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Construction of a fuel demand function portraying interfuel
substitution, a system dynamics approach.
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Abstract

Most of the recent numerical market equilibrium models of natural gas markets use
imperfect competition assumptions. These models are typically embedded with an
oversimplified representation of the demand side, usually a single-variable affine func-
tion, that does not capture any dynamic adjustment to past prices. To remedy this,
we report an effort to construct an enhanced functional specification using the system
dynamics-based model of Moxnes (1987, 1990). Thanks to a vintage representation
of capital stock, this putty-clay model captures the effect of both past and current
energy prices on fuel consumption. Using a re-calibrated version of this model, we first
confirm the pertinence of this modeling framework to represent interfuel substitutions
at different fuel prices in the industrial sector. Building on these findings, a dynamic
functional specification of the demand function for natural gas is then proposed and
calibrated.

1 Introduction

A casual look at the newspaper headlines suggests that concerns connected with the natu-
ral gas sector are now back on top of policy makers’ agenda. The reasons for this renewed
interest are numerous and include: a rapid globalization of the natural gas trade (Victor
et al., 2006), the rising share of gas technologies in the power generation sector inducing,
in both Europe and Asia, an increased dependence on foreign sources (Honoré, 2010), and
the recent emergence of a Gas Exporting Countries Forum that is often depicted as an
embryonic cartel (Massol and Tchung-Ming, 2010).

Unsurprisingly, this context has triggered a renewed interest for energy economics models
aimed at analyzing this industry. In particular, several partial equilibrium models in the
vein of those pioneered in Mathiesen et al. (1987) have recently been proposed to represent
the imperfect competition among gas producers (Boots et al., 2004; Egging and Gabriel,
2006; Holz et al., 2008). Besides the policy-oriented analyses provided in these articles,
these detailed numerical models can be very useful for corporate planning purposes. For
example, a firm that considers an investment in a large and lumpy gas transmission infras-
tructure may take advantage of these powerful tools to assess the relative appeal of various
alternative routes by comparing the long-run impacts of the proposed infrastructure on the
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markets outcome. Despite their great merits1, these models are not exempt from flaws.
One of their most striking problems is connected with the relatively rudimentary treatment
of the demand side, which is usually oversimplified to an affine inverse demand function.
Indeed, a recent meticulous assessment of these models underlines that these contributions
rely either on somewhat obsolete information on gas demand function or on more or less
arbitrary calibration (Smeers, 2008, p.12). As the outcomes of a market equilibrium model
based on the Cournot oligopoly theory are indubitably impacted by the price elasticity
of the demand (Tirole, 1988), some further investigations are clearly required to obtain a
more satisfactory functional specification of the demand for natural gas. Such a functional
form will have to take into account both the substitutability of natural gas by other fuels
and the adjustment dynamics of consumption in reaction to fuel prices. This statement
provides the motivation for this paper.

Energy demand modeling has become a very productive activity since the 1970s. Indeed,
a very large literature has approached the question using econometric analyses. As far as
interfuel substitution is concerned, we can distinguish between early empirical specifica-
tions based on, for example, discrete choice models as in Joskow and Mishkin (1977), and
models predicted on theory where a flexible functional form is aimed at being estimated
in coherence with standard microeconomic assumptions (profit or utility maximizing be-
havior, 0-degree homogeneity of the demand function, symmetry, law of demand, etc.)
as in, for example, Fuss (1977), Pindyck (1979), Considine and Mount (1984), or Urga
and Walters (2003). Notwithstanding the immense value of these statistical approaches,
it must be acknowledged that putting theory to work to model energy demand can turn
out to be far from a sinecure because of numerous practical considerations (cf. the in-
formed list reported in Watkins, 1992). For example, practitioners may be compelled to
adopt a more simplified dynamic specification to model short- and long-run effects than
those recommended by theoretical arguments based on an assumed dynamic optimization
behavior (Watkins, 1992). This type of consideration may turn out to be problematical
if the obtained demand model is aimed at being embedded within a decision-support tool
designed to serve the needs of users (corporate planners and executives) who may have
forgotten some of their statistical education and could feel uncomfortable with a modeled
dynamics that hardly mimics their a priori mental representation of a putty-clay type of
dynamics. To increase their confidence with the model’s validity, modelers can look for
an approach that endeavors to build on their detailed understanding of the gas industry.
Given the strong record of applications of system dynamics for strategic modeling purposes
(Sterman, 2000; Morecroft, 2007), this technique constitutes an appealing methodology.

Numerous system dynamics-based models have been developed for energy planning pur-
poses. A non-exhaustive list includes: (i) the models originating from research initiated at
Dartmouth College in the late 1970s and then refined during nearly two decades to sup-
port energy policy analyses conducted by the US federal administration (Naill, 1977; Naill,
1992; Naill et al., 1992; Wood and Geizner, 1997), (ii) the broad approach of Sterman
(1981) that analyzed the US energy transition with an integrated energy-economy model
and the extended climate-economy model of Fiddaman (1997), (iii) the numerous models
surveyed in Ford (1997) that are aimed at informing electric utility policies and (iv) the
models dedicated to the oil and/or gas industries such as Davidsen et al. (1990), Olaya
and Dyner (2005), Chi et al. (2009) and Ponzo et al. (2011).

1For example, they capture a very detailed representation of the supply side of the natural gas industry
including: transmission network, production constraints, etc.
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Since the 1980s, an impressive stream of research that encompasses all the facets of nat-
ural resources (economic, management, policy) has been conducted in Norway. As far as
natural gas is concerned, the affluence and diversity of this "Norwegian school" is well
exemplified in Golombek et al. (1987). Amusingly, this book that contains the Cournot
equilibrium model of Mathiesen et al. (1987) mentioned above also includes Moxnes (1987),
a putty-clay model of OECD-European industrial energy demand that presented a very
good explanation of historical fuel substitution during the period 1960-1983. In a sub-
sequent study (Moxnes, 1990), it has been shown that this framework can also provide
a very good fit to an historical time-series of fuel choices in OECD-European electricity
production. In this contribution, we propose to take advantage of this system dynamics
methodology to select and estimate a more satisfactory demand function aimed at being
implemented in an imperfect competition model (Abada et al., 2010). To do so, an up-
dated version of this system dynamics-based model is first presented and recalibrated to
check the capability of this approach to explain the substitutions between the three main
fuels: oil, coal and natural gas. The model is then simulated to generate data that depict
the dependence of fuel consumption over fuel prices. Based on these "pseudo data", an
interesting functional form is proposed to model the demand function for natural gas, that
can be generalized to the three fuels.

The article is organized as follows: section 2 provides a brief review of the methodology
presented in Moxnes (1987, 1990). The results obtained with a calibrated model are given
in Section 3. In section 4, the system dynamics model is then put to work to construct an
adapted demand function. The last section summarizes the conclusions.

2 The model

In this section, we briefly review the model detailed in Moxnes (1987). This model aims
at predicting the consumption of coal, oil and natural gas observed at time t using both
the historical and current values of fuel prices, and the history and current value of the
overall demand for hydrocarbon fuels. In this model, the dynamics of interfuel substitu-
tion involves a distinction between the flow of freshly installed equipment, and the stocks
of existing equipment that is represented by two vintages of capital. The model is based
on a putty-clay framework and assumes that the choice of fuels can be freely adjusted ex
ante, whereas no substitution is possible ex post. Thanks to this decomposition, the model
captures the irreversibility associated with the decision to install and operate a durable
burning equipment.

To begin with, table 1 clarifies the model boundaries and divides the variables and param-
eters into those endogenous and those exogenous to the model:

To simplify, the fuel options are indexed by an integer i and the fuel option coal (respec-
tively oil, and natural gas) is labeled 1 (respectively 2, and 3). The fuel shares in the new
burning equipment installed at time t are assumed to be determined by the relative cost
of the three fuel options. The total cost Ci of fuel option i is given by the following formula:

Ci =
CCi
PBTi

+OOi +
Pi +QCO2i.PCO2

Ei
− PRi , (1)
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Table 1: An overview of the model boundaries
Endogenous Exogenous

Investment in new burning equipment Total energy consumption
Fuel shares in newly installed equipment Fuel market prices
Installed burning capacity per fuel option

Capacity utilization factors of installed equipment
Consumption of the various fuels

where CCi is the capital cost, PBTi is the associated payback time, OOi denotes the op-
erating cost (fuel and carbon cost excluded), Pi is the fuel price, PCO2 is the price of CO2

if any, QCO2i is the CO2 emission factor of fuel i, Ei is the burner efficiency, and PRi is a
premium, that is, a parameter that reflects the miscellaneous unmodeled features of fuel i
such as flexibility, availability, consumption inertia, etc. In Moxnes (1987,1990), the price
of CO2 has not been taken into account.

The share si of fuel option i in the new burning equipment is determined by the relative
cost of the three fuel options. The following multinomial logit model is used:

si =
e−αCi∑
i e
−αCi

, (2)

where α is a (non-negative) parameter, and Ci are the total costs defined in (1). By con-
struction, the obtained shares satisfy ∀i, si ∈ [0, 1] and

∑
i si = 1. In addition, the share si

is, ceteris paribus, a decreasing function of the fuel price Pi. Besides, one may notice that
shares are determined on the basis of differences in total costs and thus differences in the
values of the premiums. As these are adjustable parameters, it may be easier to determine
a reference point: hereafter, the premium for coal PR1 has thus been set equal to 0. It is
also interesting to underline that the presence of exponents in the logit formula tends to
accentuate the differences in total costs as they are converted into fuel choices. A small
value of α translates into equal shares for all fuels, whereas a large value of α indicates that
minor differences in total cost lead to major differences in the resulting fuel shares.2 Actu-
ally, the validity of this logit model conceptually presupposes a "macroscopic" perspective,
meaning that the energy system under scrutiny must contain a large enough number of
individual decision-makers.

In this model, capital is measured in units of capacity to burn fuels (that is, in energy
unit per unit of time). Thus, the total investment I represents the overall capacity of
new burning equipment. The total investment in new equipment associated with the fuel
option i is denoted Ii and satisfies:

Ii = siI. (3)

We can now detail the dynamics of fuel substitution. As mentioned above, a vintaging
structure is used to portray the aging process of installed equipment. Here, two vintages of
capital are kept track of. A more precise description of the aging process should consider

2In Moxnes (1990), an informed interpretation is given for α: if the total costs follow a Weibull distri-
bution, α is inversely proportional to the standard deviation of this distribution.
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more vintages, or continuous aging. However, Moxnes (1987) justifies this choice of a 2-
vintages representation by the lack of precise data, and the fact that the model’s behavior
seems insensitive to the number of modeled vintages. Accordingly, two stock variables are
defined for each fuel option i: the capacity of recently installed equipment, the "new" ones
KNi, and those of the older ones KOi. Investment in new burners Ii increases the capacity
of the new equipment. New equipment becomes old after a use of half the lifetime Ti. If,
as in Moxnes (1987, p. 99), a "fairly wide distribution of lifetimes" can be assumed, the
flow variable associated with the transformation of new equipment into old ones can be
assumed to be equal to 1

Ti/2

th of the overall capacity of new-burners KNi. Similarly, an
old equipment is scrapped after a use of Ti

2 and the flow of scrapped old equipment DOi
is assumed to be equal to KOi

Ti/2
. With these assumptions, the dynamics can be formulated

as follows:

dKNi

dt
= Ii −

KNi

Ti
2

, (4)

dKOi
dt

=
KNi

Ti
2

− KOi
Ti
2

. (5)

A simple interpretation of these equations can be provided. For each fuel i at time t, the
change in the overall stock of new equipment with respect to time is given by the inflow
of new equipment associated with investment Ii, and the outflow caused by aging (that
is, the equipment that is no longer new and has to be reallocated into the old category).
Similarly, the temporal variation of the stock of old burners results from: the inflow of
these previously new equipment, and the outflow corresponding to the scrapping of old
equipment.

The next step is to model the dependence between the flow of total investment I and
the overall stock of existing equipment. We can first define Ki = (KNi +KOi) the total
capacity of installed burning equipment with fuel option i, and K the total capacity of
installed burning equipment: K =

∑
iKi.

At time t, the overall capacity of scrapped equipment is:

DO =
∑
i

DOi =
∑
i

KOi
Ti
2

. (6)

Let’s call ED the overall demand for the three fuels at time t, which is an exogenous
parameter in this model. Common sense suggests that investment in new equipment should
be related in some way to the observed discrepancy between demand and the installed
capacity of existing equipment. As this adjustment is usually not instantaneous, Moxnes
(1987) introduces the parameter TI, the time to adjust investments that "determines
how fast investments adjust simulated capacity toward exogenous demand." Accordingly,
the total investment has to be modeled as an increasing function of ED−K

TI . In addition,
investment has to be connected to the total scrapping of old equipment DO to allow
a regeneration of the stock of equipment. To model these interactions, Moxnes (1987)
postulates the following formula that defines the total investment as a function of these
parameters:

I = DO.f

(
ED −K
TI.DO

)
, (7)
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where f is a piecewise continuous function that has the following expression:

f(x) = x+ 1 if x ≥ 0 ,

f(x) = ea.x if x < 0 ,
(8)

where a is a non-negative parameter. We can observe that, if the total demand ED is
equal to the installed capacity K (that is, ED = K), the investment will be large enough
to compensate for the scrapped equipment DO (f(0) = 1). If ED > K, investments cause
a net rise in the stock of installed equipment (f(x) > 1 if x > 0). If ED < K, some
positive investment values can be obtained. However, since I < DO, they will cause a net
drop in the installed capacity (f(x) < 1 if x < 0). In the case ED < K, the chosen func-
tional specification differs slightly from the affine one used in the original model (Moxnes,
1987, fig. 2). This change is guided by the desire to implement a robust formulation to
extreme condition testing (Oliva, 2003). With an affine specification, a very large drop
in demand ED could result in a negative investment value, that is, the premature scrap-
ping of "new" equipment (especially those with the most desirable fuel option). To remedy
this, an exponential specification is implemented to insure a non-negative investment value.

One then has to determine the capacity utilization to allow the model to track exogenous
energy demand in case of large downward variations (compared to total scrapping DO).
Capacity utilization U is simply defined as:

U =
ED

K
. (9)

Here, capacity utilization is assumed not to be fuel specific as the same capacity utilization
figure is posited for the three fuels:

∀i, Ui = U . (10)

As a result, the simulated demand for fuel i, denoted D̂i, is:

D̂i = UiKi = ED
Ki

K
. (11)

Contrary to Moxnes (1987, 1990), we do not model installed plants with multi-firing ca-
pability that, in the short-run, are able to switch from one fuel to another and back again
in response to price signals. In this model, all the installed equipment is thus supposed
to be inflexible with respect to fuel choice. The decision to abandon this part of the orig-
inal model was guided by market observations that suggest a phase-out of fuel switching
capability in industrial plants after the 1980s. Stern (2007, 2009) provides an informed
discussion on the causes of this phase-out based on the extra-cost and inconvenience asso-
ciated with the maintenance of a multi-firing capability, and the progressive tightening of
emission limits on the burning of fossil fuels.

To summarize, the model (equations (1)-(11)) corresponds to a system of non-linear dif-
ferential equations. The associated initial conditions will be detailed in the next section.
Because of its complexity, this system has to be simulated with numerical techniques (Eu-
ler’s method).

6



3 Calibration and results

In this section, we present the data used in our simulations and detail the calibration of
the model before discussing the obtained results.

3.1 Context

The national energy contexts (domestic resource endowment, composition of the industrial
sector, energy policies and energy taxation regimes, etc.) vary greatly from one industrial
country to another and national specificities play a non-negligible role in the fuel consump-
tion patterns observed in the industrial sector. Accordingly, a country-level perspective
has been adopted to analyze the cases of eight industrial countries that are members of
the International Energy Agency (IEA): Canada, France, Germany, Italy, Japan, South
Korea, the UK and the USA. The hydrocarbon fuel consumption of their industral sectors
are the largest among IEA members and, in 2008, collectively represented 79.6% of the
overall industrial fuel consumption of all the IEA member countries (IEA, 2010a).

In this study, we aim at analyzing the adjustment to the relative fuel prices that oc-
curred during the period 1978-2008.3 This sample period covers the second oil shock, the
oversupply-based counter shock associated with the collapse of oil prices that started in
1986 and, more recently, the high-oil price regime that began in late 2003 and unfolded
until 2008. During these last 30 years, there has been a net decline in the energy inten-
sity in these eight economies. With exception of South Korea where a net rise in the fuel
demand of the industrial sector has been observed, the overall amount of fuel consump-
tion in the energy sector has either diminished (Europe and USA) or has been maintained
(Canada, Japan). In terms of fuel substitution, the share of coal remained steady whereas
gas consumption increased sharply at the expense of oil (IEA, 2010a).

3.2 Data and model calibration

The data employed in this study consists of time series gathered from the IEA. The fossil
fuel consumption data - measured in toe - are those listed in the "Total Industry" cate-
gory in the IEA World energy balances under the headings "Coal and coal products", "Oil
products" and "Gas" (IEA, 2010a). Similarly, the price data refer to the national end-
use prices in US dollar reported in IEA (2010b) under the headings "Steam coal", "High
sulfur fuel oil" and "Natural gas".4 All prices are given in 2008 US$/toe. In South Ko-
rea, natural gas consumption began just after the commencement of gas imports in 1987.
In that country, an infinite price of natural gas was hence assumed for the period 1978-1986.

We can now detail the model calibration. In Moxnes (1987, 1990), a Bayesian approach
is used where most of the parameters’ values are derived from direct observations (costs,
efficiency of the burners, etc.) and educated guesses (the coefficient for the logit specifica-
tion α). Some parameters (especially those pertaining to preferences and the initial values
of the stocks), are then revised thanks to an iterative procedure aimed at improving the
fit between simulated and historical behavior. Arguably, such an iterative procedure may

3The non-inclusion of the earlier period has been imposed by practical considerations on data availabil-
ity. Indeed, the IEA no longer provides time series on end-user prices for the period 1960-1977.

4For periods with missing price data, end-use prices have been reconstructed using the indices of energy
prices by sector reported by the IEA.
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somehow involve some subjectivity (Oliva, 2003). To remedy this, an automatic calibra-
tion (AC) procedure is applied to minimize the deviation between a simulated outcome
and historical data. According to Oliva (2003), a parsimonious approach should guide the
practical implementation of AC. Accordingly, the use of AC has been restricted to "the
smallest possible calibration problems." In line with Moxnes’ Bayesian approach, a pri-
ori information has thus been used for the observable parameters (costs, efficiency of the
burners, etc.) and the AC procedure has been applied to solely adjust the value of the
most uncertain parameters (initial values of the stocks, α, etc.).

Our assumptions are based on Moxnes (1987, Table 2) and are summarized in Table 2
(Note: the CO2 emission factors are drawn from IEA (2010a)):

Table 2: Cost assumptions for the industrial sector

Year Coal Oil Gas
Capital costs CCi ($/utoea per year) all 410 200 200
Payback time PBTi (years) all 5 5 5
Other operating costs OOi ($/utoea per year) all 70 40 40
Burner efficiencies Ei 1978-1982 70 75 75
(% useful) 1983-2008 71 76 76
Lifetime of burners Ti (years) all 25 25 25
CO2 emission factor QCO2i (tCO2/toe) all 3.881 3.207 2.337

aHereafter, utoe is used to denote useful toe.

In addition, the parameters associated with the investment function have to be defined.
The coefficient a in the function f defined in equation (8) has been set equal to 0.231, a
value interpolated from the exteme left point in Moxnes (1987, Fig. 2). Besides, the time
to adjust total investments TI is assumed to be equal to 1 year because, contrary to the
1960s (Moxnes used 0.25 year), we can reasonably posit that industrial investment dur-
ing the period 1978-2008 was not primarily guided by "building ahead of demand" motives.

We can now detail the main features of the AC procedure. Here, we rely on the model
reference optimization (MRO) method described in Oliva (2003). We first specify an error
function capable of measuring the distance between the observed and simulated behavior
as a function of the model’s parameter values. For each fuel i, a fuel-specific distance
can be evaluated with the absolute error, that is, the sum of the absolute discrepancies
between historical Dt

i and estimated D̂t
i fuel consumption. The model’s error function is

thus defined as the sum of these three fuel-specific distances:

e =
∑
i

∑
t

|Dt
i − D̂t

i | . (12)

We note that this function gives an equal weight to each fuel and each observation no
matter when it was recorded. Using the model’s equations above, it is possible to specify
the error e as a multivariate function of the parameters to be estimated, namely the non-
negative values of the initial stocks

(
KO0

i

)
∀i and

(
KN0

i

)
∀i, the non-negative coefficient for

the logit specification α, and the premiums for both oil PR2 and natural gas PR3 (PR1
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is set equal to 0$/toe).

Following Oliva (2003), the AC procedure is then specified as an optimization problem:
finding the parameter values that minimize this distance subject to feasibility constraints
(the non-linear equations presented in the preceding section). The optimization problem
at hand is a nonconvex, nonlinear mathematical program that can be successfully attacked
by modern global solvers.5 Table 3 reports the parameters’ values obtained thanks to the
AC procedure, for the countries studied.

Table 3: Calibrated values of the parameters

Initial capacities alpha Premiums
(Mtoe/year) (utoe/$) ($/utoe)

KN0
coal KO0

coal KN0
oil KO0

oil KN0
gas KO0

gas α PRoil PRgas
Canada 3.63 0.58 - 13.56 13.95 - 0.0073 55.1 140.2
France 8.35 - - 20.33 6.17 - 0.0220 0.0 119.0
Germany 13.35 34.90 - 30.83 - 23.16 0.0112 - 317.7
Italy 3.52 - - 19.56 8.14 - 0.0107 105.5 229.0
Japan 14.95 22.01 - 98.02 5.57 - 0.0047 -5.8 124.1
Korea 2.74 - 10.31 0.00 - - 0.0128 -80.7 48.0
UK 9.13 - - 16.68 13.92 - 0.0087 352.2 400.3
USA 59.35 - 11.56 116.39 - 176.90 0.0304 -25.2 99.0

From these calibration results, several facts stand out. First, the initial stocks of new burn-
ers in 1978 suggest that, with the exception of Korea, the installed oil burning capacities
mainly consist of old burners, revealing a limited investment in oil burning appliances in
the previous years. This finding looks coherent with the oil diversification policies initiated
after the first oil shock. Then, Moxnes (1987, 1990) underlines that the multinomial logit
model used for the investment shares involves an implicit assumption: that the total costs
follow a Weibull distribution. Thus, α the coefficient for the logit specification is inversely
proportional to σ the standard deviation of the cost distribution: (σ = π

α
√
6
). According

to the obtained values, the standard deviations of total costs range from $42.2 per useful
toe in the USA to $270.0 per useful toe in Japan. Finally, the relatively large values of the
natural gas premiums (compared to the oil ones) reveal a strong preference regarding that
fuel in investments. Several features of natural gas can justify this preference, such as the
wish to diversify energy sources in oil-importing economies after the two oil shocks, and
the cleanliness of natural gas at a time of raising environmental concerns.

3.3 Results and validation

The validation of a system dynamics model usually involves two dimensions: (i) structural
validity, and (ii) behavioral validity. The purpose of the former is to check whether the
implemented structure constitutes, or not, an adequate representation of the phenomenon
to be modeled, whereas the aim of the latter is to compare the model generated behavior

5Here, the LINDOGlobal optimization procedure is applied.
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to the observed behavior (Barlas, 1989; Qudrat-Ullah and Seong, 2010).

In this study, the modeling framework is derived from a classical approach and is thus
firmly grounded in previous knowledge. Nevertheless, a meticulous check of its structural
validity is carried out. The model at hand has a moderate complexity which considerably
eases these verifications (logical coherence of the set of modeled equations, the dimensional
consistency of each equation, the robustness against extreme parameter values, etc.). Fol-
lowing a recommendation in Qudrat-Ullah and Seong (2010), this model was also submitted
to the judgment of a group of practitioners (corporate planners, executives) and academics
whose research is focused on energy issues. All these assessments confirmed the logical
soundness of this model built to capture the main drivers of the fuel substitutions dy-
namics. Accordingly, we can feel confident in the model’s ability to "generate the right
behavior for the right reasons."

Concerning behavioral validity, Figure 1 and Figure 2 show both the historical and simu-
lated demand behavior for the eight countries. A visual inspection of these plots suggests
that the calibrated models satisfactorily capture the history of fuel consumption in these
countries.

In addition, some quantitative tools for the analysis of fit are reported in Table 4. The root
mean square errors (RMSE) measure the magnitude of the errors. To ease comparisons
across series/countries, a normalized measure of these errors is also presented: the mean
absolute percent error (MAPE). According to these findings, the fit to historical behavior
is quite good, particularly for Canada, Italy and Japan. The large MAPE figure obtained
for South Korea’s industrial gas demand can be explained by the formulation chosen for
the AC procedure. Indeed, our objective function pays attention to absolute differences be-
tween historical and simulated values, whereas the MAPE is a relative average normalized
measure. For Korea, the MAPE is heavily twisted by the presence of large relative errors
during the decade 1987-1997. During that period, gas consumption was ramping up in
South Korea and the resulting consumed volumes remained small relative to the generated
error. For the UK, most of the discrepancies are observed on the gas and coal series be-
tween 1996 and 2003, a period of very low gas prices underpinned by increased competition
and upstream developments in the North Sea. During that period, many market observers
documented a "dash for gas" causing the premature scrapping of coal burning equipment
replaced by gas-fired ones, a behavior that has not been modeled here. Arguably, the
observed discrepancies between the simulated and historical series for both gas and coal
provide an order of magnitude of the amplitude of this unmodeled phenomenon. For Ger-
many, the model poorly explains the oil and coal consumption monitored in the 1980s. For
Germany, the model hardly explains oil and coal consumption in the 1980s but performs
significantly better in the subsequent period. Several explanations can be proposed for
this poor performance including (i) the possibility of under-optimal fuel choices in GDR
industries prior to German reunification, (ii) the unmodeled subsequent modernization of
these industries, (iii) the possibly debatable quality of the "reconstructed" energy statis-
tics for the aggregate country in the 1980s (especially those on energy prices), and (iv) the
unmodeled coal-friendly policy conducted in West Germany that resulted in a net rise in
coal consumption between 1979 and 1983 (Renou-Maissant, 1999).
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Figure 1:
Historical and simulated consumption behavior of industrial annual fuel demand in

France, Germany, Italy and UK.
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Figure 2:
Historical and simulated consumption behavior of industrial annual fuel demand in

Canada, Japan, South Korea and USA.
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Table 4: Error analysis of the model
MAPE RMSE UM US UC
(%) (ktoe) (%) (%) (%)

Canada Coal 5.4% 232 0.1% 3.5% 96.4%
Oil 4.9% 557 0.0% 9.4% 90.6%
Gas 2.4% 574 0.1% 1.2% 98.8%

France Coal 14.5% 1045 0.1% 30.1% 69.7%
Oil 8.4% 1244 3.8% 68.7% 27.5%
Gas 5.7% 891 5.3% 0.1% 94.6%

Germany Coal 15.5% 3002 0.0% 1.9% 98.1%
Oil 12.0% 2230 0.1% 23.8% 76.1%
Gas 6.2% 1250 0.3% 2.5% 97.2%

Italy Coal 9.5% 385 3.9% 16.7% 79.4%
Oil 9.9% 865 1.1% 2.0% 97.0%
Gas 6.9% 924 3.2% 1.9% 94.9%

Japan Coal 5.4% 1700 0.8% 0.1% 99.0%
Oil 3.5% 1553 2.6% 0.6% 96.8%
Gas 6.8% 400 5.7% 4.3% 90.0%

Korea Coal 22.4% 781 7.6% 6.6% 85.8%
Oil 8.2% 927 1.9% 12.7% 85.3%
Gas 63.2%a 721 1.5% 31.3% 67.2%

UK Coal 21.4% 950 2.6% 24.9% 72.5%
Oil 7.8% 693 0.5% 12.9% 86.6%
Gas 6.0% 916 1.3% 15.7% 82.9%

USA Coal 8.3% 3783 1.6% 3.4% 95.0%
Oil 15.3% 6519 5.5% 3.3% 91.2%
Gas 4.0% 6066 3.0% 0.0% 97.0%

aIn Korea, gas consumption began in 1987. To avoid a division by 0, this figure
corresponds to the period 1987-2008.

In addition, the Theil inequality statistics detailed in Sterman (1984) provide a useful de-
composition of the mean square errors in terms of bias (UM ), unequal variation (US), and
unequal co-variations (UC). In most cases, the largest share of the MSE can be ascribed
to UC the imperfect covariation component of the Theil inequality statistics. The low
bias and variation components of these statistics indicate that the errors are unsystematic,
meaning that the models can replicate the observed behaviors.

These results together with the graphical representations suggest that the model does an
excellent job of tracking the observed interfuel substitutions.

4 The demand function

The system dynamics model above offers great appeal for the prospective analysis of in-
dustrial energy demands. Given the poor representation of the demand side included in
most natural gas market models, one could thus wish to embed this system dynamics-based
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model within a partial equilibrium model of the natural gas markets. Unfortunately, all
these models (c.f. the introduction) require the formal specification of a single-equation
function of the demand for natural gas. In this section, this system dynamics-based rep-
resentation is put to work to construct such a single-equation demand function.

Hereafter, the reference year is assumed to be t0 = 2008 and we focus on the future annual
consumption of a given fuel, in one of the countries listed above, in year t > 2008. For the
sake of clarity, we detail the case of natural gas consumption in Canada but this approach
is general and can be used to model the industrial demand of any two other fuels in any
country. In addition, we assume the availability of an exogenous scenario that details the
evolution of future total final energy consumption and both coal and oil domestic prices in
any future year t > 2008.

4.1 Modeling next year’s demand

To begin with, we focus on the first future year (that is, t0 + 1 = 2009) and detail the
construction of a single-equation demand function for that year. To do so, a series of sim-
ulations of the system dynamics model are conducted with, ceteris paribus, various values
of the 2009 price of natural gas. Using a large sample (1000 values) of possible 2009 gas
prices regularly drawn over a wide range, we can generate a large data set that depicts the
instantaneous change in the quantity of natural gas demanded in 2009 as a function of the
2009 price of that fuel.

As an illustration, Figure 3 depicts the results of a series of numerical simulations conducted
for the case of Canada with the following exogenous parameters: FPcoal(2009) = 165$/toe
(coal price in 2009), FPoil(2009) = 1030$/toe (oil price in 2009), and ED(2009) = 30Mtoe
(total final energy consumption in 2009).

These "pseudo data" can in turn be used to estimate the parameters of a single-variable,
single-equation, demand function for the year 2009. This empirical demand function aims
at providing an easy-to-handle representation of the quantity of fuel consumed in 2009
(the response variable) as a function of the own fuel price that year (the explanatory
variable). Our simulation results (given in Figure 3) suggest that the quantity of fuel
demanded should be modeled as a smooth and monotonically decreasing function of that
fuel’s price. For a very low price level, the fuel under scrutiny nearly captures all the new
investments whereas the quantity demanded saturates at large values of this fuel prices,
and this saturation level is set by the capacity of previously installed burning equipment.
As all our simulations suggested the presence of an "S" shaped pattern, we explored the
possibility of modeling these simulation results with an empirically determined sigmoid
curve. Among the set of mathematical functions with an S-shaped curve (e.g., logistic
function, Gompertz function, etc.), our experiments lead us to consider the hyperbolic
tangent. For each year t, we thus propose to fit the relation between simulated demand
and price with the following functional form:

q̂(p) = β + δ. (1− tanh (γ.(p− pc))) (13)
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Figure 3:
The numerical demand function. Canada, industrial sector, natural gas, year 2009.
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where q̂ is the approximated quantity of fuel demanded in 2009, p is the 2009 fuel price
(the explanatory variable), t is the time, and β, δ, γ, and pc are non-negative parameters.
The function tanh is the hyperbolic tangent:

∀x ∈ R, tanh(x) =
ex − e−x

ex + e−x
(14)

According to Formula (13), the proposed approximated demand function is monotonicaly
decreasing. This specified demand does not rise to +∞ when the price is very low. This is
principally due to the fact that the total final energy demand is exogenous to our model.
Hence, the demand for natural gas remains upper-bounded. When the price is very high,
we can notice that the quantity demanded converges towards a finite positive value β, that
captures the "clay" effect, that is, the remaining demand originating from all the previous
investments done in that fuel.

An interesting interpretation can be associated with the proposed approximation. This
specification can be decomposed in two components, a constant term β that captures the
rigidity associated with past decisions, and a price-variable term that measures the in-
stantaneous reaction of demand to the current price (that is, δ. (1− tanh (γ.(p− pc)))).
Concerning the latter term, the parameter pc, which is the inflexion point of the curve (cf.
Figure 4), can be interpreted as a measure of the price of an alternative composite energy
utilizing both coal and oil. Thus, the value of this parameter is influenced by the prices
of both coal and oil products. The curvature parameter γ represents how fast the natural
gas usage drops within a year, if the gas price rises. It is directly linked to the derivative
of the demand function at the competing energy price pc. The amplitude parameter δ
is connected with the share of the total annual fuel demand that is subject to interfuel
substitutions.

If we denote by q(p) the simulated demand provided by the system dynamics model and
q̂(p) the one given in equation (13), the error (distance between q and q̂) can be defined
as follows:

error =
< |q(p)− q̂(p)| >

< q(p) >
(15)

The < . > is the mean value. The mean value of a one-variable function f is defined as
follows:

< f >= lima→+∞

∫ a
−a f(x)dx

2a
(16)

The values of the parameters β, δ, γ and pc are derived from a minimization of the error
function.
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Table 5: Optimal parameters, Canada, industrial sector, natural gas, year 2009
β (ktoe) 1.84 104

δ (ktoe) 0.65 103

γ ($/toe−1) 0.0043
pc ($/toe) 352

As an illustration, Table 5 details the optimal values of the parameters β, δ, γ and pc found
for the case of natural gas industrial consumption in Canada for the year 2009. Figure 4
illustrates the quality of the numerical fit for that case. Apparently, this empirical model
does an excellent job of tracking the simulated gas consumption as it is almost impossible
to distinguish between the simulated pseudo-data and the proposed S-shaped approxima-
tion. This finding is also confirmed by the numerical value of the associated error which
is extremely low: 10−8.

Figure 4:
The numerical fit. Canada, industrial sector, natural gas, 2009.

Given the good fit offered by this specification, we can discuss the implied short-run price
elasticity of natural gas demand. This elasticity is given by the following function (issued
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from equation (13)):

ε(p) = −
pγδ.

(
1− tanh2(γ(p− pc))

)
β + δ. (1− tanh(γ(p− pc)))

(17)

Ceteris paribus, this short-run elasticity is a decreasing function of the addiction parameter
β.

With usual numerical values, the graph of this function has the shape depicted in Figure
5. From the example of Canada in 2009, the magnitude of the short-run price elasticity
of natural gas demand remains extremely low. Our experiments conducted with the other
seven countries systematically confirmed the fact that, in the short-run, industrial con-
sumers appear to be very little responsive to natural gas price increases. Of course, such a
low price-response can have far-reaching consequences when analyzing security of supply
issues (Abada and Massol, 2011) or the possibility to exert market power in the short-run
with the help of an imperfect competition model.

Figure 5:
The short-run price elasticity of industrial demand for natural gas. Canada, 2009.

Of course, the values of the parameters β, δ, γ and pc are conditioned by the chosen sce-
nario (that is. ED(2009), FPoil(2009), and FPcoal(2009)). Some sensitivity analysis can
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thus be conducted to analyze the influence of the assumptions embedded in the scenario.
As an example, we can study how the value of pc varies with the assumed coal and oil
prices. Figure 6 gives the evolution of pc over the oil price FPoil(2009), in Canada in 2009.
The coal price FPcoal(2009) is fixed at 163$/toe. Our findings show that the price of the
alternative energy is an increasing function of the oil price. The saturation effect observed
is due to the coal price that remains constant.

Figure 6:
The evolution of pc over FPoil(2009). Canada, industrial sector, natural gas, year 2009.

Similarly, we can analyze the influence of the global energy demand ED(2009) on the nat-
ural gas addiction quantified by the parameter β. Hence, Figure 7 gives the evolution of β
for Canada over the assumed global energy demand ED(2009) for the year 2009. One can
notice that there is always a remaining addiction β 6= 0 even if there is no global energy
demand ED = 0. This is due to the previous (to 2009) investments in natural gas.

According to these findings, the empirical approach at hand provides an acceptable ap-
proximation of the relation between simulated fuel demand and the fuel own price in year
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Figure 7:
The evolution of β over ED(2009). Canada, industrial sector, natural gas, year 2009.
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t0 + 1 for a wide range of possible scenarios. Such a specification could usefully be put
to work to refine the demand-side treatment embedded in most static oligopolistic models
of the natural gas industry. For example, the popular models detailed in Golombek et
al. (1995), Boots et al. (2004), and Holz et al. (2008) systematically postulate a simple,
downward sloping, affine function to represent the connection between gas price and the
volume demanded during the base year. Nevertheless, one could rightly feel uncomfortable
with a model solely based on a static vision of the natural gas industry. At least two types
of arguments can be advanced to consider a dynamic specification. Firstly, on the supply
side, natural gas is an exhaustible resource and gas producers typically have to decide an
intertemporal policy (investment, extraction path, etc.). Secondly, on the demand side,
the magnitude of the long-run price elasticity of fuel demand is notoriously larger than its
short-run counterpart. Any sudden rise in the price of a given fuel can, ceteris paribus,
have far reaching negative consequences on both the volumes of fuel demanded during
actual and future time periods. Concerning the supply-side, some progress has been made
as a couple of recent imperfect competition models propose a dynamic treatment of the
supply-side (Lise and Hobbs, 2008; Egging et al., 2010). On the contrary, the dynamic
adjustment of volumes demanded to prices has, to our knowledge, never been taken into
consideration within an imperfect competition model of the natural gas industry. In most
cases, demand behaviour is simplified to an affine demand function depicting an instanta-
neous relationship between current prices and volumes demanded without any reference to
past prices. Such a statement obviously calls for some investigation.

4.2 Modeling future demands

By construction, the system dynamics approach presented above is coherent with the fact
that, ceteris paribus, the occurrence of a large gas price rise at a given future time t′ will
result in a lower demand for that fuel during the subsequent periods. In this subsection,
we aim at putting this model to work to specify a single-equation demand function that
captures such a dynamic adjustment. To begin with, we report how a meticulous analysis
of a large number of simulated demand outcomes has guided us in the construction of such
a dynamic specification. Then, a numerical example is detailed to illustrate the perfor-
mances of the proposed specification.

4.2.1 Simulations: paving the way to a multivariate specification

Now, we focus on the demand for natural gas at a given future time period t. We assume
that an exogenously defined scenario gives, for each time period t′ ≤ t, the overall energy
demand ED(t′) and the prices of the two alternative fuels FPcoal(t′) and FPoil(t′). Our
approach can be decomposed into three successive steps.

1. A large number (10,000) of scenarios have been generated for the future prices of
natural gas at any future time t′ with t′ < t. Hereafter, J is used to denote the
set of scenarios. If j is used to index the generated scenarios, a gas price scenario
can thus be written as (pjt′)t′<t a vector with t − 1 components. From a practical
perspective, these future prices have been randomly generated assuming that future
gas prices are i.i.d. random variables that follow an uniform distribution on the in-
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terval [0, 700]$/toe. These assumptions allow us to explore a large domain of possible
future price scenarios6.

2. Then, we propose to analyze, for each scenario j, the instantaneous relationship be-
tween the current price of natural gas pt and q

j
t the volume of natural gas demanded

at time t. To do so, the current price pt is varied so as to generate by simulation,
for each scenario j, a data set of 1000 observations of the volume demanded. Un-
surprisingly, these observations suggested the presence of a downward sloping, "S"
shaped relation between the price pt and qjt . Such a statement called for further
investigations.

3. Each of these data sets has in turn been used to fit the following "S-shaped" speci-
fication. As a result, we have estimated, for each scenario j, the parameters βjt , δ

j
t ,

γjt and pcjt (according to equation (13)):

q̂jt (pt) = βjt + δjt .
(
1− tanh

(
γjt .(pt − pc

j
t )
))

. (18)

For each parameter, we can gather the values (βjt )j∈J , (δ
j
t )j∈J , (γ

j
t )j∈J and (pcjt )j∈J

obtained for the various scenarios j and analyze their distributional properties. Two
interesting findings emerged from this analysis. Firstly, the "dispersion", measured
either in absolute terms (with the sample standard deviation) or in relative terms
(with the coefficient of variation) was extremely low for the series (δjt )j∈J , (γ

j
t )j∈J

and (pcjt )j∈J . Accordingly, the values of these three parameters are not influenced
by previous gas prices. Secondly, on the contrary, the values (βjt )j∈J are intimately
connected with those of previous gas prices. Moreover, we systematically observed
that, with two scenarios j1 and j2 that are such that pj1t′ ≤ pj2t′ for all t′ < t, a
comparison of the values βj1t and βj2t provided βj1t ≥ βj2t , ∀t′ < t. This latter
observation is coherent with the interpretation given for βjt in the previous subsection,
i.e., a parameter that captures the "clay" effect associated with past investment
decisions.

This three-step approach has been replicated for several time horizons t (in the range t0+2
and t0 + 30 years), for various countries, various alternative scenarios for both the overall
energy demand and the prices of the two alternative fuels (coal and oil). Our empirical
findings systematically confirmed the fact that: (i) the parameters δjt , γ

j
t and pcjt do not

depend on previous gas prices, whereas (ii) βjt exhibits a clear dependence on past values
of the natural gas prices. From these investigations, it appears that: the index j can be
dropped on the parameters δt, γt and pct, and that βjt can be viewed as the value taken by
βt a multivariate function of past gas prices evaluated at the particular point (pjt′)t′<t, i.e.,:

q̂jt (pt) = βt

(
(pjt′)t′<t

)
+ δt. (1− tanh (γt.(pt − pct))) . (19)

In addition, one may wish to elaborate on the path-dependency that is at work for the
parameter βt. As this parameter reflects the rigidity associated with past decisions, it is

6More subtle probabilistic models fitted on historical time series, including alternative distributions
and autocorrelation, have also been considered. Given that the obtained results did not differ from those
detailed here, we have decided to maintain these rough assumptions.
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tempting to relate it to qjt−1 the volumes demanded at time t− 1 in the scenario j (mod-
ulo some aging/scrapping of installed equipment). These latter volumes can, in turn, be
approximated by the "S" shaped function q̂jt−1 evaluated at the particular price pjt−1:

q̂jt−1(p
j
t−1) = βjt−1 + δt−1.

(
1− tanh

(
γt−1.(p

j
t−1 − pct−1)

))
. (20)

Here, the overall volume q̂jt−1(p
j
t−1) can also be decomposed into: those precisely decided at

date t−1, and those encapsulated within the term βjt−1 that reflects earlier decisions. This
latter term can in turn be related, modulo some aging/scrapping of installed equipment,
to qjt−2, a volume that can be approximated by q̂jt−2(p

j
t−2) and so on...

Because of this nested scheme, one could wish to model the function βt
(
(pjt′)t′<t

)
, given

in (19), with an additive specification that explicitly tracks the contributions of earlier
vintages:

βt

(
(pjt′)t′<t

)
= β0,t +

∑
t′<t

ht′→t

(
δt′ .
(
1− tanh

(
γt′,t.(p

j
t′ − pct′,t)

)))
, (21)

where β0,t denotes the contribution of burners initially present at time t0, and ht′→t is a
function that models the aging of burning appliances installed at date t′. Rather than
specifying these aging processes, we consider that the aging function only alters the am-
plitude parameters δt′ so that equation (21) can be rewritten as follows:

βt

(
(pjt′)t′<t

)
= β0,t +

∑
t′<t

δt′,t.
(
1− tanh

(
γt′,t.(p

j
t′ − pct′,t)

))
. (22)

Since this formula, which will be confirmed in the following section, holds for a huge number
of possible values of (pjt′)t′<t, we can drop the scenario index j, and write:

∀(pt′)t′<t, βt ((pt′)t′<t) = β0,t +
∑
t′<t

δt′,t.
(
1− tanh

(
γt′,t.(pt′ − pct′,t)

))
. (23)

If we denote δt,t = δt, both equations (22) and (19) suggest to model the volumes demanded
at date t thanks to the following multivariable specification:

q̂t ((pt′)t′≤t) = β0,t +
∑
t′≤t

δt′,t.
(
1− tanh

(
γt′,t.(pt′ − pct′,t)

))
, (24)

where β0,t, (δt′,t)t′≤t, (γt′,t)t′≤t and (pct′,t)t′≤t are unknown parameters to be determined
numerically.
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4.2.2 Estimation and performance

We can now clarify the calibration procedure used to fit the approximation specified in
equation (24). As in subsection 4.1, we need to define a distance between the simulated
demand function q(t) and the theoretically proposed one q̂(t). Let us re-write the functions
while showing the main variables: q(t, (pt′)t′≤t) and q̂(t, (pt′)t′≤t). It is difficult to define a
distance because of the multivariable aspect of the functions, the variables being (pt′)t′≤t
and t. Therefore, we define the time-depending error as follows:

error(t) = limn−→∞
1

n

n∑
j=1

|q(t, (pjt′)t′≤t)− q̂(t, (p
j
t′)t′≤t)|

q(t, (pjt′)t′≤t)
(25)

where the variables pj1, p
j
2... p

j
t are randomly selected between 0 and 700$/toe (uniform

distribution), for all j ∈ N. Thanks to the strong law of large numbers, we know that
1
n

∑n
j=1

|q(t,(pj
t′ )t′≤t)−q̂(t,(p

j

t′ )t′≤t)|
q(t,(pj

t′ )t′≤t)
converges when n −→∞.

Here again, our method minimizes the (time-depending) errors in order to estimate the
parameters β0,t, δt′,t, γt′,t and pct′,t. In the following, we report an illustration obtained
for Canada, in year 2013. The following scenario has been used: constant fuel prices
FPcoal=165 $/toe, FPoil=1030 $/toe and a constant overall energy demand ED=30 Mtoe.
Table 6 gives the values of the parameters β0,2013, γt′,2013, pct′,2013 and δt′,2013 for t′ ∈
{2009...2013}.

Table 6: Optimal parameters, Canada, industrial sector, natural gas, year 2013
time (t′) 2009 2010 2011 2012 2013
δt′,2013 (ktoe) 595 611 625 636 644
γt′,2013 ($/toe−1) 0.0043 0.0043 0.0043 0.0043 0.0043
pct′,2013 ($/toe) 352 352 352 352 352

β0,2013 (ktoe) 1.55 104

The error we find numerically is very small: ∀t, error(t) ≤ 10−7. This is a validation of
the use of the functional form provided in equation (24) to mathematically describe the
demand function.

The new parameter β0,t decreases with time. Indeed, formula (24) indicates that β0,t is
the residual demand in year t, when all the previous natural gas prices are very high.
This residual consumption is expected to decrease with time if no investments are made in
natural gas (which is the case when the natural gas prices are high, considering equation
(2)).

At a fixed time t, the parameter δt′,t increases with t′, which is intuitive: the consumption
dependence on natural gas price in year t′ is less and less important in the future. If the
global demand remains constant over time, the parameters δt′,t behave like the following:

δt′,t = δ0κ
t−t′
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where δ0 and κ are constants. We found out that the new parameter κ is roughly the same
for all the countries we studied: κ = 0.95.

There are many advantages to using our model to make a demand forecast. First, we
take into account the inertia present in energy consumption, which is due to all the past
investments in coal, oil and natural gas. Second, the demand function estimated for gas
naturally depends on the other fuel prices. Thus, a competition between fuels, thanks to
the substitution aspect, appears in the demand function. Finally, this technique takes into
consideration the intertemporal dependence between consumption and prices. Indeed, fuel
prices in year t will influence the demand in future years t′ ≥ t. Obviously, if the natural
gas price is high in 2010, for instance, compared to the other fuels, few investments will be
made in that fuel and the corresponding demand will therefore be low in the future years.
In Abada et al. (2010), it is shown that this functional form can be used for building
imperfect competition models of natural gas markets.

It has been stated before that the addiction parameter β0 decreases with time. Figure 8
shows the evolution of β0 between 2009 and 2023.

Figure 8:
The evolution of β0 over time. Canada, industrial sector, natural gas.

The decrease of β0 is quasi exponential. We can numerically estimate the following depen-
dence: β0,t = Ke−(t−2009)/τ . The values of the constants K and τ in the case we studied
(Canada) are K = 1.83.104 ktoe and τ = 19 years, which is roughly the investments
depreciation time factor Tnatural gas .
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5 Conclusion

The extent to which alternative fuels can substitute for natural gas in the industrial sector
is an issue of substantial interest to both energy policy analysts and corporate planners
alike. It has recently been underlined that most of the large-scale representations of the
natural gas industry embed a rudimentary representation of the demand side.

To remedy this, a revisited version of the system dynamics model proposed by Moxnes
(1987) is put to work to analyze fuel choices in the industrial sector. This model em-
phasizes the role of prices in analyzing interfuel substitutions and captures the dynamic
adjustment of demand to relative fuel prices using a vintaging structure. Using data on
eight of the OECD countries for the period 1978-2008, we found that this model can satis-
factorily replicate past patterns of fuel consumption. These performances make the model
an appealing tool to examine fuel substitution possibilities in industrial energy demand.
As result, a large number of simulations have been conducted with the aim to propose an
adapted single-equation specification for the demand for fuel. From these investigations,
it appears that a smooth, S-shaped, function can be used to represent the instantaneous
reaction of fuel demand to price. In addition, this approach provides the ingredients nec-
essary to capture the dynamic influence of past fuel prices on current consumption level.
An extended multivariable specification has thus been derived and successfully tested.

This paper demonstrates the potential of that system dynamics-based method for deriving
demand curves and thus offers a promising approach to further enhance the relevance of
existing large-scale models of the natural gas industry.
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