity properties, it is possible to compute S(x0). According to proposition
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3, the solution of the bargaining problem on this set is the solution of the

bargaining problem on F(x0).

4 The monotonic case

In this section, we study the dynamic bargaining problem with intertempo-

ral maximin payoff under some monotonicity assumptions for the dynamics

and the indicators. We name these assumptions MONDAIk (MONotonicity of

Dynamics And k Indicators). These assumptions have significant economic

interpretations. In particular, they can represent environmental economic

problems, related to sustainability issues.

4.1 Monotonicity assumptions

Monotonic dynamics. Some dynamic models have the following qualita-

tive properties (ceteris paribus): (i) the higher the state vector at a period

is, the higher it is at the following period; (ii) the higher the decision at a

period is, the lower the state vector is at the following period. This is the

case for many economic problems in which capital stocks are productive9 and

consumption comes from foregone investment. As we put a particular focus

on environmental issues, let us emphasize that these properties are satisfied,

for instance, for problems of air quality dynamics and pollutant emissions10,

or natural resource stocks (renewable or not) and extraction/harvesting.11

9It requires that the various components of the capital vector have no negative effect

one on the others.
10The better the air quality at one period, the better at the following period (ceteris

paribus). And the higher the pollutant emission at one period, the worse the air quality

at the following period. This works for the climate change issue and greenhouse gases

emissions, taking the negative level of CO2 atmospheric concentration as a state.
11The larger the resource stock at one period, the larger at the following. The larger

the extraction or harvesting, the lower the resource stock at the following period. Note
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Monotonic indicators and interest groups. With respect to the indi-

cators, we can also exhibit such monotonicity properties. If all capital stocks

are defined as “goods,” indicators will usually increase with the state, i.e.,

the larger the state vector, the higher the indicators.12 Some indicators may

also be monotonically responding to the decisions. This is the case for envi-

ronmental indicators which are monotonically decreasing with the decisions

such as pollutant emissions or resource extraction.13

In order to represent the mentioned above behaviors, we supply the state

space X ⊂ R
nX and the decision space A ⊂ R

nA with the componentwise

order: y′ ≥ y if and only if each component of y′ = (y′1, . . . , y
′
d) is greater

or equal than to the corresponding component of y = (y1, . . . , yd). We say

that a mapping f : X × A −→ R
d, defined for state and decision variables,

with values in R
d (we will use d = nX for the dynamics case, and d = 1

for the indicator case), is increasing with respect to the state if it satisfies

∀ (x, x′, a) ∈ X× X× A, x′ ≥ x⇒ f(x′, a) ≥ f(x, a), and is decreasing with

respect to the decision if ∀ (x, a, a′) ∈ X×A×A, a′ ≥ a⇒ f(x, a′) ≤ f(x, a).

Obviously, according to the previous definition, if a function does not depend

on the state or the decision, it will be both increasing and decreasing with

respect to such variable.

that these assumptions are not satisfied for multispecies ecological models when there is

a prey-predator relationship, as a larger predator stock may reduce the next period prey

stock.
12This is true for economic indicators, which may depend for instance on capital stocks,

knowledge / human capital, or infrastructures. This is also true for ecological indicators

as long as the capital stocks are properly defined, by accounting for “bads” (pollution for

instance) by their opposite.
13Note that economic indicators may be monotonically increasing with the decisions,

but not necessarily. For example, fishermen may favor an increase of fishing effort as long

as it increases their profit, but no more when the associated cost is higher than the benefit

from fishing.
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MONDAIk property: Monotonicity of the dynamics and k indicators.

Definition 4 (MONDAIk)

Let k ∈ {1, . . . , p − 1}. A dynamic bargaining problem with intertemporal

maximin payoffs is MONDAIk if:

• the dynamics g : X × A −→ X is increasing in the state variable and

decreasing in the decision;

• all the indicators Ii : X × A −→ R are continuous, and are increasing

in the state variable;

• the first k indicators I1, . . . , Ik are decreasing in the decision variable.

In the previous definition, all the indicators are increasing with the state.

All capital stocks are valuable (or at least not damageable). The stake-

holders of the first group {1, . . . , k} have a particular interest in having the

decision always as small as possible (e.g., GHG emissions, deforestation, fish-

ing effort), which is interpreted as a “pro-environmental group” in our envi-

ronmental issue context. Their payoff is always decreasing when the decision

variables increase. On the contrary, the second group of indicators does not

depend on the decision in a particular way (or some of the indicators may

be increasing with the decision, in opposition to the indicators of the first

group). The stake-holders k + 1, . . . , p are called outsiders of the interest

group {1, . . . , k} as they have no systematic “monotonic” interest in the de-

cision level.14

14The particular MONDAIp−1 case (all indicators are environmental except one, inter-

preted as an economic instantaneous payoff such as utility or consumption) has an inter-

esting economic interpretation. This case actually corresponds to a well-known problem in

economics, namely a maximin under environmental constraints [Cairns and Long, 2006].
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4.2 Satisficing decision rule

In what follows, we will consider a scalar decision belonging to an interval

A = [a♭, a♯].

For a vector of satisficing outcomes θ = (θ1, . . . , θp) ∈ S(x0) – under the

monotony assumptions MONDAIk – we shall describe a common decision rule

which ensures to obtain at least these thresholds. This rule is parametrized

by guaranteed payoffs of the outsiders of the interest group.

Proposition 4

Assume that the bargaining problem is MONDAIk, for some k ∈ {1, . . . , p−1}.

Consider p − k thresholds θk+1:p = (θk+1, . . . , θp) ∈ R
p−k and define the

decision rule a
⋆
θk+1:p

by15

a
⋆
θk+1:p

(x) := inf{a ∈ A | Ii(x, a) ≥ θi , i = k + 1, . . . , p} . (6)

Then, for any θ1:k ∈ R
k, the vector of thresholds θ = (θ1:k, θk+1:p) belongs to

S(x0) if and only if a
⋆
θk+1:p

is a common decision rule that allows to obtain at

least θ, starting from x0.

The interest of the previous result is twofold. On the one hand, if

(θ1, . . . , θp) ∈ S(x0), the trajectory x⋆(·) starting from the initial state x0

and defined by the feedback rule a
⋆
θk+1:p

, that is






x⋆(t0) = x0

x⋆(t+ 1) = g
(
x⋆(t), a⋆θk+1:p

(x⋆(t))
)
t = t0, t0 + 1, . . . ,

(7)

guarantee the given outcomes. On the other hand, given a partial set of out-

comes θk+1:p, if the economic trajectory (7) defined by a
⋆
θk+1:p

does not achieve

a given complementary set of outcomes θ̃1:k, no other rule will. It means that

outcomes (θ̃1:k, θk+1:p) cannot be guaranteed, namely (θ̃1:k, θk+1:p) /∈ S(x0).

15Notice that a
⋆
θk+1:p

(x) is not defined for those states x such that {a ∈ A | Ii(x, a) ≥

θi, i = k + 1, . . . , p} = ∅.
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4.3 Interest group and low-dimensional Pareto frontier

Thanks to the result of Proposition 4, we shall provide a way to describe the

set of satisficing outcomes S(x0).

Proposition 5

If the dynamics g and the indicators I1, . . . , Ip are MONDAIk for some k ∈

{1, . . . , p− 1} then the set of satisficing outcomes is given by

S(x0) = {θ = (θ1:k, θk+1:p) ∈ R
p | θ1:k ≤ Θ1:k(θk+1:p, x0)} (8)

where the components of Θ1:k(θk+1:p, x0) = (Θ1(θk+1:p, x0), . . . ,Θk(θk+1:p, x0))

are defined by

Θi(θk+1:p, x0) = inf
t=t0,t0+1,...

Ii
(
x⋆(t), a⋆θk+1:p

(x⋆(t))
)

i = 1, . . . , k . (9)

Here above, the decision rule a
⋆
θk+1:p

is given by (6) and the state trajectory

x⋆(·) by the closed loop dynamics (2).

Equality (8) establishes that the set of satisficing thresholds is param-

eterized by the p − k outcomes of the outsiders. Indeed, the outcomes

θ = (Θ1:k(θk+1:p, x0), θk+1:p), when θk+1:p covers different values on R
p−k,

allow to compute the set S(x0) by the relation (deduced from Proposition 5)

S(x0) = Ŝ(x0) + R
p
−

where

Ŝ(x0) =
{
(Θ1:k(θk+1:p, x0), θk+1:p) | θk+1:p ∈ R

p−k
}
, (10)

and R
p
− is the p dimensional negative octant R

p
− = {(σ1, . . . , σp) | σi ≤

0 , i = 1, . . . , p}. Thus, the set of satisficing outcomes S(x0) is obtained

by means of Ŝ(x0) which is more tractable to compute. Figure 1 illustrates

how to compute Ŝ(x0) and therefore S(x0). The figure corresponds to a case

with p = 3 and k = 2. Taking a
⋆
θ3

(x) = inf{a|I(x, a) ≥ θ3}, one can compute

Θ1 and Θ2 for all θ3.

21



θ1

θ2

Θ2(θ3, x0)

Θ1(θ3, x0)

θ3

Ŝ(x0)

Figure 1: Satisficing outcomes parameterized by threshold θ3.

Moreover, as we will establish in the next section, the set Ŝ(x0) is strongly

related to the Pareto frontier of S(x0) and then (from Proposition 2), with

the Pareto frontier of feasible outcomes F(x0) of the bargaining problem.

4.4 Pareto bargaining solutions

Proposition 5 implies that the outcomes θ = (Θ1:k(θk+1:p, x0), θk+1:p), when

the outsiders’s thresholds θk+1:p covers different values on R
p−k, are related

to the Pareto outcomes (weak and strong: see definitions 1 and 2) of S(x0)

in the MONDAI framework as it is established in the following result.16

Proposition 6

If the bargaining problem is MONDAIk, for some k ∈ {1, . . . , p− 1}, then

PS(x0) ⊂ Ŝ(x0) ⊂ PwS(x0),

16Note that, if the set of feasible outcomes is smooth and strictly convex, both weak

and strong Pareto frontier coincide, and are fully characterized by Ŝ(x0).
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where Ŝ(x0) is given by (10).

As the set Ŝ(x0) is fully characterized, it is now possible to give the

solution of the dynamic bargaining problem with intertemporal maximin

payoff under the MONDAIk assumption.

Proposition 7

For MONDAIk dynamic bargaining problems with intertemporal maximin pay-

offs, and under the axioms of Pareto efficiency and Independence of Irrelevant

Alternatives, given Propositions 2 and 6, the solution of the bargaining prob-

lem on F(x0) is the solution of the bargaining problem on Ŝ(x0).

Our description of the Pareto optimal solutions encompasses the informa-

tion on the economic context and economic dynamics, as the set of feasible

outcomes F(x0) accounts for the dynamics, state and decisions [Roemer,

1988]. In particular, we have shown that, with an interest group of k stake-

holders (k ∈ {1, . . . , p − 1}), the dimension of the Pareto frontier of our

dynamic bargaining problem is lower than or equal to p− k + 1.

5 Discussion

The problem presented in this paper raises several new theoretical issues.

We would like to put emphasis on two of them: the interpretation of the

bargaining solution as a social choice issue, and the time-consistency of a

particular solution of the bargaining problem.

5.1 Social choice: equivalent sustainability criterion

How the society makes its final choice among the Pareto efficient solutions

PF(x0) is beyond the scope of this paper. It is however worthwhile to note

that there is an underlying criterion representing the choice of sustainabil-
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ity thresholds corresponding to the solution of the bargaining problem de-

scribed in this paper. Given the equivalence of Pareto solutions of problem

(4) and (5) (Proposition 2), the bargained solution corresponds to a so-

cial choice of sustainability thresholds. Any Pareto solution of our bargain-

ing problem can be the solution of a “social welfare ordering” represented

by a strictly increasing real-valued function which obeys the Pareto princi-

ple [Denicolò and Mariotti, 2000, Mariotti, 2000]. A criterion introduced by

[Martinet, 2011] describes the choice of sustainability thresholds. It is based

on a “social welfare function” W (θ1, . . . , θp) ranking all alternative thresh-

olds, where W is increasing in all its arguments. The criterion reads

maxW (θ1, . . . , θp)

s.t. x(t0) = x0 , x(t+ 1) = g
(
x(t), a(t)

)

Ii
(
x(t), a(t)

)
≥ θi , ∀i = 1, . . . , p, ∀t = t0, t0 + 1, . . .

which is equivalent to

maxW (θ1, . . . , θp) (11)

s.t. (θ1, . . . , θp) ∈ S(x0).

This criterion is interpreted as a generalized maximin criterion. It is the

sustainability criterion which corresponds to the dynamic bargaining problem

described in this paper. The solution belongs to the set of Pareto efficient

satisficing outcomes PS(x0), and thus to the set of Pareto efficient feasible

outcomes PF(x0).

Any solution of the bargaining problem (i.e., any bargaining mechanism)

has an equivalent in the social choice problem (11), for some welfare function.

For instance, the preference over the sustainability issue (thresholds) may

correspond to the weight associated to the outcome of each stake-holder

(i.e., the importance of the sustainability issue is related to some bargaining
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power).17

5.2 Evolution of the feasibility set and improvement

of outcomes over time

Contrary to static bargaining problems, breaking the agreement does not

bring the stake-holders back to the initial situation as the state of the econ-

omy evolves over time (and thus the set of feasible outcomes). Fershtman

[1983] is concerned with the stability of the bargaining solution for dynamic

bargaining problems. In his model, where stake-holders have intertemporal

payoffs given by discounted utility, one stake-holder may consider breaking

the agreement at some time t > t0 if he has received most of his planned

payoff at that time. In our model, the stability issue is also a present: stake-

holders may want to bargain again after some time.

Consider a bargained sequence of actions a(·). Each stake-holder’s payoff

is non-decreasing over time along the resulting trajectory. Indeed, define

(J
a(·)
1 (t), . . . , Ja(·)p (t)) :=

(
inf
s≥t
I1 (x(s), a(s)) , . . . , inf

s≥t
Ip (x(s), a(s))

)
.

17In the sustainability context, the final outcome cannot be independent of the issue at

stake. Sustainability raises equity issues, both between generations and between concerns

of different dimensions. Roemer [1986, 1988] argues that bargaining theory is not sufficient

to address distributive justice, mainly because it is, in its original formulation, “context

free” and neglects preferences and needs. In our approach, sustainability thresholds can be

interpreted as minimal rights to be guaranteed to all generations, which may be defined

according to some basic needs. Note also that we fully consider the economic environ-

ment (the set of feasible outcomes depends on the state x(t), and economic dynamics).

Roemer [1986, 1988] showed that the welfare egalitarian mechanism is the only mechanism

to satisfy the set of axioms he proposed. This corresponds to a Rawlsian conception of jus-

tice. Our problem corresponds to some generalized maximin approach in an intertemporal

framework.
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Then, the following condition is always satisfied18

(J
a(·)
1 (t), . . . , Ja(·)p (t)) ≥ (J

a(·)
1 (t0), . . . , Ja(·)p (t0))

Definition 5 (Veto Power)

The bargaining problem is constrained by “veto power” if, at any time period

t ≥ 0 along the trajectory generated by a decision rule a(x(t)), any of the p

stake-holders can veto a change in the decision rule.

Under the axiom of Veto Power, any stake-holder can dismiss an alterna-

tive path of action.

Definition 6 (Individual Rationality)

A bargaining solution satisfies the property of Individual Rationality if, the

payoff of any stake-holder is greater than or equal to that of the disagreement

point.

Under Individual Rationality, no stake-holder should accept an alternative

decision rule reducing his intertemporal payoff.

Along any given trajectory, the outcomes can only increase. The vector

(Ja1 (t), . . . , Jap (t)) defines a new disagreement point if bargaining takes place

again at time t. This disagreement point corresponds to the actual payoffs

along the initial bargained trajectory.19 The set of feasible outcomes is de-

fined by F(x(t)), according to (4). The stake-holders then face a new problem

at time t. Bargaining should take place again if the (dynamic) disagreement

point is not on the Pareto frontier of (dynamic) feasibility set F(x(t)).

We now consider the case of such a re-bargaining. If stake-holders have a

veto power and under the axiom of Individual Rationality, they can rule out

18The payoffs J
a(·)
i (t) being defined by eq. (3) computed along the trajectory defined by

the initial state x0, the dynamics (1), and a given bargained decision path a(.).
19Note that, as this vector increases over time, some stake-holder may have interest to

delay the bargaining process in order to have a higher disagreement outcome. Considering

such temporal strategies is behind the scope of this paper.
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any path of action which reduces their outcome. Under these assumptions,

we can prove that the solution of the dynamic bargaining is monotonic, in

the sense that it is not decreasing over time.

Proposition 8 (Time monotonicity)

Assuming Veto power and Individual Rationality, when time passes and the

economic state evolves, neither stake-holder’s payoff falls when bargaining

again.

The proof of this proposition is immediate. It shows that, if bargain-

ing takes place again at some time t > t0, the outcomes can only increase,

as stake-holders can remain on the initial path by vetoing any alternative

path. Implementing time-monotonic solution is then required when Individ-

ual Rationality and veto are considered. This gives us an equivalent of the

conclusion by Kalai and Samet [1985], but in an intertemporal framework.

It is interesting to note that, if we do not assume the property of Veto

Power, as it can be the case if there is no actual stake-holder standing for a

sustainability issue, or if we consider the equivalent Social Choice Problem

(in which the decision-maker can reduce the outcome of some stake-holders to

increase that of some others if this decision increases the Social Welfare), the

solution does not necessarily satisfy time-monotonicity. In the sustainability

context, it would mean that some environmental standards or objectives may

be reduced when the set of feasible outcome evolves. In a sense, it may not

be an issue, as society’s choice may change, and new trade-offs may be made,

when the economic context and associated opportunities change.20

20For instance, the ceiling constraint on greenhouse gases atmospheric concentrations

may change in several decades.
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6 Conclusion

We introduced a new class of dynamic bargaining problems, in which stake-

holders have to agree on a time path of actions which influence the dynamic

state of the economy. The payoff of stake-holders is defined as the minimal

level over time of some indicators depending on the evolution of the economic

state and decisions (intertemporal maximin criterion). We showed that, in

this kind of bargaining problems, the set of feasible outcomes is not easy to

define, in particular because it is not a comprehensive set. Looking for Pareto

efficient solutions, we showed that the solution of the bargaining problem can

be obtained by studying an auxiliary problem (involving a comprehensive

set).

In dynamic bargaining problems, the shape of outcome possibilities de-

pends on the dynamics of the system. In particular, we showed that the

set of Pareto efficient outcomes can be determined under some monotonicity

properties, and we exhibit a common decision rule to achieve any solution.

Regarding the sustainability issue that motivated us, this decision rule is in-

tuitively interpreted as a conservative approach to protect the environment

given non-environmental outcomes. When there are “interest groups,” the

Pareto frontier of the set is of a lower dimension than the number of issues,

meaning that the payoffs of the interest group members are linked. From a

practical point of view, this makes the computation of the Pareto solutions

easier.

We describe the corresponding social choice problem, and sustainability

criterion. This is the generalized maximin criterion introduced by Martinet

[2011]. We also show that, under “individual rationality” axiom and “veto

power”, the bargaining solution is “time-monotonic,” i.e., none stake-holder

has his payoff decreasing over time. This is not the case when the veto con-

dition is dropped, or if one considers the “social welfare function” maximiza-
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tion. In the sustainability debate, it means that environmental objectives

can be reduced over time.

Future research could focus on the analysis of time-consistent solutions

when there is no Veto Power. Another interesting issue would be to consider

intertemporal bargaining problems with stake-holders having different forms

of intertemporal payoff (e.g., some have discounted utility payoffs and some

others have maximin).

A Proofs

Proof of Proposition 2.

For proving PF(x0) = PS(x0) let us start showing the inclusion PS(x0) ⊂

PF(x0).

First, we claim that PS(x0) ⊂ F(x0). For (θ1, . . . , θp) ∈ PS(x0) ⊂ S(x0)

there exists a trajectory of decisions a(·) and states x(·), starting from x0,

such that for all i = 1, . . . , p and t ≥ t0 one has Ii
(
x(t), a(t)

)
≥ θi.

Assuming (θ1, . . . , θp) /∈ F(x0) would mean that there is no trajectory

starting from x0 such that inft=t0,t0+1,... Ii
(
x(t), a(t)

)
= θi for all i = 1, . . . , p.

That implies that along the trajectories previously considered, at least one

constraint is not binding, and therefore there exists i ∈ {1, . . . , p} such that

inft=t0,t0+1,... Ii
(
x(t), a(t)

)
= θ′i > θi. Hence, (θ1, , . . . , θ

′
i . . . , θp) ∈ S(x0),

which is in contradiction with (θ1, . . . , θi . . . , θp) ∈ PS(x0), concluding then

(θ1, . . . , θp) ∈ F(x0).

Now, for (θ1, . . . , θp) ∈ PS(x0) ⊂ F(x0), if we assume (θ1, . . . , θp) /∈ PF(x0),

there exists some i ∈ {1, . . . , p} and θ′i > θi such that (θ1, . . . , θ
′
i . . . , θp) ∈

F(x0). Thus, there is a trajectory (x(·), a(·)) starting from x0 such that

inft=t0,t0+1,... Ii
(
x(t), a(t)

)
= θ′i. This would mean that (θ1, . . . , θ

′
i . . . , θp) ∈

S(x0), which is a contradiction with (θ1, . . . , θp) ∈ PS(x0), concluding then

(θ1, . . . , θp) ∈ PF(x0).
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For proving the reverse inclusion PF(x0) ⊂ PS(x0), consider (θ1, . . . , θp) ∈

PF(x0). Since PF(x0) ⊂ F(x0) ⊂ S(x0) we get that (θ1, . . . , θp) ∈ S(x0). If

(θ1, . . . , θp) /∈ PS(x0), there exist some i ∈ {1, . . . , p} and θ′i > θi such that

(θ1, . . . , θ
′
i . . . , θp) ∈ S(x0), and therefore there is a trajectory of decisions a(·)

and states x(·), starting from x0, such that inft=t0,t0+1,... Ii
(
x(t), a(t)

)
≥ θ′i.

Along this trajectory, let us define θ̃i = inft=t0,t0+1,... Ii
(
x(t), a(t)

)
≥ θ′i > θi.

This would mean that (θ1, . . . , θ̃i, . . . , θp) ∈ F(x0), which is a contradiction

with (θ1, . . . , θi, . . . , θp) ∈ PF(x0) concluding then (θ1, . . . , θp) ∈ PS(x0) .

2

Proof of Proposition 3.

Under the axiom of Pareto efficiency, a solution θ ∈ S(x0) belongs to

PS(x0). According to Proposition 2, this means that θ ∈ PF(x0) ∈ F(x0).

Given the axiom of Independence of irrelevant alternatives and Proposition

1, θ is also the solution of the dynamic bargaining problem on F(x0). 2

Proof of Proposition 4.

We have to show that for an initial state x0, if the vector of thresholds

θ = (θ1:k, θk+1:p) belong to S(x0) then, a⋆(t) = a
⋆
θk+1:p

(x(t)) defined in (6) is

a decision rule that allows to obtain at least θ.

Take θ = (θ1:k, θk+1:p) ∈ S(x0) and a sequence of decisions a(t0), a(t0 +

1) . . . that allows to guarante these thresholds. Since θ ∈ S(x0), the decision

a
⋆
θk+1:p

(x0) is well defined (the infimum is taken over an nonempty set) and

(from the definition of a
⋆
θk+1:p

(·) in (6)), we have that a(t0) ≥ a
⋆
θk+1:p

(x(t0))

and therefore, due to g is decreasing in the decision variable, we obtain that

x⋆(t0 + 1) = g(x(t0), a
⋆
θk+1:p

(x(t0))) ≥ g(x(t0), a(t0)) = x(t0 + 1) .

As above, in the following we will denote by x⋆(·) and x(·) the trajecto-

ries of the states generated by feedback decisions a
⋆
θk+1:p

and decisions a(·)

respectively.
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Since indicators Ii, i = k + 1, . . . , p, are increasing with the state x, we

can see in (6) that a
⋆
θk+1:p

(x) is decreasing with the state x. Hence

a(t0 + 1) ≥ a
⋆
θk+1:p

(x(t0 + 1))

by definition of a
⋆
θk+1:p

because

Ii(x(t0 + 1), a(t0 + 1)) ≥ θi , i = k + 1, . . . , p

≥ a
⋆
θk+1:p

(x⋆(t0 + 1))

because a
⋆
θk+1:p

(·) is decreasing in the state variable .

We thus obtain that

x⋆(t0 + 2) = g(x⋆(t0 + 1), a⋆θk+1:p
(x⋆(t0 + 1)))

≥ g(x⋆(t0 + 1), a(t0 + 1))

because the dynamics g is decreasing in the control variable

≥ g(x(t0 + 1), a(t0 + 1))

because the dynamics g is increasing in the state variable

= x(t0 + 2) .

Recursively we can conclude that x⋆(t) ≥ x(t) and a
⋆
θk+1:p

(x⋆(t)) ≤ a(t) for

all t ≥ t0.

On the other hand, by assumption, the indicators I1, . . . , Ik are increasing

in the state and decreasing in the decision variable. We deduce then that for

i = 1, . . . , k,

Ii
(
x⋆(t), a⋆θk+1:p

(x⋆(t))
)
≥ Ii
(
x(t), a(t)

)
≥ θi .

For i = k + 1, . . . , p, notice that Ii
(
x⋆(t), a⋆θk+1:p

(x⋆(t))
)
≥ θi by definition of

a
⋆
θk+1:p

which allows to conclude the desired result.

Finally, if a
⋆
θk+1:p

is a common decision rule that allow to obtain at least

θ = (θ1:k, θk+1:p), obviously θ ∈ S(x0). 2
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Proof of Proposition 5.

For θ = (θ1, . . . , θp) = (θ1:k, θk+1:p) in S(x0) we first prove that the in-

equalities θi ≤ Θi(θk+1:p, x0) for i = 1, . . . , k hold. From the definition of

S(x0), there exists a sequence of controls a(t0), a(t0 + 1), . . . such that the

trajectory given by




x̃(t+ 1) = g(x̃(t), a(t)), t = t0, t0 + 1, . . .

x̃(t0) = x0

satisfies

Ii(x̃(t), a(t)) ≥ θi i = 1, 2, . . . , p t = t0, t0 + 1, . . . . (12)

Since Ii(x0, a(t0)) ≥ θi, for i = k + 1, . . . , p, from the definition of a
⋆
θk+1:p

one has a(t0) ≥ a
⋆
θk+1:p

(x0) which, from (12) (for t = t0) and monotonicity

properties of indicators I1, . . . , Ik, implies

Ii
(
x0, a

⋆
θk+1:p

(x0)
)
≥ θi i = 1, . . . , k .

If we consider the trajectory




x(t+ 1) = g

(
x(t), a⋆θk+1:p

(x(t))
)
, t = t0, t0 + 1, . . .

x(t0) = x0

(13)

inductively we can prove that a
⋆
θk+1:p

(x(t)) ≤ a(t) and x(t) ≥ x̃(t) for all

t = t0, t0 + 1, . . .. Therefore

Ii
(
x(t), a⋆θk+1:p

(x(t))
)
≥ Ii
(
x̃(t), a(t)

)
≥ θi i = 1, . . . , k, t = t0, t0 + 1, . . .

implying θi ≤ Θi(θk+1:p, x0) for i = 1, . . . , k.

For the reverse inclusion in (8), take θ = (θ1:k, θk+1:p) ∈ R
p. If θ1:k ≤

Θ1:k(θk+1:p, x0), from he definition of Θi(θk+1:p, x0) in (9), we have that the

trajectory defined in (13) satisfies

Ii
(
x(t), a⋆θk+1:p

(x(t))
)
≥ Θi(θk+1:p, x0) ≥ θi i = 1, . . . , k, t ≥ t0
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and, from definition of a
⋆
θk+1:p

(·), one has

Ii
(
x(t), a⋆θk+1:p

(x(t))
)
≥ θi i = k + 1, . . . , p, t ≥ t0

concluding that θ = (θ1:k, θk+1:p) ∈ S(x0), because the common decision rule

a
⋆
θk+1:p

is admissible for θ. 2

Proof of Proposition 6

Let us start proving the inclusion

Ŝ(x0) =
{(
θ̂1:k, θk+1:p(θ1:k, x0)

)
∈ R

p | θk+1:p ∈ R
p−k
}
⊂ PwS(x0)

In order to do that, we need the following Lemma.

Lemma 1

Assume that the dynamics g and the indicators I1, . . . , Ip are MONDAIk for

some k ∈ {1, . . . , p − 1}. Let θk+1:p and σk+1:p be two vectors of partial

thresholds such that θk+1:p ≤ σk+1:p. Then,

σ̂1:k(σk+1:p, x0) ≤ Θ1:k(θk+1:p, x0), (14)

where, for a fixed set of thresholds θk+1:p = (θk+1, . . . , θp) (resp. σk+1:p =

(σk+1, . . . , σp)), the vector Θ1:k(θk+1:p, x0) (resp. σ̂1:k(σk+1:p, x0)) is given by

(9).

Proof of Lemma 1

From Proposition 5, we have that the vectors
(
Θ1:k(θk+1:p, x0), θk+1:p

)
and

(
σ̂1:k(σk+1:p, x0), σk+1:p

)
are in S(x0). For θk+1:p and σk+1:p, we consider the

associated decision rules a
⋆
θk+1:p

and a
⋆
σk+1:p

(defined in (6)) and the generated

trajectories






x(t0) = x0

x(t+ 1) = g
(
x(t), a⋆θk+1:p

(x(t))
)
t = t0, t0 + 1, . . . ,

33








x̃(t0) = x0

x̃(t+ 1) = g
(
x̃(t), a⋆σk+1:p

(x̃(t))
)
t = t0, t0 + 1, . . . ,

From the hypothesis θk+1:p ≤ σk+1:p and the definition of a
⋆
σk+1:p

, we have

Ii
(
x0, a

⋆
σk+1:p

(x(t0))
)
≥ σi ≥ θi i = k + 1, . . . , p

and, from the definition of a
⋆
θk+1:p

one has a
⋆
σk+1:p

(x̃(t0)) ≥ a
⋆
θk+1:p

(x(t0)).

Therefore,

x(t0 + 1) = g
(
x0, a

⋆
θk+1:p

(x(t0))
)
≥ g
(
x0, a

⋆
σk+1:p

(x̃(t0))
)

= x̃(t0 + 1).

Inductively we can prove that

x(t) ≥ x̃(t) and a
⋆
σk+1:p

(x̃(t)) ≥ a
⋆
θk+1:p

(x(t)) ∀ t ≥ t0,

implying

Ii
(
x̃(t), a⋆σk+1:p

(x̃(t))
)
≤ Ii
(
x(t), a⋆θk+1:p

(x(t))
)

i = 1, . . . , k t ≥ t0.

Taking minimum on t = t0, t0 + 1, . . ., we prove the inequality (14).

2

Consider now
(
Θ1:k(θk+1:p, x0), θk+1:p

)
∈ Ŝ(x0) and σ = (σ1:k, σk+1:p) such

that

σ = (σ1:k, σk+1:p) >
(
Θ1:k(θk+1:p, x0), θk+1:p

)
. (15)

From Lemma 1, we have

σ̂1:k(σk+1:p, x0) ≤ Θ1:k(θk+1:p, x0). (16)

If σ ∈ S(x0), Proposition 5 allows us to conclude

σ1:k ≤ σ̂1:k(σk+1:p, x0).
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The above inequality, together with (16), is a contradiction with (15), con-

cluding thus that σ /∈ S(x0) and hence
(
Θ1:k(θk+1:p, x0), θk+1:p

)
∈ PwS(x0).

For the inclusion

PS(x0) ⊂ Ŝ(x0),

take θ = (θ1:k, θk+1:p) ∈ PS(x0) ⊂ S(x0). From Proposition 5 we get

θ1:k ≤ Θ1:k(θk+1:p, x0).

Since (θk+1:p,Θ1:k(θk+1:p, x0)) ∈ S(x0) and θ = (θ1:k, θk+1:p) ∈ PS(x0) we con-

clude that θ1:k = Θ1:k(θk+1:p, x0), and then

θ = (θ1:k, θk+1:p) =
(
Θ1:k(θk+1:p, x0), θk+1:p

)
∈ Ŝ(x0).

2

Proof of Proposition 7. The proof is similar (mutatis mutandis) to

that of Proposition 3. 2
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