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ABSTRACT 

 
 
In this paper, we address the problem of patent valuation. With this aim in view, we focus on 
the feasibility of a patent rating system. This leads us to develop a structural model of patent 
renewal decisions based on real options that links patent renewals and patent value and to 
estimate it on micro level data. Results for a sample of European patents show that 
unobserved heterogeneity is too high to efficiently discriminate among patents and cast some 
doubt on the possibility to develop a reliable rating system based only on patent metrics. 
 

 
 



3 
 

 
 

1. INTRODUCTION 
 
 
Intellectual property rights (IPRs) have today reached a level of financial and strategic 

visibility that offers the possibility of an emerging class of IP based-transactions. Managed for 

a long time like a simple tool for protection, they are now used more and more like a primary 

source of value creation. In the current competing context, companies are indeed encouraged 

to manage their IPRs, not only in a defensive way but also as a tool of financial valorization. 

Whereas, traditionally, companies saw in IP laws a budget item and a simple legal mean to 

protect their investments from competitors, much of them now consider IPRs and, in 

particular patents, as a source of competitive advantage and as an important constituent of 

their capacity to create value and attract external financing2.  

The valuation of assets concerned with IPRs corresponds without any doubt to a true need, 

for companies as for the financial sphere. Indeed, from an investor’s point of view, a correct 

understanding of the drivers of patent valuation may favor a better allocation of capital and a 

reduction of investment risks. However, the process by which the management of IPRs 

becomes a major source of value for companies is still in its infancy and the evaluation of 

IPRs continue to butt against serious difficulties linked to the lack of generally accepted 

methodologies of valuation and the fact that it is difficult to allot a value to a patent at the 

time of its deposit or shortly after.  

Patents do not let themselves be evaluated in a univocal and indisputable way. There are 

indeed many legal, technical and market factors that have to go into assessing a patent’s 

                                                 
2 By acting as “quality signals”, patents can be used as collaterals for technology-based firms to attract external 

financing. Even if they are still in an early stage of development, patent backed financial instruments like patent 

loans, patent sale and lease-back or patent securitizations can be used by companies to leverage their most 

valuable assets to finance their development. 
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overall value. However, some new statistical benchmarking methods are emerging which are 

supposed to ease the task of working out patent quality. This is for instance the case of the 

Intellectual Property Quotient (IPQ®) built upon patented methodologies by Ocean Tomo 

Patent Ratings® or the Pantros IP patent Factor Index analytics (PFI)™ developed by 

PatentCafe®. These proprietary ranking or scoring methods use multivariate regression 

modelling to essentially predict the probability of maintenance or abandonment of patents 

based on a number of identified predictor variables, also called patent metrics. However, these 

proprietary methodologies are not exempt from criticisms. First, the main challenge when it 

comes to ensure a correct valuation of patents is to develop a methodology that both buyers 

and sellers can trust. In this respect, arguments by providers of patent scoring and rating 

systems saying that their algorithms are “proprietary”, and therefore cannot be disclosed, 

disregard the critical requirement of transparency. Second, from a more theoretical point of 

view, the methods proposed by these rating agencies postulate an unambiguous link between 

patent duration and patent value3, i.e. the value of the patent right. In opposition to this view, 

we postulate that both aspects are certainly related but that the relationship is not as simple as 

suggested by these rating agencies. Formally, inferring patent value from maintenance or 

abandonment decisions requires the development of a structural renewal decision model. 

Adhoc specifications of patent duration that seem to be used by patent rating agencies are only 

reduced forms of such a structural model. While they enable to draw a link between patent 

duration and patent value, they do convey a significant risk of error. 

Generally speaking, it is obvious that in order for any statistical patent evaluation process 

to be trustworthy, the process must be completely transparent, repeatable and objective. With 

this aim in view, our paper describes and implements an original approach for comparatively 

rating and benchmarking patent performance using statistical modeling based on an analysis 

                                                 
3 For a discussion on what it is meant by the term « patent value », see Hall (2009). 
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of observed renewal decisions conditional on some patent metrics. Several arguments play in 

favor of an analysis based on patent renewals. First, significant insights can be gained from 

analyzing past renewal decisions of patent owners. Indeed, for a patent to be kept in force, 

renewal fees have to be paid on an annual basis in Europe versus every 4 year in the U.S. by 

all patent owners whatever their status. In most cases, it is fair to assume that patent owners 

are uniquely knowledgeable and well-qualified to make internal patent value and risk 

assessments. They are also economically motivated to make timely and relevant assessments 

and to take sound decisions based thereon. This means that they will choose to pay renewal 

fees only when the perceived value of the expected remaining economic benefit secured by 

the patent exceeds the amount of the maintenance fee. Thus renewal decisions indirectly 

reveal the implicit value of a patent. By contrast, methods examining the relationship between 

patent counts/sales and Tobin’s q (Hall, 1993; Hall & alii, 2005; Bessen, 2009) or event 

studies approaches (Austin, 1993) are more restrictive in the sense that they can only be 

implemented on patents applied for by firms listed on the stock market and are more 

debatable in the case of event studies. Objectivity of the assessment method is also an 

important requirement. In this respect, methods based on revealed value have to be preferred 

to those based on stated value. Patent renewal methods belong to the first category whereas, 

for instance, survey methods (Harhoff & alii, 2003) belong to the second category. Moreover, 

as determinants of patent renewals are restricted to observed patent metrics and variables 

related to the macro-level context, the third requirement of repeatability is also fulfilled. 

Originally developed by Schankerman and Pakes (1986) on aggregated renewal data, 

models of patent renewals are not as such implementable for individual patent scoring as they 

rely on aggregated renewal data and on the hypothesis that the rent is purely determinist. By 

contrast, option models proposed by Pakes (1986) and Baudry & Dumont (2006) insist on the 

stochastic dynamics of the rent but are still estimated on aggregate data. Moreover, such 
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models have the disadvantage to be complex to estimate and micro-level explicative variables 

are difficult to introduce. To our knowledge, the only article that tries to extend the method to 

micro-level renewal data is Bessen (2008) but again the approach encompasses two 

drawbacks: first, the depreciation rate of the rent is invariant and as such is not suitable to 

capture the effect of variables that change with patent age. This means that it is impossible to 

revise the estimation of patent value according to new information affecting the dynamics of 

the rent during the patent life. Second, the possibility of random chocks affecting the 

dynamics of the rent that generates the option value is not taken into consideration. Yet, as 

outlined by Oriani and Sereno (2011), there are multiple sources of uncertainty that generate a 

patent option value. It is thus a key issue to correctly address their role in patent valuation. 

The originality of our paper is to propose a structural model of patent renewals decisions that 

links patent renewals and patent value and that can be estimated on micro-level data with 

observed and unobserved heterogeneity affecting both the initial rent and its dynamics. The 

model is flexible enough to capture the influence on patent value of both the characteristics of 

the patent known at the application date and those that change with patent age. By contrast 

with previous attempts to assess patent value at the micro level, our model also incorporates 

an option value of patents. Results for a sample of EPO patents designating France show that 

some key observable patent characteristics significantly affect patent value. Nevertheless, 

unobserved heterogeneity is too high to efficiently discriminate among patents. Our results 

show that the most significant effects are those affecting the dynamics of the rent, not the 

initial rent itself. This means that patent maintenance/abandonment decisions can only be 

observed ex-post. In return, this reflects the fact that uncertainty at the time of issue is very 

large. More fundamentally, although an automatic scoring is intellectually stimulating in 

itself, our results cast some doubt on the possibility to develop a reliable rating system based 

only on patent metrics 
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The paper is organized as follows: the next section presents a model of patent renewal and 

discusses theoretical issues that lead us to develop a structural model of patent renewal. 

Section 3 describes data collection and variables. Section 4 presents estimation results for a 

panel of European patents designating France and applied for in 1989. It also provides 

automated scorings to value patents. Section 5 concludes. 

 
 

2. A MICRO-ECONOMIC MODEL OF PATENT RENEWALS  
AND PATENT VALUE 

 
 

This section first offers a simple model to analyze patent renewal decisions. We then propose 

a structural model of patent renewals decisions that links patent renewals and patent value and 

that can be estimated on micro-level data with observed and unobserved heterogeneity 

affecting both the initial rent and its dynamics 

 
 
2.1. MODELLING PATENT RENEWAL DECISIONS 
 
2.1.1. A general approach to patent renewal decisions 

 

A basic but key assumption to estimate patent value on the basis of patent renewal decisions 

is that patent owners act rationally to maximise the value of their patent conditional on 

information available. More precisely, at each renewal date, a patent owner has to decide 

whether to discontinue or not the payment if the required renewal fees exceed the value of the 

patent. This option to renew exists because the payment of renewal fees is discretionary.  

Costs of renewing a patent are in fact multi-facets. They encompass internal costs to assess 

the usefulness of the patent, enforcement costs and those corresponding to the payment of 

renewal fees to the patent office. In practice, renewal fees depend on the age a  of the patent 

and are revised in the course of time. Thereafter, 0f a
t  denotes the fee charged at age a  for 
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a patent with application date t  to be renewed up to age 1a . Patent offices in Europe charge 

increasing fees each year (i.e.  Aaf a
t ,,00   where A  is the statutory life limit of 

patents) versus every 4 years in the United States. Most renewal costs like legal expenses are 

not directly observed nor easily measured, except renewal fees that are published by patent 

offices. As a result, a common practice consists in subtracting the unobserved renewal costs 

from the gross rent associated to the exclusivity right conferred by a patent on all industrial 

and commercial applications of the patented invention. The resulting net rent for a patent of 

age a  applied for at time t  is denoted by Ra
t . Gains that accrue from renewing a patent are 

obtained by adding the current flow of net benefits given by fR
a
t

a
t   and the expected and 

discounted value   rVE a
tat 

 11  of the patent at age 1a  where r  stands for the discount 

rate and E at  for the mathematical expectation conditional on all information available to the 

patent owner at date at  . Renewing a patent is optimal if and only if the associated gains are 

positive. Thus, at any renewal date before the statutory life limit A , the value of a patent is 

recursively defined by the following expression: 

 

 
Aa

r
VEfR
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a
tata

t
a
t

a
t 
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
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


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




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1
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 (1.a) 

 

At the statutory life limit A , the expected future value of the patent falls to zero and the value 

of the patent is given by 
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The optimal age of withdrawal for a patent is the first age such that, conditional on 

information available at the current time, renewing the patent generates a net loss. Formally, it 

is the optimal stopping time associated with the dynamic programming problem (1): 

    














 0
1

;,,0*
1

r
REfRAaInfa

a
tata

t
a
t  (2) 

 

Whether a*  is deterministic or random depends on assumptions about the dynamics of the 

rent and renewal fees. For the optimal age of withdrawal to be random, either the rent or 

renewal fees must be affected by unexpected shocks; the observation of which constitutes new 

information. In that case, some authors call V a
t  the option value of patents in reference to the 

real option theory that analyses irreversible decisions when facing risk or uncertainty. Pakes 

(1986), Lanjouw (1998) or Baudry and Dumont (2006) for instance use this terminology. The 

stochastic nature of the dynamics of the rent makes the determination of the optimal 

withdrawal date rather complex in these real option approaches to patent renewal decisions. 

As a result, the impact of observed patent characteristics on the decision rule is not captured 

and the analysis is confined to the assessment of an average value of the patent rights in a 

cohort of patents. Our paper tries to solve this problem by extending the method to micro-

level renewal data. 

 

2.1.2. A simplified renewal decision rule 
 
A reason for the complexity of decisions rules in real option models of patent renewals is that 

the rent may fall far below the renewal fee but, due to expected future positive shocks, this 

may be reversed in the short or medium term. Hence, comparing only the current value of the 

rent and renewal fees is generally not a relevant decision-rule. For such a decision-rule to be 
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efficient, an additional Assumption 1 as regards the dynamics of the rent and renewal fees is 

required. 

Assumption 1: The gap fR
a
t

a
t   between the rent and the renewal fee decreases 

monotonically from an initial positive value to a possibly negative value with 

patent age. 

A more restrictive form is generally used. It states that the rent itself monotonically decreases 

whereas, as observed for most patent offices, renewal fees are assumed to monotonically 

increase4. Whatever the form considered, Assumption 1 implies Proposition 1 and Corollary 

1: 

Proposition 1: Under assumption 1, the rent will never exceed the renewal fee 

once it falls below it. As a result, maintaining the patent alive is optimal if and 

only if the rent exceeds the renewal fee. 

Corollary 1: Under assumption 1, if a patent applied for at date t  is withdrawn at 

age a , then the rent has always exceeded the renewal fee from age 0  to age 

1a . 

Figure 1 illustrates these key results in the case of renewal fees that start at €10  and increase 

at a constant rate of %10  whereas the rent for patents A, B and C respectively starts at €90 , 

€100  and €40  and decreases at a constant rate that respectively amounts to %15 , %10  and 

%5 . The associated optimal withdrawal age is 9 years for patent A, 12  years for patent B and 

10  years for patent C. If monetary flows are discounted at a %3  discount rate, patents A, B 

and C are respectively worth €81,304 , €61,458  and €72,148 . 

Insert Figure 1 

 
                                                 
4 Pakes and Schankerman (1986) also use the same assumption but not in an option model context. 
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Figure 1 also highlights that patent value is tightly linked to patent duration but this link is not 

that simple. In Figure 1, the height separating the decreasing profiles of the rent and the 

increasing profile of renewal fees measures the net revenue that accrues from a patent at the 

corresponding age on the abscissa. The total value of a patent at the application date (age 

1a ) is obtained by discounting and summing up the heights between the two profiles for all 

ages on the left of the crossing point between the two profiles. The first date on the right of 

the crossing point corresponds to the patent withdrawal date. Due to discounting, the total 

value of two patents cannot systematically be compared graphically. Nevertheless, simple 

cases that can be easily compared are considered on Figure 1. For instance, patent B has a rent 

that exceeds the rent of patents A and C and this rent also lasts longer than for patents A and 

C. This leads us to conclude that patent B has the highest total value. Patent A is withdrawn 

slightly before patent C but its rent is far higher than that of patent C at almost all dates before 

the withdrawing dates. Therefore one can reasonably assert that the total value of patent A 

exceeds that of patent C. Thus, patent ranking from the earliest non-renewal date to the latest 

is A-C-B but the ranking from the lowest total value to the highest is C-A-B. Obviously, both 

rankings depart. A structural model of patent duration is thus required to derive estimates of 

patent value from observed characteristics affecting the date of patent withdrawal and then to 

correctly rank patents in terms of economic value. 

 
2.2. A STRUCTURAL MODEL OF PATENT DURATION 
 
2.2.1. Basic specification with a constant depreciation rate 
 
The traditional solution adopted in seminal papers on patents valuation to account for patent 

heterogeneity in terms of the observed date of withdrawal, consists in assuming that patents 

only differ in their initial rent at the filing date. By contrast with these approaches, we assume 

that the rent decreases at a same decay rate for all patents so that the simplified decision rule 

described in Proposition 1 applies. As a result, given the initial value of the rent, the optimal 
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withdrawal age defined in (2) is deterministic. The probability distribution of the withdrawal 

age is then derived from the probability distribution of the initial rent. Again, the basic 

specification proposed here slightly departs from previous approaches. Indeed, the probability 

distribution of the initial rent is conditioned on patent characteristics. This aims at introducing 

a source of observed initial heterogeneity between patents that explains differences in terms of 

expected withdrawal age at the application date. Patent characteristics influencing the 

probability distribution of the initial rent have to be time invariant to be consistent with the 

idea that they capture differences in the initial conditions influencing both the duration and 

value of a patent. The corresponding variables are thus referred to as static variables. 

Indicators of the technology field, number of claims, backward citations, patent family size 

are variables that typically fulfil this condition. 

Formally, the value Ra
it

1  of the net rent at age 1a  for a patent i  applied for at date t  is 

written as the value of the net rent Ra
it  at the previous age, affected by a decay or depreciation 

factor  1a
t . Note that the index i  is introduced to capture the fact that the value of the rent 

may be patent specific. Conversely, the decay factor is independent of the patent 

characteristics but may be contingent to the application date t  and the age a . Proceeding 

recursively, we have 

  s
t

a

s
it

a
it RR 

1

0  (3) 

 

Furthermore, heterogeneity of patents as regards the initial rent R it
0  follows on from 

observed and unobserved factors. Observed heterogeneity is captured by a vector 

 xxxX iKikii ,,,,1   of K  objectively measurable characteristics of the patent that are 

time-invariant. Unobserved heterogeneity, for its part, is taken into account by assuming that 
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R it
0  is drawn independently for each patent from a same probability distribution, one or more 

parameters of which depend on X i . Though not necessary, it is convenient to assume that 

observed and unobserved heterogeneity affecting the initial rent interact multiplicatively and 

that observed heterogeneity is correctly captured by a Cobb-Douglas functional form of the 

static characteristics of each patent. Accordingly, we have : 

  
iik

k
K

k
it xR 







1
0

0  (4) 

 

where  k  (with  Kk ,,0  ) are parameters and  i  is a i.i.d random term. The probability 

distribution of the initial rent directly follows on from the probability distribution of  i  that 

captures unobserved heterogeneity. 

Imposing   ata
t  1,0  in (3) guarantees that that the rent never increases. This ensures 

the validity of the simplified decision rule defined in Proposition 1. Then, given that the 

dynamics of the rent fulfils Assumption 1, Corollary 1 implies that any patent applied for at 

date t  which is still alive at age a  satisfies the following properties: 

  1,,0  asfR
s
it

s
it   (5) 

 

Moreover, Assumption 1 implies that fR
a

it
a

it
11    is a sufficient condition for all inequalities 

in (5) to be satisfied. Therefore, the information revealed by observing that a patent applied 

for at date t  is still alive at age a  may be synthesised by this last condition. Combining this 

result with (3) and (4), we finally obtain that a patent i  applied for at date t  is renewed up to 

(at least) age a  if and only if 
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 Qa
iti

1  with 
  s

t

a

s
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k
K
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a
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






1

11
0

1
1  (6) 

 

Once expressed in logarithms, (6) is similar to the key condition that Schankerman and 

Pakes (1986) or Schankerman (1998) use to obtain their econometric model. Nevertheless, for 

the estimation method proposed by these authors to work, the dataset of patents has to be 

partitioned in such a way that the threshold value Qa
it

1  is identical for all patents within a 

same subset. Moreover, the size of each subset of patents has to be sufficiently large to obtain 

reliable measures of the proportion of patents withdrawn at each age. This means that this 

econometric method works for patent cohorts (Schankerman and Pakes 1986) or patents 

belonging to large technological classes (Schankerman 1998) as long as none of the 

characteristics that distinguish patents within a subset is used as an explanatory variable. For 

these reasons, we suggest an alternative econometric approach that also relies on condition (6) 

but that is adapted to the use of micro-level patent characteristics. For this purpose, note that 

Assumption 1 implies that the value of the threshold Qa
it

1  decreases with age a . Furthermore, 

a patent i  applied for at date t  is optimally withdrawn at age a  if and only if condition (6) 

prevails at age 1a  but not at age a . This yields the probability Pra
it  of an optimal 

withdrawal at age a  conditionally on a renewal up to age a : 

 
   

 Q

QQ
a

it

a
it

a
ita

it 1

1

1
Pr 






  (7) 

 

where   denotes the cumulative density function of  i . In the terminology of duration 

models, Pra
it  is nothing else than the hazard rate characterising the econometric model of 

patent duration. The corresponding survival function is  Qa
it

11  . Let a  denote the subset 
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of patents renewed up to at least age a  whatever their application date and let a
i  be a variable 

that takes value 1 if patent  ai  is renewed at age a  and value 0  otherwise. The log-

likelihood of withdrawal versus renewal at age a  for a patent i , conditional on the fact that 

we know that  ai , is given by: 

    Pr1ln1Prln a
it

a
i

a
it

a
i

a
iL   (8) 

 

Summing over all ages and all patents, we obtain the following log-likelihood 

  
 

A

a ai

a
itot LL

1
 (9) 

 

Note that a same patent appears several times in (9) but at different ages. Estimates of 

parameters  k  (  Kk ,,0  ) and of parameters of the probability distribution of   are 

obtained by maximising (9) with respect to all these parameters. The advantage of estimating 

the discrete time duration model developed above rather than an ad hoc duration model of 

patents relies on its structural specification that directly provides estimates of all parameters 

required to assess patent value. 

 
2.2.2. Real option specification with heterogeneity in the depreciation rate 
 
The basic specification of patent renewal decisions presented so far is featured by a 

deterministic dynamics of the rent. In such a framework, a patent owner is indifferent in 

choosing between a mechanism based on renewal fees or a mechanism based on a menu of 

patent duration and upfront fees corresponding to the discounted sum of renewal fees. In other 

words, commitment to a predefined withdrawal date is costless because no additional 

information is supposed to be revealed as the patent ages.  
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This is no longer true if the time path of the rent can differ ex post from the time path 

expected ex ante. Practitioners stress the importance of this type of uncertainty. An extra 

value then accrues from the renewal mechanism compared to a commitment to a predefined 

withdrawal age because it makes it possible to adapt the optimal decision to unforeseen 

shocks that modify the time path of the rent. This extra value is the value of flexibility that is 

typically accounted for in real option models (Dixit and Pindyck, 1994; Trigeorgis, 1996). 

Uncertainty affecting the dynamics of the rent makes the decay factor that is applied to obtain 

the rent at age a  from its value at age 1a  in (3) specific to each patent. Both observed and 

unobserved heterogeneity in this decay factor are considered. 

Observed heterogeneity is associated to the time path of observed variables that affect the 

depreciation of the rent. These variables may either be sector-based or macro-economic 

indicators of market conditions for patented inventions or patent specific characteristics like 

forward citations and patent litigation. The main point here is that their values change with the 

age of the patent. In reference to this property, such variables are referred to as dynamic 

variables. Let  zzzZ at
iM

at
im

at
i

at
i

  ,,,,1   denote the vector of values taken by the M  

dynamic variables z at
im

  (  Mm ,,1 ) affecting at age a  the depreciation of the rent for 

patent i  applied for at date t . This vector conditions the depreciation rate ga
it  associated to 

the observed component of the decay rate. In order to be consistent with the fact that this 

depreciation rate ranges between 0  and 1, a logistic specification is more specifically 

convenient: 

 


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
 






M

m

at
imm

a
it
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0exp1
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
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where  m  (with  Mm ,,0  ) are parameters to be estimated. Unobserved heterogeneity is 

associated to factors affecting the depreciation of the rent and that are known to the patent 

owner but not to other economic agents. “Good” or “bad” information about technological 

opportunities offered by the patented invention typically belongs to this category. As a result, 

unobserved heterogeneity is captured by idiosyncrasic random terms. It is more precisely 

assumed that, between two renewal dates, there is a series of N  random events that reduce 

the rent in a multiplicative form. Observed and unobserved heterogeneity are also assumed to 

interact multiplicatively for a technical reason that will be made explicit latter on. 

Accordingly, the decay factor of the rent between age 1a  and age a  may be written as 

     ~11
1

a
in

N

n

a
it

a
it g 


 (11) 

 

The depreciation rates ~
a

in  (  Nn ,,1  and  Aa ,,0  ) associated to the random events 

affecting the rent for each patent i  are assumed to be identically and independently 

distributed in the range  1,0  so that Assumption 1, Proposition 1 and Corollary 1 are 

satisfied. Uncertainty about the future time path of the rent arises from events underlying both 

unobserved and observed heterogeneity. Nevertheless, patent owners can make rational 

expectations about future values of  a
it  conditional on the information avalaible to them at the 

current time. “Good” news (respectively “bad” news) are then defined as realisations of the 

~
a

in  and z at
im

  that generate higher (respectively lower) than initially expected values of  a
it . 

Substituting (11) in (3) and taking the natural logarithm we obtain that 
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Combining with (4) yields 
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Condition (6) for a patent i  applied for at date t  to be still alive at age a  then becomes 
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with Qa
it

1  already defined in (6) except that ga
it1  has to be substituted to  a

t . 

The next step in specifying the econometric duration model consists in obtaining the 

probability distribution of the left hand side of (14). At this stage, the assumption of a 

multiplicative interaction between random events affecting the unobserved component of 

depreciation is useful. Indeed, for a sufficiently high number N  of i.i.d. random events 

between two successive renewal dates, the central limit theorem applies and (14) may be 

rewritten as 

 Qa
it

a
ii

1ln~ln   (15) 

 

Where ~ a
i  is a Gaussian random term with a negative expected value a  and variance 

a2 . Parameters 0  and 0  correspond respectively to the opposite of the expected 

value and to the standard deviation of the unobserved component   


N

n

s
in

1

~1ln   of the decay 

factor at age a . In order to proceed to the computation of the hazard rate of the discrete time 

model of patent duration as in (7), it is necessary to determine the cumulative probability 

distribution   of the sum of the two random variables that appear in the left hand side of 

(15). An immediate solution is to postulate a normal distribution for ln  (with expected value 

0  and variance  2 ) so that the probability distribution of the sum of the two terms in the left 
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hand side of (15) is a normal probability distribution with expected value a  and variance 

a 22  . 

 
 

III. DATA COLLECTION AND VARIABLES 
 
 
The dataset used in this paper consists of all EPO patents designating France and applied for 

in 1989. This choice relies on the fact that European patents designating France have been 

regularly studied in the economic literature (Schankerman and Pakes, 1986) thus allowing 

comparisons and has for advantage that contrary to some countries, renewal fees have been 

used for a long time and since the first age of the patent in France. Our comprehensive dataset 

of 26 904 patents was courteously provided by Qwestel®. Table 1 details the frequencies of 

withdrawals for the eight main technological fields in the International Patent Classification 

(IPC)5. The official code and description of each technological field are reported in Table 1. 

The profiles of withdrawal frequencies are similar across technological fields, except in the 

case of technological field E (“fixed constructions”) for which more patents were withdrawn 

earlier. Table 1 also displays the average renewal fees to be paid at the different ages of a 

patent. 

 

Insert Table 1 

 

Existing automated scorings that aim at gauging the overall quality of patents try to 

provide a yardstick for measuring and comparing patent value. The premise of these rating 

                                                 
5 For a comprehensive description of IPC, consult the website of the World International Patent Office at 

http://www.wipo.int/classifications/en/. 
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models is that combining a number of predictor variables (also called metrics) revealed by the 

patent document itself helps identifying patents that are statistically either more likely or less 

likely to produce economic returns. A brief description of the predictor factors used in our 

model is provided below. Two kinds of predictor variables have been distinguished and used 

to measure patent quality. On the one hand, static variables that have an impact on the initial 

rent but not on the dynamics of the rent. On the other hand, dynamic variables, i.e. variables 

that conversely have an impact on the dynamics of the rent and which, as such, play a crucial 

role when it comes to reassess the patent over time. 

 

Static Variables (or time-invariant variables) :  

- Size : number of patents from the same applicant recorded in the database. The underlying 

idea is to capture the size or the innovative intensity of applicants. 

- nbIPC: number of IPC subclasses (at the 4-digit IPC level) as declared in the patent 

application. This variable measures whether the patent is broad or narrow. If numerous 

subclasses are applied for by the applicant, one may expect diffusion of the innovation in 

different domains. 

- speIPC: percent of declared IPC subclasses that belong to the main IPC class of the 

patent. This variable measures whether what is declared as the main IPC class of the 

patent (the one that concentrates the highest number of subclasses declared by the patent) 

largely dominates other IPC classes or not. This variable can be interpreted as a measure 

of patent specialisation. 

- entropyIPC: entropy of declared IPC classes (measured on the basis of the eight main IPC 

classes). This variable completes speIPC with the advantage that it takes into account the 

fact that declared IPC classes may concentrate on some classes but with the disadvantage 

that only the eight main IPC codes are used. 
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- Claims: number of independent and dependent claims in logarithm. The underlying idea is 

that the more claims a patent has, the broader the likely scope of protection and the better 

the likelihood of surviving a validity trial. 

- Keywords: number of words in some key sentences in logarithm (information on this 

specific metric was provided by Qwestel®). 

- Ncte : number of backwards citations. For EP publications, this field also contains 

opposition citations (reasons for opposition) and observer citations (i.e. examiner 

references). This variable describes the scope of prior art and signals valuable 

technological knowledge (De Carolis, 2003). 

- Ncta: number of backwards citations by the applicant. 

- Npr: number of recorded priority claims, in logarithm. Intuitively, more priority claims 

probably means a patent is entitled to an earlier filing date, which can be beneficial in 

fending off art-based validity attacks. It can also indicate a greater level of overall interest 

and investment by the patentee. 

- Npn: family size, in logarithm. Lanjouw and al. (2004) found that family size is highly 

correlated with other indicators of patent value. 

- Ncc: number of countries in the patent family, in logarithm. 

- Pct: dummy variable taking value one if and only if the patent is applied for via the PCT 

procedure. 

- Ndsep: number of European countries in which the patent is taken out, in logarithm. The 

geographical scope of the patents reveals the expectations of the patent applicant 

concerning patent value (Reitzig, 2004). 
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- Univ: dummy variable related to patent ownership and taking value one if and only if the 

applicant is an academic institution. This variable is not available for technological fields 

D (“Textiles; Paper”), E (“Fixed constructions”) and F (“Mechanical engineering; 

Lightening; Heating; Weapons; Blasting”) because too few patents were coded one with 

the result that the dummy could capture idiosyncratic shocks rather than the effect of 

ownership. 

- Firm&Univ: dummy variable taking value one if and only if the applicant is a firm 

associated to an academic institution. Again, this variable is not available for 

technological fields D, E and F. 

 

Insert Table 2 

 

Some descriptive statistics on static variables are displayed in Table 2. No major 

differences appear between technological fields as regards these variables. However, 

similarities as regards the mean of static variables may hide different distributions of these 

variables. As it is not expected that parameter estimates for renewal models are systematically 

similar across technological fields, the model described in the previous section is estimated 

separately for each technological field. 

 

Dynamic Variables (or time-dependent variables) :  

- Age: age of the patent. This variable captures the fact that ceteris paribus the depreciation 

rate of the rent may be greater in the early ages. 

- Gdp: GDP growth rate of the current year. This variable captures the general health of the 

economy. 



23 
 

- Fcit: forward citations rate, i.e. number of new citations received at the different ages of 

the patent. Some studies6 have suggested that the number of citations or references made 

to an issued patent by other subsequently issued patents (forward citations) may have a 

positive correlation with economic value. Intuitively, a high forward citation rate could 

indicate a high level of commercial interest or activity in the patented technology. 

 

Insert Figure 2 

 

Figure 2 shows the average profile of forward citations received at each age as a function 

of patent age for the different technological fields. Forward citations are mainly received 

between age four and fifteen in all technological fields. The maximum average number of 

forward citations is received early, at around age four or five and generally, it slightly 

decreases up to age fifteen. A more drastic drop is then observed. Technological fields A 

(“Human necessities”), C (“Chemistry; Metallurgy”) and D (“Textiles; Paper”) on the one 

hand, and B (“performing operations; transporting”), F (“Mechanical engineering; 

Lightening; Heating; Weapons; Blasting”) and E (“Fixed constructions”) on the other hand 

respectively exhibit the highest and the lowest average number of citations. The average 

number of new citations for technological field A is about twice that of field E at most ages. 

 
 

4. RESULTS 
 
 
4.1 ESTIMATION RESULTS 
 
Maximisation of the likelihood function (9) with the stochastic specification (15) of the 

probability of an optimal withdrawal at a given age conditional on renewal up to that age has 

                                                 
6 Harhoff, D. & al. (1997). 
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been implemented to the dataset described in the previous section. The model has been 

estimated separately for each IPC technological field. 

 

Insert Figure 3 

 

Figure 3 provides some general insights into how the model fits the data. For this purpose, 

it follows a common practice that consists in comparing observed and simulated cumulated 

frequencies of withdrawals for a same cohort of patents at different ages. Three different 

methods are used to generate simulated frequencies of withdrawals.  

The first method consists in generating one thousand random draws per patent of the initial 

value of the rent and its time path. Simulations for the time path of the rent are based on 

additional assumptions as regards dynamic variables which exact values are treated as 

unknown at the beginning of the patent life. The annual growth rate of the economy is 

assumed to follow a Gaussian probability distribution and it is supposed that the stochastic 

process of forward citations obeys a Poisson process7. The withdrawal age is computed for 

each random draw and the optimal withdrawal age finally forecasted for a patent represents 

the average of these different ages. The use of numerous random draws per patent minimises 

the role played by rare events in differentiating the dynamics of the rents. As a result, the first 

method may be thought of as a method that tends to neutralise unexplained important factors 

affecting the decision to renew or not a patent. On the one hand, this method makes sense to 

forecast patent duration at the beginning of their life. On the other hand, it induces very little 

                                                 
7 More precisely, forward citations received at age a  by a patent are modelled as the outcome of a Poisson count 

data model which parameter is a function of the cumulated forward citations received by the patent up to age 

1a . Such a Poisson model has been estimated age by age. The fact of conditioning on the cumulative 

citations received turns out to have a statistically highly significant impact.. Detailed estimation results are 

available from the authors upon request. 
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variations in the forecasted optimal age of withdrawal so that, as shown by Figure 3, the 

frequencies of withdrawal for the cohort are much more concentrated than observed 

frequencies, whatever the technological field considered.  

The second and third methods attempt to provide further evidence of this result. The 

second method is similar to the first one with the noticeable exception that only one initial 

value and one time path of the rent are generated for each patent. Therefore, the role of rare 

events is emphasised, some patents benefiting from important unexplained positive shocks 

while the others suffer from important negative unexplained shocks. The resulting cumulated 

frequency of withdrawal for the cohort moves closer to the one that is observed compared to 

the first method. This result argues in favour of the role of unexplained important shocks. 

Nevertheless, simulated frequencies of withdrawal remain much more concentrated than the 

observed ones.  

The third method thus goes one step further by replacing the series of simulated forward 

citations and simulated economic growth rates by the observed ones. As a consequence, the 

simulated cumulated frequency of withdrawal for the cohort overlaps almost perfectly with 

the one observed whatever the technological field considered. This third method thus outlines 

the importance of correctly forecasting the time path of dynamic variables which requires a 

more complex modelling than what was postulated in the first two methods. 

 

Insert Figure 4 

 

In order to give a general idea of the estimated initial value and dynamics of the rent, 

Figure 4 shows the mean and median time paths of the rent that are obtained with the third 

method already used to generate Figure 38. For each technological field, these time paths are 

compared to the average profile of renewal fees on the period covered by the dataset. In order 

                                                 
8 Broadly speaking, results obtained with the first and second methods do not drastically differ. 
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to facilitate the comparison between initially high rents and low renewal fees, both are 

expressed in natural logarithm. A first common feature of all technological fields is that the 

mean time path always exceeds the median time path, thus suggesting an asymmetry in the 

distribution of rents with some very high values whatever the age considered. The absolute 

gap between the natural logarithm of the mean and median time paths is approximately 

constant over all ages. Consequently, the ratio of the mean to the median time path is also 

constant, indicating that the degree of asymmetry does not change drastically as patents age. 

A second common feature is that the mean time path of the rent is never below the annual fees 

thus justifying maintaining the patent in force up to the statutory life limit. By contrast, the 

median time path falls below the renewal fee at around age thirteen for all technological 

fields.  

Figure 4 also highlights some differences between technological fields. Technological field 

D (“Textiles and Paper”) appears to be the most atypical one with a high initial mean but 

median values of the rent. A higher depreciation rate of the rents largely counterbalances the 

higher initial values of the rents so that, for instance, the median time path does not pass 

below annual fees at a later age compared to what is observed for other technological fields. 

The high gap between mean and median time paths indicates that the asymmetry between 

patents with the highest values and those (the majority) with middle or low values is 

important. To a lesser extent, technological field H (“Electricity”) exhibits a similar profile in 

terms of the dynamics of the rents. This atypical profile suggests that patents protect 

strategically important and independent inventions but that the pace of innovation is faster in 

these two technological fields compared to other technological fields. The profile of the 

dynamics of the rents for technological fields E (“Fixed constructions”) F (“Mechanical 

engineering; Lighting; Heating; Weapons; Blasting”) and B (“Performing operations; 

Transporting”) is just opposite to the profile of technological fields D and F. Initial values of 
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the rents are low and not highly different (as indicated by the low gap between the mean and 

median) but are counterbalanced by a slower depreciation rate. This is typical of technological 

fields where incremental and highly complementary innovations dominate. The other 

technological fields have intermediate profiles in terms of the dynamics of rents.  

 

Insert Table 3 

 

Table 3 reports indicators related to the global quality of estimates. The percentage of total 

variance of the natural logarithm of the initial rent explained by the model is used to assess 

whether patent heterogeneity in terms of the initial rent is correctly captured by the static 

variables of the model. The log linearity of the expression of the initial rent makes its 

computation easy. Similarly, the log linearity of expression (13) facilitates the computation of 

the percentage of total variance of the natural logarithm of depreciation up to a given age that 

is explained by the dynamic variables of the model. Though relatively standard when dealing 

with micro level data, these two percentages are clearly too low to enable a reliable 

forecasting of patent duration. This is confirmed by the comparison between the average 

probability of withdrawal at age ten for patents effectively withdrawn at this age and for 

patents renewed at this age. Patents still alive at age ten only have been used to compute the 

two average probabilities. The focus on the midterm of the maximum patent duration offers 

an interesting compromise between the necessity to take into account the realisations of the 

dynamic variables of the model on a sufficiently long period and the requirement of a 

sufficiently large subset of patents still alive for results to be statistically reliable. The 

difference between the two average probabilities has the expected sign but is very low. More 

importantly, the probability of withdrawal for patents effectively withdrawn never exceeds 0.5 

so that a prediction of withdrawals on the basis of this probability can hardly be performed. 

This is not in contradiction with the almost perfect overlap of the observed cumulated 
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frequencies of withdrawal and the simulated cumulated frequencies obtained with the third 

simulation method in Figure 3. It just reveals that, due to the role of unobserved 

heterogeneity, the profile of withdrawals at the level of the cohort is correctly predicted but 

withdrawals at the patent level are not.  

This result is important because it casts some doubts about the possibility to implement a 

reliable patent scoring with some mitigation depending on the technological field considered. 

Technological fields A (“Human necessities”) and H (“Electricity”) for instance are the two 

technological fields for which the initial rent is the less correctly explained by the model but, 

by contrast, the dynamics of the rent is better explained than for all the other technological 

fields except technological field D (“Textiles; Paper”). A patent scoring at a too early age 

would thus probably be affected by important errors but results could be improved as time 

passes and that sufficient information is revealed about the realisation of dynamic variables 

that could then allow discriminating among patents. At the opposite, the best explanation for 

the initial rent is for technological field E (“Fixed constructions”) but at the expense of the 

dynamics of the rent which is the worst correctly explained. This leads us to conclude that 

there is little to be expected from improving patent scoring by using patent age and new 

information. The technological fields exhibiting the best compromise between a correct 

explanation of the initial rent, on the one hand and a correct explanation of its dynamics, on 

the other hand are technological fields B (“Performing operations; Transporting”) and G 

(“Physics”). More details about the impact of static variables and dynamic variables on 

respectively the initial rent and its dynamics are provided in the two following tables. 

 

Insert Table 4 

 

Table 4 reports coefficients of static variables influencing the expected natural logarithm of 

the initial rent. When focusing on coefficients statistically significant at a 10% confidence 
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level, it appears that each static variable generally impacts the initial rent in the same 

direction, whatever the technological field. The two exceptions are variables Size and speIPC. 

Among the four technological fields for which Size has a significant impact on the initial rent, 

two exhibit a positive impact (B (“Performing operations; Transporting”) and G (“Physics”)) 

and the two others (C (“Chemistry; Metallurgy”) and D (“Textile; Paper”)) are characterised 

by a negative impact. Thus, no general conclusions can be drawn as regards the innovative 

capacity of applicants on the value of their patents. This impact varies from one technological 

field to the other. The variable speIPC has a positive impact for technological fields A 

(“Human necessities”), G (“Physics”) and H (“Electricity”) and a negative impact for 

technological field D (“Textiles; Paper”). The degree of specificity versus generality (as 

measured by the percentage of declared IPC subclasses that belong to the class of interest) is 

neutral for all other technological fields. The static variable that influences the highest number 

of technological fields in a concordant positive direction, except technological field D 

(“Textiles; Paper”), is the number of words in key sentences (keywords). It is followed by the 

number of claims (Claims). Other variables having a concordant and significant positive 

impact, although for a lower number of technological fields, are the number of IPC classes 

targeted by the patent (nbIPC), the number of backward citations made by the examiner 

(Ncte), the family size (Npn), the fact that the patent is applied for via the PCT procedure 

(Pct) and the number of European countries targeted by the patent (Ndsep). The other static 

variables have no significant influence on the initial rent.  

Another way to read estimation results reported in Table 4 consists in looking at those 

technological fields for which the number of significant metrics is the highest. Technological 

field C (“Chemistry; Metallurgy”) clearly emerges as the technological field with the highest 

number of significant coefficients followed by technological fields A (“Human necessities”), 

B (“Performing operations; Transporting”), G (“Physics”) and H (“Electricity”). Note that 
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these technological fields are not necessarily those with the highest percentage of total 

variance in the initial rent explained by the model. 

 

Insert Table 5 

 

Estimated values of coefficients related to observed variables that affect the dynamics of 

the rent are displayed in the upper part of Table 5. A striking result is that most of these 

coefficients are highly significant and modify the depreciation rates of the rent in the same 

way whatever the technological field considered. A positive sign of the coefficient associated 

to a dynamic variable means that the depreciation rate decreases with the variable (see 

expression (10)). Accordingly, the depreciation rate is lower ceteris paribus in the initial 

period of a patent life than when it is close to its statutory life limit (variable Age) for 

technological field B (“Performing operations; Transporting”) and F (“Mechanical 

engineering; Lighting; Heating; Weapons; blasting”) .  

Similarly, new forward citations (Fcit) received by a patent decrease its depreciation rate at 

the date these citations are received and thus yield higher values of the rent at all subsequent 

dates for all technological fields except technological field G (“Physics”). Finally, the 

depreciation rates of patents are systematically and negatively correlated to the GDP growth 

rate (variable Gdp). Indeed, the GDP growth rate of the current year always has a positive 

coefficient in Table 5.  

The lower part of Table 5 helps understanding the net impact of dynamic variables on the 

depreciation rate of the rent. Average values of the estimated deterministic component of 

annual depreciation rates at age one and ten are first displayed. The fact that most patents are 

still alive at age ten and that, at the same time, a sufficient number of forward citations have 

been received at this age to generate heterogeneity in the evolution of the rents justifies the 
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focus on this age. The comparison between age one and age ten clearly shows that, in absolute 

terms, the deterministic component of annual depreciation rates increases. Thus, the 

accumulation of forward citations (variable Fcit) and economic growth (variable Gdp) do not 

counterbalance a natural tendency of depreciation rates to accelerate (variable Age). The 

average sensitivity to changes in dynamic variables at age ten is quite similar from one 

technological field to another one and for an additional citation on the one hand or a one 

percent more economic growth on the other hand. The estimated average drop for an 

additional citation ranges between -0.08 for technological field D (“Textiles; Paper”) and -

0.14 for technological field H (“Electricity”). These figures mean that if the depreciation rate 

was for instance 40% before the new citation is received, then it falls respectively at 32% or 

26% after the new citation is received. As a result, patents receiving many forward citations 

may have a much lower depreciation rate than other patents. Technological fields that are the 

most sensitive to a one percent GDP increase are not systematically the same than those that 

are the most sensitive to the receipt of a new forward citation. Indeed, the estimated average 

drop of the depreciation rate associated to an additional point of economic growth ranges 

from -0.08 for technological field F (“Mechanical engineering; Lighting; Heating; Weapons; 

Blasting”) up to -0.17 for technological field H (“Electricity”). 

Whether unobserved heterogeneity has a significant impact on the dynamics of the rents 

cannot be evaluated on the basis of t-statistics for two reasons. The first reason is that the 

significance of the two associated coefficients cannot be tested separately. The second reason 

is that coefficients reported in Table 5 are not directly the expected value and standard 

deviation of random shocks but their natural logarithm9. Consequently, the role of unobserved 

heterogeneity is rather assessed on the basis of a log-likelihood ratio. This is why Table 3 

                                                 
9 Instead of being specified as 0  and 0  the expected value and standard deviation are specified as 

 exp  and  exp  to make sure that they will have positive values. 
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reports the log-likelihood of the model with its dynamics restricted to observed heterogeneity 

and the chi square statistic to implement the test10. Unobserved heterogeneity plays a 

significant role in all technological fields except technological field D (“Textiles; Paper”) and 

eventually technological field E (“Fixed constructions”) if a low risk of error is imposed.  

Note that even if the unobserved component of the dynamic is not statistically significant, 

the existence of a significant impact for one or several dynamic variables is sufficient to 

generate a patent option value. In this respect, the numerous and highly significant effects 

identified in Table 5, both for the observed and unobserved components of the dynamics, 

strongly advocate in favour of the existence of a patent option value whatever the 

technological field considered. Option value follows on from the important role played by the 

revealing of additional information as patents age. It thus justify the use of a renewal 

mechanism that provides greater flexibility in the withdrawal decision compared to a 

mechanism based on a upfront fee modulated in accordance to a predetermined withdrawal 

date. Meanwhile, the existence of an option value undermines the accuracy of any scoring 

system, at least at the early ages of a patent, due to the uncertainty that intrinsically affects 

future realisations of the rents. 

 

4.2 SCORING RESULTS 
 
As stressed by Barney (2002), although patent metrics with a significant coefficient in Table 4 

and Table 5 are interesting and informative, individually they provide only limited guidance 

in determining overall patent quality. What we need to obtain is a single rating to be used to 

directly forecast or estimate the value of each patent. In the methodology used by Ocean 

Tomo®, patents are positioned relative to each other. Raw scores are first produced on the 
                                                 
10 More precisely coefficients   and   have been restricted to -100 so that  exp  and  exp  are almost 

equal to zero. 



33 
 

basis of the estimated probability that each patent is maintained for the full statutory term. For 

convenience, raw scores are adjusted to provide a normalised mean or median score of 100. 

Thus, a score of 100 on the IPQ scale generally corresponds to an expected normal quality 

(average expected duration) while an IPQ score higher or lower than 100 indicates an 

expected above-average or below-average patent quality respectively. Of course, as with IQ, 

the IPQ score provides only part of the equation for determining patent quality/value. Thus, a 

high IPQ does not guarantee high quality/value and vice versa. It only establishes a statistical 

correlation based on the body of available data.  

In our paper, we follow the same line of reasoning than Ocean Tomo® by positioning 

patents against each other. For this purpose, we compute the ratio of the estimated value of 

each patent to the median value times 100. However our methodology departs from that 

proposed by Ocean Tomo® as regards the basis for computing IPQ. Indeed, in accordance 

with the theoretical discussion on the link between patent renewals and patent value presented 

in section II, we compute our IPQ on the basis of an estimated monetary value for each patent 

rather than on the basis of maintenance rates. Monetary values are estimated by using one 

thousand random draws, conditional on observed static variables, of the initial rent and one 

thousand random draws of successive annual depreciation rates of the rent for each patent. 

The method used to generate these random draws is the same than the first method used to 

generate the cumulated frequencies of withdrawal in Figure 3. In order to stress the role of 

additional information acquired as patents age, IPQs have been computed at age one and ten. 

When computed at age one, IPQs are thus based on random simulations of cumulated forward 

citations and random simulations of GDP growth. Conversely, when computed at age ten, 

IPQs account for past realizations of dynamic variables that affect the probability distribution 

of the rent conditional on renewal up to age ten. Whatever the age considered, the use of 

numerous simulations for each patent enables us to generate an empirical distribution of IPQ 
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for each patent and thus to determine the probability that a specific draw of the IPQ sharply 

departs from the expected IPQ. For each random draw, the optimal withdrawal age defined in 

Proposition 1 is determined and, then, the discounted sum of the rent net of renewal fees from 

the date of application to the optimal withdrawal date is computed11. The value affected to 

each patent is the average value obtained over the one thousand random draws. 

 

Insert Figure 5 

 

Figure 5 shows the empirical distribution of IPQs over all patents in a same technological 

field at age one and ten. Note that for graphical convenience, the distributions have been 

truncated at 800. Thus, the high frequencies of IPQs observed on the extreme right of each 

distribution only reflect that there is still an important mass of patents on the right tail of the 

distribution. The general shape of distribution does not sharply differ from one technological 

field to another and from year one to year ten. The distributions are systematically highly 

asymmetric with a mode associated to low values of the IPQ and a tail that spreads far on the 

right, up to more than 1000. This is in line with a well established result in the empirical 

literature. More interestingly, for most technological fields, the asymmetric distribution of 

IPQs is more pronounced at age ten than at age one. Indeed, the mode for low values of IPQs 

and for the majority of patents with an IPQs above 800 increases whereas the proportion of 

patents with intermediate IPQs slightly decreases. As a result, patents are more discriminated 

at age ten than at age one, a result that follows on from the additional information available to 

compute IPQs. Technological field G (“Physics”) and to a less extent technological field D 

(“Textiles; Paper”) are two exceptions. Technological field G (“Physics”) is more specifically 

                                                 
11 The discount rate is set at 3%. Clearly, this choice is arbitrary and justifies working with a normalised score 

like IPQ rather than on estimated monetary values. 
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characterized by a decrease of patents with an IPQs higher than 800 at age ten than at age one, 

a characteristic which may be related to the sharp increase of the deterministic component of 

the depreciation rate reported in Table 5. 

 

Insert Figure 6 

 

Figure 6 is intended to assess whether IPQs provide a reliable scoring or not. For this 

purpose, empirical distributions of the monetary values associated to the one thousand random 

draws have been generated for the two patents with respectively the lowest and the highest 

IPQ in each technological field. Monetary values are normalized by the median value of 

patents in the technological field, times one hundred, to be consistent with the computation of 

an IPQ. Comparisons between the two distributions have been made for age one and age ten. 

Nevertheless, because the results obtained for age ten systematically correspond to 100% of 

IPQs at the extreme left for the patent with the lowest average IPQ and 100% at the extreme 

right for the patent with the highest average IPQ, they are not displayed in Figure 6. This 

polarization of IPQs reveals an unambiguous ranking of these two patents and constitutes a 

positive signal as regards the reliability of an IPQ scoring when applied to patents at mid 

term. Though less pronounced, this is also the case at age one for technological fields B 

(“Performing operations; Transporting”), E (“Fixed constructions”), F (“Mechanical 

engineering; Lighting; Heating; Weapons; Blasting”) and G (“Physics”). Conversely, for 

technological fields A (“Human necessities”), C (“Chemistry; Metallurgy”), D (“Textiles; 

Paper”) and H (“Electricity”), the patent with the highest average IPQ dominates the patent 

with the lowest IPQ only because of some abnormal IPQ draws that pull the average IPQ 

upwards. An IPQ scoring is thus not reliable at early ages for these technological fields. 
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V. CONCLUSION 

 
A hallmark of a properly functioning marketplace for IPR is that there is a clear way to 

determine the fair price of the assets being bought and sold. It goes without saying that the 

creation of a rating scheme and of a robust and efficient financial market for intangibles 

should add considerable value. But this is challenging in itself and the task has been made 

even more difficult by the recent turmoil in the financial market and accusations that credit 

rating agencies (CRAs) are plagued by conflicts of interest that might inhibit them from 

providing accurate and honest ratings. Patent rating agencies are not exempt from such 

criticisms. This explains in part why European authorities and some large European 

companies are considering transparency standards for patent rating agencies and the 

obligation to publish their valuation methods. It is indeed important for market operators and 

investors to understand how a specific rating was determined and to have assessments of the 

uncertainty surrounding scoring results.  

Our paper was aimed at studying the feasibility of such a rating scheme. We show that 

statistically derived patent performance benchmarks can provide objective measures of 

comparative patent quality and/or value but at the cost of potentially important uncertainties. 

Indeed, it is likely that some low or high scores could result from unexplained and random 

factors beyond the control of any rating agency. Moreover, it is worth keeping in mind that 

the existence of an option value undermines the accuracy of any scoring system, at least at the 

early ages of a patent, due to the uncertainty that intrinsically affects future realisations of the 

rents. Therefore, our results cast some doubt on the possibility to develop a reliable rating 

system based only on patent metrics. 
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TABLE 1. 
STATISTICS ON PATENT RENEWALS 

 

 A B C D E F G H  

Age 
Human 

necessities 

Performing 
operations; 

Transporting 

Chemistry; 
Metallurgy 

Textiles; 
Paper 

Fixed 
constructions 

Mechanical 
engineering; 

Lighting; 
Heating; 

Weapons; 
Blasting 

Physics Electricity 

Average 
renewal 

fee on the 
period 
1989 to 

2009 
In Euros 

 Sample size  

 3641 5374 6235 680 638 2204 4595 3537  

 Observed frequencies of withdrawal  

1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 49.55 

2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 26.81 

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 29.47 

4 0.27% 0.19% 0.08% 0.29% 0.31% 0.23% 0.09% 0.08% 32.48 

5 1.43% 1.30% 0.79% 2.21% 2.19% 2.00% 0.37% 0.59% 41.09 

6 3.63% 5.08% 3.50% 3.24% 8.15% 6.03% 2.72% 1.41% 82.46 

7 6.73% 7.15% 5.92% 4.12% 10.34% 7.67% 4.20% 4.44% 98.73 

8 8.71% 8.49% 7.89% 8.09% 10.97% 7.17% 8.55% 7.72% 117.84 

9 7.33% 7.13% 7.41% 8.24% 8.46% 6.94% 8.23% 8.37% 140.24 

10 6.84% 6.74% 7.25% 7.50% 7.05% 6.58% 5.68% 6.64% 161.91 

11 5.66% 6.59% 6.56% 5.29% 6.43% 6.90% 6.99% 6.87% 220.61 

12 4.70% 5.38% 5.98% 6.91% 5.02% 5.76% 5.18% 5.80% 245.72 

13 4.39% 5.10% 4.67% 4.85% 5.33% 6.08% 4.44% 4.89% 274.07 

14 5.16% 5.95% 6.53% 5.74% 6.11% 5.85% 6.25% 6.93% 300.76 

15 5.22% 5.32% 6.85% 8.09% 4.86% 5.76% 6.12% 7.35% 329.11 

16 4.92% 4.69% 4.78% 4.26% 3.92% 5.13% 5.20% 5.63% 434.68 

17 4.28% 3.67% 3.80% 3.82% 2.82% 4.17% 5.16% 4.66% 464.70 

18 4.15% 4.24% 3.85% 5.00% 2.51% 4.17% 4.48% 4.07% 495.57 

19 3.10% 4.06% 2.87% 4.85% 2.82% 2.99% 5.05% 4.18% 527.05 

20 6.65% 6.29% 5.42% 6.62% 4.08% 4.76% 7.33% 6.93% 563.78 

21 16.84% 12.65% 15.86% 10.88% 8.62% 11.80% 13.97% 13.43%  

 
 



38 
 

 
 

TABLE 2. 
DESCRIPTIVE STATISTICS FOR STATIC VARIABLES 

 

 A B C D E F G H 

 Human 
necessities 

Performing 
operations; 

Transporting 

Chemistry; 
Metallurgy 

Textiles; 
Paper 

Fixed 
constructions 

Mechanical 
engineering; 

Lighting; 
Heating; 

Weapons; 
Blasting 

Physics Electricity 

Size 31.25 
(68.11) 

46.78 
(86.56) 

78.39 
(101.98) 

48.95 
(80.56) 

11.47 
(37.20) 

34.39 
(67.27) 

105.96 
(127.47) 

118.07 
(133.48) 

nbIPC 2,81 
(1,50) 

2,83 
(1,71) 

3,67 
(1,91) 

2,86 
(1,71) 

2,54 
(1,48) 

2,70 
(1,40) 

2,54 
(1,51) 

2,49 
(1,40) 

speIPC 59,55 
(32,42) 

52,39 
(33,04) 

58,12 
(25,32) 

42,40 
(34,36) 

60,44 
(35,14) 

50,33 
(32,40) 

48,31 
(26,46) 

48,17 
(26,60) 

entropyIPC 0,46 
(0,38) 

0,47 
(0,41) 

0,51 
(0,37) 

0,56 
(0,39) 

0,48 
(0,43) 

0,46 
(0,42) 

0,43 
(0,40) 

0,39 
(0,41) 

Claims 16,51 
(17,59) 

12,70 
(9,40) 

17,03 
(17,39) 

12,61 
(9,12) 

11,87 
(8,05) 

11,54 
(8,24) 

14,37 
(12,44) 

13,20 
(11,51) 

Keywords 463,72 
(307,70) 

512,47 
(260,48) 

440,05 
(264,19) 

462,42 
(225,04) 

494,82 
(260,08) 

519,71 
(266,99) 

533,84 
(268,35) 

527,07 
(267,01) 

Ncte 3,46 
(2,54) 

3,80 
(2,47) 

3,19 
(2,29) 

3,49 
(2,14) 

3,94 
(2,85) 

3,97 
(2,66) 

3,41 
(2,74) 

3,12 
(2,21) 

Ncta 0,03 
(0,45) 

0,02 
(0,36) 

0,05 
(1,31) 

0,01 
(0,34) 

0,02 
(0,36) 

0,00 
(0,12) 

0,05 
(0,77) 

0,01 
(0,15) 

Npr 2,27 
(1,23) 

2,11 
(1,23) 

2,18 
(1,27) 

1,94 
(1,10) 

2,25 
(1,18) 

2,04 
(1,15) 

1,94 
(1,36) 

1,81 
(1,13) 

Npn 9,31 
(5,26) 

7,27 
(4,06) 

8,43 
(4,79) 

7,73 
(3,80) 

7,57 
(3,97) 

6,86 
(3,34) 

6,29 
(3,15) 

6,20 
(2,82) 

Ncc 8,61 
(4,70) 

6,59 
(3,36) 

7,73 
(4,26) 

7,15 
(3,37) 

7,00 
(3,74) 

6,23 
(2,88) 

5,71 
(2,59) 

5,72 
(2,52) 

Pct 0,22 
(0,41) 

0,18 
(0,38) 

0,16 
(0,37) 

0,13 
(0,34) 

0,22 
(0,42) 

0,21 
(0,41) 

0,18 
(0,38) 

0,16 
(0,36) 

Ndsep 9,69 
(3,38) 

7,42 
(3,51) 

8,50 
(3,50) 

7,79 
(3,20) 

8,67 
(3,40) 

6,73 
(3,34) 

6,29 
(3,39) 

5,99 
(3,23) 

Univ 0,02 
(0,14) 

0,001 
(0,05) 

0,02 
(0,13) 

- - - 0,01 
(0,08) 

0,001 
(0,06) 

Firm&Univ 0,01 
(0,08) 

0,001 
(0,03) 

0,01 
(0,08) 

- - - 0,001 
(0,04) 

0,001 
(0,04) 
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TABLE 3. 
GLOBAL INDICATORS OF ESTIMATION RESULTS 

 

A B C D E F G H 

Human 
necessities 

Performing 
operations; 

Transporting 

Chemistry; 
Metallurgy 

Textiles; 
Paper 

Fixed 
constructions 

Mechanical 
engineering; 

Lighting; 
Heating; 

Weapons; 
Blasting 

Physics Electricity 

Log likelihood of the complete model 

-9.908*103 -1.484*104 -1.682*104 -1.889*103 -1.739*103 -6.109*103 -1.252*104 -9.586*103 

Log likelihood of the model with dynamics restricted to observed heterogeneity 

-1.829*104 -3.802*104 -3.024*104 -2.434*103 -4.948*103 -1.790*104 -3.207*104 -1.787*104 

Chi square statistic for the log-likelihood ratio test of restriction to a non stochastic dynamics 

16.76 46.36 26.84 1.09 6.42 23.58 39.10 16.56 

% of total variance of the natural logarithm of the initial rent explained by the model 

8.58 16.81 13.90 12.60 28.84 12.95 16.4579 9.9758 

% of total variance of the natural logarithm of depreciation up to age 10 explained by the model 

28.11 14.76 30.59 19.01 10.26 11.79 20.36 29.43 

Average probability of withdrawal at age 10 for patents effectively withdrawn at age 10 

0.0834 0.0929 0.0912 0.0821 0.1199 0.0978 0.0776 0.0821 

Average probability of withdrawal at age 10 for patents renewed at age 10 

0.0812 0.0908 0.0871 0.0798 0.1177 0.0967 0.0757 0.0789 
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TABLE 4. 
ESTIMATION RESULTS FOR THE INITIAL RENT 

 

 A B C D E F G H 

 Human 
necessities 

Performing 
operations; 

Transporting 

Chemistry; 
Metallurgy 

Textiles; 
Paper 

Fixed 
constructions 

Mechanical 
engineering; 

Lighting; 
Heating; 

Weapons; 
Blasting 

Physics Electricity 

Estimated coefficients for static variables 
(t-stats are reported in brackets, grey cells correspond to coefficients statistically significant at a 10% confidence level) 

Intercept 21.2660 
(13.7637) 

14.2947 
(6.7753) 

22.5300 
(30.9868) 

30.7070 
(5.6114) 

8.1877 
(1.9651) 

14.0031 
(3.8652) 

17.7109 
(8.5633) 

23.1772 
(3.3055) 

Standard 
deviation 

4.2664 
(8.1151) 

3.1006 
(18.5660) 

4.1235 
(8.1571) 

7.0814 
(2.4529) 

2.4735 
(10.3058) 

3.0686 
(8.6849) 

3.2839 
(11.8823) 

4.5986 
(6.0801) 

Size 0.2179 
(1.4226) 

0.4719 
(4.2490) 

-0.4197 
(-6.9914) 

-0.7686 
(-1.7202) 

-0.2164 
(-0.5563) 

-0.1139 
(-0.5065) 

0.1845 
(1.7525) 

-0.0660 
(-0.5164) 

nbIPC 0.2605 
(0.1063) 

0.3442 
(0.9659) 

0.5414 
(1.8900) 

3.1060 
(2.3040) 

-0.3009 
(-0.3126) 

0.5461 
(0.8679) 

0.3489 
(0.8708) 

0.5216 
(0.8990) 

speIPC 0.0239 
(2.7853) 

0.0103 
(1.3752) 

-0.0056 
(-0.9513) 

-0.0625 
(-2.3218) 

-0.0074 
(-0.4109) 

-0.0016 
(-0.1302) 

0.0185 
(2.4096) 

0.0250 
(2.5956) 

entropyIPC -0.2679 
(-0.3561) 

0.0281 
(0.0521) 

-0.4085 
(-0.9643) 

-1.7845 
(-0.9373) 

0.4279 
(0.2940) 

0.1045 
(0.1208) 

-0.4487 
(-0.7799) 

-0.4349 
(-0.5668) 

Claims 0.3044 
(1.1430) 

0.5439 
(2.3710) 

0.5151 
(2.8818) 

-0.8908 
(-1.1747) 

0.3182 
(0.5766) 

0.2707 
(0.6832) 

1.0703 
(4.6271) 

0.7117 
(2.5632) 

Keywords 0.4911 
(1.5938) 

1.0035 
(3.4193) 

0.5497 
(2.7247) 

0.7870 
(0.7786) 

1.7319 
(2.6471) 

1.3143 
(2.3976) 

0.8952 
(2.3709) 

1.1054 
(2.6823) 

Ncte 0.0316 
(0.3913) 

0.2846 
(4.2616) 

0.1135 
(1.8363) 

0.0656 
(0.2497) 

0.0684 
(0.4427) 

0.0671 
(0.5526) 

0.2155 
(2.8401) 

0.1445 
(1.4161) 

Ncta 0.1214 
(0.2554) 

0.3864 
(0.6535) 

0.0511 
(0.4731) 

-1.1308 
(-0.9272) 

0.0928 
(0.0727) 

1.2073 
(0.3228) 

0.2384 
(0.7369) 

0.3364 
(0.1573) 

Npr -0.4312 
(-0.8684) 

0.0787 
(0.1890) 

-0.1819 
(-0.5684) 

-0.9561 
(-0.6792) 

-0.1776 
(-0.1837) 

-0.1495 
(-0.1748) 

0.3853 
(0.8092) 

0.2807 
(0.4678) 

Npn 3.2593 
(1.9364) 

1.1399 
(0.8675) 

2.9632 
(2.6307) 

0.5839 
(0.1373) 

1.6112 
(0.5259) 

2.1280 
(0.8283) 

1.8175 
(1.3544) 

3.2886 
(1.7522) 

Ncc -1.8027 
(-1.0729) 

0.1704 
(0.1284) 

-1.4140 
(-1.2610) 

1.9939 
(0.4548) 

-0.1067 
(-0.0373) 

-0.9210 
(-0.3544) 

-1.4599 
(-1.0263) 

-2.2548 
(-1.0153) 

Pct 1.4424 
(2.5790) 

0.4472 
(0.8691) 

1.4454 
(3.3925) 

2.3339 
(1.2277) 

0.9695 
(0.8586) 

0.5031 
(0.5385) 

0.2262 
(0.4019) 

0.0740 
(0.0997) 

Ndsep -0.3966 
(-0.7281) 

-0.1786 
(-0.4673) 

0.0245 
(0.0751) 

0.3424 
(0.2463) 

1.3958 
(1.4766) 

0.5125 
(0.7207) 

-0.0493 
(-0.1190) 

0.0056 
(0.0102) 

Univ 0.3394 
(0.6643) 

-1.3382 
(-0.4696) 

0.4550 
(0.4202) 

- - - -1.1262 
(-0.5638) 

-2.0030 
(-0.2930) 

Firm&Univ 1.4594 
(0.9366) 

0.6355 
(0.1224) 

1.0101 
(0.5851) 

- - - -0.1322 
(-0.0413) 

-0.7455 
(-0.1498) 
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TABLE 5. 
ESTIMATION RESULTS FOR THE DYNAMICS OF THE RENT 

 

 A B C D E F G H 

 Human 
necessities 

Performing 
operations; 

Transporting 

Chemistry; 
Metallurgy 

Textiles; 
Paper 

Fixed 
constructions 

Mechanical 
engineering; 

Lighting; 
Heating; 

Weapons; 
Blasting 

Physics Electricity 

Estimated coefficients for the observed component of the depreciation rate 
(t-stats are reported in brackets, grey cells correspond to coefficients statistically significant at a 10% confidence level) 

Intercept -2.1056 
(-6.1505) 

-1.2277 
(-5.8046) 

-2.2855 
(-8.6828) 

-2.7270 
(-2.3040) 

-1.7116 
(-3.0174) 

-0.7164 
(1.6511) 

-1.5316 
(-1.3642) 

-2.6499 
(-4.176) 

Age -0.0215 
(-0.5419) 

-0.0978 
(-3.3161) 

0.0174 
(0.8223) 

-0.0185 
(-0.1942) 

-0.0495 
(-0.5740) 

-0.1633 
(-2.9322) 

-0.0912 
(-1.3722) 

-0.0243 
(-0.5452) 

Gdp 0.7236 
(6.5277) 

0.6016 
(8.2406) 

0.6136 
(5.8644) 

0.6556 
(6.5017) 

0.6191 
(11.4521) 

0.3951 
(7.5249) 

0.7563 
(2.1886) 

0.7262 
(3.7744) 

Fcit 0.4829 
(3.4291) 

0.5809 
(4.6599) 

0.4999 
(8.5962) 

0.3495 
(2.5960) 

0.5531 
(7.8719) 

0.6134 
(7.3627) 

0.6299 
(1.4277) 

0.6033 
(2.9220) 

Estimated coefficients for the unobserved component of the depreciation rate 
(t-stats are reported in brackets) 

Expected value -0.2768 
(-0.6849) 

-0.3470 
(-1.2870) 

-0.3365 
(-0.9429) 

-0.2834 
(-0.3469) 

-0.3264 
(-0.6579) 

-0.7302 
(-1.0071) 

-0.3290 
(-0.2501) 

-0.2623 
(-0.3806) 

Standard 
deviation 

-0.4233 
(-2.3326) 

-0.2388 
(-2.2897) 

-0.6279 
(-4.8544) 

-0.6763 
(-0.8986) 

-0.3512 
(-0.8057) 

-0.0286 
(-0.1569) 

-0.3398 
(-1.6054) 

-0.4309 
(-2.060) 

Average value of the deterministic component of depreciation rates at age 1 
(standard deviations are reported in brackets) 

 0.2909 
(0.0101) 

0.2346 
(0.0074) 

0.4268 
(0.0169) 

0.5031 
(0.0081) 

0.3059 
(0.0071) 

0.3165 
(0.0110) 

0.1775 
(0.0099) 

0.4119 
(0.0160) 

Average value of the deterministic component of depreciation rates at age 10 
(standard deviations are reported in brackets) 

 0.3960 
(0.0996) 

0.4825 
(0.0928) 

0.4448 
(0.0953) 

0.6182 
(0.0714) 

0.4849 
(0.0738) 

0.6889 
(0.0938) 

0.4017 
(0.0950) 

0.5335 
(0.1094) 

Average impact on the deterministic component of depreciation rates at age 10 
(standard deviations are reported in brackets) 

One forward 
citation more 

-0.1045 
(0.0216) 

-0.1358 
(0.0186) 

-0.1143 
(0.0187) 

-0.0833 
(0.0030) 

-0.1313 
(0.0148) 

-0.1380 
(0.0096) 

-0.1345 
(0.0260) 

-0.1427 
(0.0192) 

1% more of GDP 
growth rate 

-0.1504 
(0.0322) 

-0.1404 
(0.0193) 

-0.1383 
(0.0232) 

-0.1583 
(0.0069) 

-0.1460 
(0.0167) 

-0.0866 
(0.0063) 

-0.1580 
(0.0312) 

-0.1706 
(0.0239) 
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FIGURE 1. A SIMPLE NUMERICAL EXAMPLE 
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FIGURE 2. AVERAGE NUMBER OF RECEIVED FORWARD CITATIONS PER AGE AND 

TECHNOLOGICAL FIELD 
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FIGURE 3. OBSERVED AND PREDICTED CUMULATED FREQUENCIES OF 
WITHDRAWAL 
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FIGURE 4. RENT DYNAMICS (NATURAL LOGARITHM OF THE RENT AND RENEWAL 
FEES AS FUNCTIONS OF AGE) 
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FIGURE 5. EMPIRICAL DISTRIBUTIONS OF IPQS FOR EACH TECHNOLOGICAL 
FIELD 
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FIGURE 6. DISTRIBUTION OF IPQS OVER ONE THOUSAND RANDOM DRAWS FOR 
PATENTS WITH THE LOWEST AND THE HIGHEST ESTIMATED IPQ AT AGE ONE 
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