
Pollution effects on labor supply and growth�

Université de Paris Ouest Nanterre La Défense 
 (bâtiment G)

200, Avenue de la République
92001 NANTERRE CEDEX

Tél et Fax : 33.(0)1.40.97.59.07
Email : nasam.zaroualete@u-paris10.fr

Document de Travail 
Working Paper

2014-34

Stefano Bosi
David Desmarch�elier

Lionel Ragot

EconomiX
h�ttp://economix.fr

UMR 7235



Pollution effects on labor supply and growth∗

Stefano BOSI†

EPEE, University of Evry

David DESMARCHELIER

EQUIPPE, University of Lille 1

Lionel RAGOT

ECONOMIX, University of Paris 10 and CEPII

January 13, 2014

Abstract

Some recent empirical contributions have pointed out a significant neg-
ative impact of pollution on labor supply. These impacts have been largely
ignored in the theoretical literature, which, instead, focused on the case
of pollution effects on consumption demand. In this paper, we study the
short and long-run effects of pollution in a Ramsey model where pollution
and labor supply are nonseparable arguments in households’ preferences.
We determine sufficient conditions for existence and uniqueness of a long-
term equilibrium and we show how large (negative) effects of pollution on
labor supply may promotes macroeconomic volatility (deterministic cycles
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1 Introduction

Recent empirical studies have documented significant impacts of pollution on
labor supply, in its extensive margin, hours worked (Graff Zivin and Neidell
(2010), Carson, Koundouri and Nauges (2011), Hanna and Oliva (2011)), and
also in its intensive margin, labor productivity (Schlenker and Walker (2011),
Graff Zivin and Neidell (2012)). There is nowadays a consensus on the negative
impacts of pollution on labor productivity because of the negative effect on hu-
man capital and, in particular, on health. Evidences on the impacts of pollution
on the hours worked also converge to negative effects. The more recent attempt
to measure these effects and figure them out is Hanna and Oliva (2011). Using
a recent data set for Mexico City, they find that a one percent increase in air
pollution (mainly, SO2 concentration) results in a 0.61 percent decrease in the
worked hours. They consider a partial equilibrium model to capture the driv-
ing forces between pollution and worked hours. Our paper aim at representing
these forces in a (dynamic) general equilibrium model to address the issue of
their macroeconomic incidence in the short and long run.

The literature on the consequences of pollution in the long run seems to
neglect the possible influence of pollution on the consumption-leisure arbitrage
and, thereby, on labor supply. In general, the interplay between pollution and
labor supply remains ambiguous from a theoretical point of view. On the one
hand, pollution may worsen working conditions (for instance, the negative im-
pact of global warming rests on a positive correlation between heat and work
painfulness) and give an incentive to substitute leisure to working time. On the
other hand, households like to enjoy leisure in a healthy and pleasant environ-
ment (for example, air pollution may dissuade people from going outdoor and
encourage them to work more).

Theoretical literature has pointed out the same ambiguity in the role of
pollution on consumption.1 From an exogenous growth perspective, Keeler,
Spence and Zeckhauser (1972) pioneered the class of Ramsey models with pol-
lution accumulation. Pollution lowers the level of welfare as negative externality.
Focusing on nonseparable preferences, they assume that consumption and en-
vironmental quality are normal goods in order to ensure the uniqueness of the
steady state. Van der Ploeg and Withagen (1991) assume additively separable
preferences or a negative cross derivative (a marginal utility of consumption
decreasing in the pollution level). These conditions are sufficient for unique-
ness and saddle-point stability of the competitive steady state. Tahvonen and
Kuuluvainen (1993) removed any restriction on the sign of the cross derivative
in a Ramsey model. The most complete characterization of the interplay be-
tween consumption and pollution in a Ramsey model was given by Ryder and
Heal (1973).2 Satiation is possible under assumptions on the first-order deriva-
tives of the utility function and may promote the multiplicity of steady states.
Assumptions on second-order derivatives and intertemporally dependent pref-

1All the papers cited in this paragraph represent pollution as a stock instead of a flow.
2In Ryder and Heal (1973) pollution comes from consumption and it is interpreted as a

habit effect. Heal (1982) considers explicitly the same variable as a pollution stock.
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erences may promote the occurrence of cycles through a Hopf bifurcation in the
case of adjacent complementarity.

The effects of pollution on growth through the consumption channel were
also studied by Michel and Rotillon (1995) in an endogenous growth model
(AK). They find that a distaste effect of pollution on consumption (negative
cross derivative) or separable preferences are incompatible with optimal en-
dogenous growth. Conversely, sustained long-term growth is optimal when the
utility function exhibits a compensation effect (positive cross derivative). En-
dogenous growth occurs in the competitive equilibrium regardless of the effects
of pollution on consumption.

Surprisingly and paradoxically, many theoretical works have considered the
pollution effects on consumption behavior and the growth path, while, to the
best of our knowledge, there are no empirical studies on that. Conversely, a
rising number of empirical works show pollution effects on labor supply, whereas
these effects are largely ignored in theoretical papers.

Our work contributes to shed light on the interplay between pollution and
labor supply in the particular case of a productive economy with capital and
pollution accumulation. An ideal framework to carry out this task is a Ramsey
model with nonseparable preferences between pollution and labor supply (sep-
arability rules out any direct effect of pollution on labor disutility and supply).

First, we build a growth model à la Ramsey without specifying any functional
form for technology and preferences, and we show that, if consumption and
leisure are normal goods, a distaste effect (a marginal utility of consumption
decreasing in the pollution level) jointly with a leisure effect (a positive effect
of pollution on labor disutility) are sufficient conditions for the existence and
uniqueness of a competitive steady state.

Second, in order to characterize the dynamic properties of the competitive
equilibrium, we specify production and utility as isoelastic functions. Moreover,
the novelty of this separable model rests on the interchange of nonseparability
assumptions: between pollution and leisure instead of between pollution and
consumption.

In this oversimplified context, we show that, under sufficiently large (neg-
ative) effects of pollution on labor supply, the economy may experience deter-
ministic fluctuations around the steady state through flip and period-doubling
bifurcations. Thus, the pollution effect on labor supply, highlighted by a recent
empirical literature, seems to promote macroeconomic volatility and destabilize
the economic dynamics.

The rest of the paper is articulated in three sections: (1) presentation of
a general setting, (2) application to the separable case (separability between
consumption and labor), (3) conclusion.

2 The model

In the following, we consider a discrete-time Ramsey economy with pollution
and capital accumulation. A representative household faces a consumption-
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leisure arbitrage by supplying a labor force to a sector of perfectly competitive
firms. These firms produce a single commodity working either as capital or
a consumption good. Because of the constant returns to scale, firms can be
represented by a single aggregate firm. Pollution is a by-product of industrial
activities and affects the individual welfare by distorting the consumption-leisure
arbitrage.

2.1 Firms

At each date t = 0, 1, . . ., a representative firm produces a single output Yt.
Technology is represented by a constant returns to scale production function:
Yt = F (Kt, Lt), where Kt and Lt are the demands for capital and labor respec-
tively.

Assumption 1 The production function F : R2
+ → R+ is C1, homogeneous

of degree one, strictly increasing and concave. Standard Inada conditions hold.
The firm chooses the amount of capital and labor to maximize the profit

taking as given the real interest rate rt and the real wage wt. The program
is correctly defined under Assumption 1: maxKt,Lt

[F (Kt, Lt)− rtKt − wtLt],
and the first-order conditions write:

rt = f ′ (kt) ≡ r (kt)

wt = f (kt)− ktf
′ (kt) ≡ w (kt)

where kt ≡ Kt/Lt denotes the capital intensity. We introduce the capital share
in total income α and the elasticity of capital-labor substitution σ:

α (kt) ≡
ktf

′ (kt)

f (kt)

σ (kt) = α (kt)
w (kt)

ktw′ (kt)
(1)

In addition, the elasticities of factor prices write:

ktr
′ (kt)

r (kt)
= −

1− α (kt)

σ (kt)
(2)

ktw
′ (kt)

w (kt)
=

α (kt)

σ (kt)
(3)

2.2 Preferences

At each date t = 0, 1, . . ., the household earns a capital income rtht and a labor
income wtlt where ht and lt denote the individual wealth and labor supply
respectively. Income is consumed and saved/invested according to the budget
constraint:

ct + ht+1 − (1− δ)ht ≤ rtht + wtlt (4)

The gross investment includes the capital depreciation at the rate δ.
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For simplicity, the population of consumers-workers is constant over time:
N = 1. Such normalization implies Lt = Nlt = lt, Kt = Nht = ht and
ht = Kt/N = ktlt.

The representative agent takes a utility from the consumption ct and a disu-
tility from the labor supply lt and the amount of pollution Pt, that is an ag-
gregate externality. The utility function ut = u (ct, lt, Pt) satisfies the following
assumption.

Assumption 2 The utility function u : R3
+ → R is C2, strictly increasing

in ct and strictly decreasing in lt and Pt, and concave with respect to (ct, lt).
If consumption and leisure are both normal goods, we have ucc−ulcuc/ul < 0

and ull − uclul/uc < 0. These inequalities hold for instance if ulc ≤ 0 that is a
sufficient condition.

According to Michel and Rotillon (1995), pollution has a distaste effect on
consumption if ucP < 0: an increase in pollution reduces the marginal utility of
consumption and thereby households’ propensity to consume. These authors call
the opposite effect (ucP > 0) the compensation effect. An increase in pollution
raises the propensity to consume.

This terminology can be extended to the effects of pollution on labor supply.
Focusing on leisure, we will call leisure effect the positive effect of pollution on
labor disutility (ulP < 0) which decreases labor supply and increases in turn
leisure demand. Conversely, we will call disenchantment effect the negative ef-
fect of pollution on labor disutility (ulP > 0). In this case, leisure time decreases
with pollution. As seen in the introduction, disenchantment for leisure comes
from a more polluted and unpleasant environment.

Any household maximizes an intertemporal utility function
∑

∞

t=0 β
tu (ct, lt, Pt)

under the budget constraint (4) where β ∈ (0, 1) is a constant discount factor.
This program is correctly defined under Assumption 2. The first-order condi-
tions result in a static consumption-leisure arbitrage

ul (ct, lt, Pt) = −uc (ct, lt, Pt)wt

and a dynamic Euler equation

uc (ct, lt, Pt)

uc (ct+1, lt+1, Pt+1)
= β (1− δ + rt+1)

jointly with the budget constraint (4) now binding.

2.3 Pollution

The aggregate stock of pollution Pt is a pure externality. Technology is dirty
and pollution persists. More explicitly, we assume that the stock of pollution
tomorrow will depend on pollution and production today according to a simple
linear process:

Pt+1 = aPt + bYt (5)

where 1− a ∈ (0, 1] captures the natural rate of pollution absorption and b > 0
the environmental impact of production. Under Assumption 1, the process of
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pollution accumulation (5) writes:

Pt+1 = aPt + bLtf (kt) = aPt + bltf (kt)

2.4 Equilibrium

Good and labor markets clear. Noticing that ht = ktlt, we find

ct + kt+1lt+1 = [1− δ + r (kt)] ktlt + w (kt) lt (6)

uc (ct, lt, Pt)

uc (ct+1, lt+1, Pt+1)
= β [1− δ + r (kt+1)] (7)

Pt+1 = aPt + bltf (kt) (8)

ul (ct, lt, Pt) = −uc (ct, lt, Pt)w (kt) (9)

Applying the Implicit Function Theorem to the static arbitrage (9), we are
able to compute the derivatives of the labor supply function lt = l (ct, kt, Pt).
Indeed, differentiating ul (ct, lt, Pt)+uc (ct, lt, Pt)w (kt) = 0 and keeping in mind
that wt = −ul/uc, we get

dl

dct
= −

ucl

ul
− ucc

uc

ull

ul
− ucl

uc

,
dl

dPt

= −

ulP

ul
− ucP

uc

ull

ul
− ucl

uc

,
dl

dkt
=

w′(kt)
wt

ull

ul
− ucl

uc

These derivatives allow us to compute the second-order elasticities of the
utility function:

E ≡





εcc εcl εcP
εlc εll εlP
εPc εPl εPP



 ≡





ctucc

uc

ctucl

ul

ctucP

uP
ltulc

uc

ltull

ul

ltulP

uP
PtuPc

uc

PtuPl

ul

PtuPP

uP





Using (1), we find the elasticities of labor supply:

λc ≡
ct
lt

dl

dct
=

εcc − εcl
εll − εlc

(10)

λP ≡
Pt

lt

dl

dPt

=
εPc − εPl

εll − εlc

λk ≡
kt
lt

dl

dkt
=

α

σ

1

εll − εlc
(11)

All our economic analysis will rest on these crucial elasticities.

Proposition 1 If consumption and leisure are normal goods, λc < 0 and λk >
0.
Proof. Normality entails ucc/uc − ulc/ul < 0 and ull/ul − ucl/uc > 0, that is
εcc − εcl < 0 and εll − εlc > 0. Apply (10) and (11).

Replacing the labor supply l (ct, kt, Pt) in (6), (7) and (8), we obtain a three-
dimensional dynamic system.
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Proposition 2 An intertemporal equilibrium with perfect foresight is a nonneg-
ative sequence (kt, ct, Pt)

∞

t=0 satisfying the dynamic system

ct + kt+1l (ct+1, kt+1, Pt+1) = ([1− δ + r (kt)] kt + w (kt)) l (ct, kt, Pt)

(12)

uc (ct, l (ct, kt, Pt) , Pt)

uc (ct+1, l (ct+1, kt+1, Pt+1) , Pt+1)
= β [1− δ + r (kt+1)] (13)

Pt+1 = aPt + bf (kt) l (ct, kt, Pt) (14)

We observe that this system is three-dimensional with two predetermined
variables (kt, Pt) and one non-predetermined (ct).

2.5 Steady state

Variables are constant over time: (kt, ct, Pt) = (k, c, P ) for every t. At the
steady state, the dynamic system (12)-(14) writes:

r (k) =
1

β
− 1 + δ (15)

c =

[

1− β

β
k + w (k)

]

l (c, k, P ) (16)

P =
b

1− a
f (k) l (c, k, P ) (17)

We obtain the stationary capital k from the first equation. Replacing k in
(16) and (17) and solving system (16)-(17), we obtain also (c, P ).

Given k, solution of (15), let

µ (c) ≡ l

(

c, k,
b

1− a

f (k)

f (k)− δk
c

)

Proposition 3 Let Assumptions 1 and 2 hold. If limc→0+ µ (c) > 0 and µ′ (c) <
0 for every c > 0, then there exists a unique steady state.

Proof. Under Assumption 1, k is uniquely determined by (15). Replacing k in
(16) and (17) we obtain a two-dimensional system in (c, P ). We observe from
(16) that

c

l (c, k, P )
=

1− β

β
k + w (k) = f (k)− δk > 0 (18)

Dividing equations (16) and (17) side by side and using (18), we get

P =
b

1− a

f (k)

f (k)− δk
c (19)

Replacing (19) in (16), we find

g (c) ≡ c− [f (k)− δk]µ (c) = 0 (20)
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a single equation in c. Under Assumption 2.2, we find limc→0+ g (c) < 0 and
limc→+∞ g (c) = +∞. Under Assumption 1, g is a continuous function. Thus,
a solution of equation (20) exists.

In addition, this solution is unique because, under Assumption 2.2, g′ (c) > 0
for any c > 0.

We will see that, in the case of separable isoelastic preferences, the assump-
tions of Proposition 3 hold and a unique steady state exists.

Corollary 4 Let Assumptions 1 and 2 hold. If consumption and leisure are
normal goods, a distaste effect (ucP < 0) jointly with a leisure effect (ulP < 0)
holds and limc→0+ µ (c) > 0, then there exists a unique steady state.

Proof. We observe that

µ′ (c) = lc + lP
b

1− a

f (k)

f (k)− δk
= lc + lP

P

c

= −

ucl

ul
− ucc

uc

ull

ul
− ucl

uc

−

ulP

ul
− ucP

uc

ull

ul
− ucl

uc

P

c
=

ucc

uc
− ucl

ul
+
(

ucP

uc
− ulP

ul

)

P
c

ull

ul
− ucl

uc

Since consumption and leisure are both normal goods, we have

ucc

uc

−
ulc

ul

< 0 and
ull

ul

−
ucl

uc

> 0

Thus, µ′ (c) < 0 iff

ucc

uc

−
ucl

ul

+

(

ucP

uc

−
ulP

ul

)

P

c
< 0 (21)

If a distaste effect (ucP < 0) jointly with a leisure effect (ulP < 0) holds, we
get (21), that is µ′ (c) < 0 for any c > 0. Eventually, Proposition 3 applies.

2.6 Long run

Focus on the comparative statics. In this general section, we have not specified
technology and preferences. The only parameters we consider are a, b, β and
δ. We compute their impact on c, k, P . In the isoelastic case (see below), we
will consider also the impact of technology and preferences on the endogenous
variables.

Differentiating (15) and using (2), we obtain the usual elasticities of Modified
Golden Rule:

β

k

∂k

∂β
=

σ (k)

1− α (k)

1

βr (k)
> 0 (22)

δ

k

∂k

∂δ
= −

σ (k)

1− α (k)

δ

r (k)
< 0 (23)

where r (k) is given by (15).
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Differentiating system (16)-(17) and using (22) and (23), we obtain:

ρ (1− λc)
dc

c
− ρλP

dP

P
=

σ2

β

dβ

β
− δ (1 + σ2)

dδ

δ

−λc

dc

c
+ (1− λP )

dP

P
= −

dz

z
+

db

b
+ σ1

dβ

β
− βδσ1

dδ

δ

where z ≡ 1− a and

ρ ≡
c

kl
=

1− β

β
+

1− α

α
r

σ1 ≡
σ

1− α

α+ λk

βr

σ2 ≡ λk

σ

α
+ (1 + λk)

σ

1− α

1− β

βr

that is

[

dc
c
dP
P

]

=
M

1− λc − λP









dz
z
db
b
dβ
β
dδ
δ









with

M ≡

[

−λP λP λPσ1 + (1− λP )
σ2

βρ
−λPβδσ1 − (1− λP )

δ(1+σ2)
ρ

λc − 1 1− λc λc
σ2

βρ
+ (1− λc) σ1 −λc

δ(1+σ2)
ρ

− (1− λc)βδσ1

]

(24)
We find the following elasticity of comparative statics:

[

z
c
∂c
∂z

b
c
∂c
∂b

β
c

∂c
∂β

δ
c
∂c
∂δ

z
P

∂P
∂z

b
P

∂P
∂b

β
P

∂P
∂β

δ
P

∂P
∂δ

]

=
M

1− λc − λP

(25)

Proposition 5 In the case of negative effects of consumption and pollution on
labor supply, the following inequalites hold:

∂c

∂z
> 0,

∂c

∂b
< 0,

∂P

∂z
< 0,

∂P

∂b
> 0 (26)

Proof. Consider (24) with (25). Since λc, λP < 0, we obtain 1 − λc > 0 and
1− λc − λP > 0.

Unsurprisingly, the consumption of steady state is increasing with the nat-
ural rate of pollution absorption and decreasing with the pollution emission
rate. These parameters of pollution accumulation have opposite effects on the
pollution stock in the long run.

Corollary 6 Under the sufficient conditions for existence and uniqueness of the
steady state (normality of consumption and leisure, distaste and leisure effects:
see Corollary 4), inequalities (26) hold.
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Proof. Normality implies εll − εlc > 0 and λc < 0 (Proposition 1). We ob-
serve that ucP < 0 (distaste effect) and ulP < 0 (leisure effect) entail εPc < 0
and εPl > 0 respectively, that is λP = (εPc − εPl) / (εll − εlc) < 0. Apply
Proposition 5.

2.7 Short run

Focus on local dynamics. We linearize the dynamic system (12)-(14) around the
steady state:





1 + λk λc λP

εlcλk − 1−α
σ

βr εcc + εlcλc εlcλP + εPc

0 0 1











dkt+1

k
dct+1

c
dPt+1

P







=





1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

εlcλk εcc + εlcλc εlcλP + εPc

(1− a) (α+ λk) (1− a)λc a+ (1− a)λP









dkt

k
dct
c

dPt

P





In order to study the local stability of system (12)-(14), that is the shape of
the characteristic polynomial, we need to assume preferences to be additively
separable in consumption and labor.

3 The separable model

In the case of separable utility:3 u (ct, lt, Pt) = ũ (ct)− ωv (lt, Pt), the elasticity
matrix E becomes

E ≡





εcc 0 0
0 εll εlP
0 εPl εPP



 (27)

and the elasticities of labor supply lt = l (ct, kt, Pt) write:

λc =
εcc
εll

λP = −
εPl

εll

λk =
α

σ

1

εll
(28)

When pollution does not affect the labor supply εPl = 0. Thus, the very
difference with respect to the standard consumption-labor arbitrage is the elas-
ticity εPl. In the following, we will show that σ and εPl play a role in the
occurrence of endogenous business cycles.

From a theoretical point of view, the effect of pollution on labor supply is
ambiguous: λP ⋚ 0. However, according to the recent empirical studies and, in

3Separability between consumption and leisure and between consumption and pollution,
but nonseparability between leisure and pollution.
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particular, to Hanna and Oliva (2011) work on Mexico City, a rise in pollution
seems to have a negative effect on labor supply: λP < 0. In the following, we
will consider this case.

3.1 Isoelastic form

In the isoelastic case, the elasticities are constant and notation simplifies: ε ≡
−εcc and ϕ ≡ εll. We consider explicit isoelastic separable preferences:

ũ (ct) ≡
c1−ε
t

1− ε
and v (lt, Pt) ≡

(ltP
γ
t )

1+ϕ

1 + ϕ
(29)

where 1/ε ≥ 0 is the consumption elasticity of intertemporal substitution and
1/ϕ ≥ 0 is the Frisch elasticity of intertemporal substitution.

In addition, this form allows us to express the key elasticity εPl in terms of
the structural parameters: εPl = γ (1 + ϕ). Since

λP = −
εPl

εll
= −γ

1 + ϕ

ϕ
(30)

and, according to Assumption 2, the utility function decreases with Pt, we
obtain γ > 0 and, thus, λP < 0 or, equivalently, dl/dPt < 0 (the labor supply
decreases with pollution in turn).

From (30), labor disutility writes also

v (lt, Pt) ≡
l1+ϕ
t P−ϕλP

t

1 + ϕ

In the case (29), with an isoelastic intensive production function f (kt) =
Akαt , the labor supply function explicitly becomes

lt = l (ct, kt, Pt) = m (ct, kt)P
λP

t with m (ct, kt) ≡

(

1− α

ω

Akαt
cεt

)
1
ϕ

3.2 Long run (continued)

Preferences rationalized by functions (29) ensure the uniqueness of the steady
state. Indeed, consumption and leisure are normal goods and a distaste effect
jointly with a leisure effect hold. More explicitly, we find

µ (c) =

(

1− α

ω
Akα

)
1
ϕ
(

b

1− a

Akα

Akα − δk

)λP

cλP−
ε
ϕ

with λP < 0. Thus, limc→0+ µ (c) = +∞ > 0 and µ′ (c) < 0, and the assump-
tions of Proposition 3 hold.

Let

λ∗

P ≡ −
1

ϕσ

(

1 +
r − δ

δ

1 + ϕσ

1− α

)

< 0

11



Proposition 7 The long-run effects of the fundamental parameters on the pol-
lution stock are given by

∂P

∂a
> 0,

∂P

∂b
> 0,

∂P

∂β
> 0

and
∂P

∂δ
< 0 iff σ >

r−αr
r−αδ

ε− 1
δ−αδ
r−αδ

ε+ ϕ

The long-run effects of these parameters on the consumption level depend on
the pollution elasticity of labor supply λP ,

∂c

∂a
< 0

∂c

∂b
< 0

∂c

∂β
> 0 iff λP > λ∗

P

∂c

∂δ
< 0 iff σ <

r

δ
or

(

σ >
r

δ
and λP >

r − σδλ∗

P

r − σδ
(< 0)

)

Proof. Reconsider (30) and the impact matrix (25). Notice that z ≡ 1− a and

(λc, λk) =

(

−
ε

ϕ
,
1

ϕ

α

σ

)

The denominator 1− λc − λP is positive. (24) becomes

M ≡





−λP λP
αδσ
βr

λP−λ∗

P

r−αδ
αδ
r

r−σδ
r−αδ

(

λP −
r−σδλ∗

P

r−σδ

)

− ε+ϕ
ϕ

ε+ϕ
ϕ

1
ϕβr

α
1−α

(

1 + ϕσ + εσ δ−αδ
r−αδ

)

δ
ϕ

[

ε
ρ
− 1

r
α

1−α

(

1 + ϕσ + εσ δ−αδ
r−αδ

)]





We observe that r > αδ and

1

ϕβr

α

1− α

(

1 + ϕσ + εσ
δ − αδ

r − αδ

)

> 0

δ

ϕ

[

ε

ρ
−

1

r

α

1− α

(

1 + ϕσ + εσ
δ − αδ

r − αδ

)]

< 0 iff σ >
r−αr
r−αδ

ε− 1
δ−αδ
r−αδ

ε+ ϕ

The proposition follows immediately.

Corollary 8 ∂P/∂δ < 0 if

ε <
r − αδ

r − αr
(> 1)

Corollary 9 If λP = 0 (that is γ = 0), we have

∂c

∂a
=

∂c

∂b
= 0,

∂c

∂β
> 0,

∂c

∂δ
< 0
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We recover in this case the usual conclusions of the Ramsey model.
Let us provide an interpretation of Proposition 7.
Focus on equations (17), (22) and (28). The higher the β, the larger the

capital stock k and, in turn, the higher the labor supply l and the stock of
pollution P . The effect of β on c in the long run depends on λP . Since λP < 0,
the households substitutes leisure to working time. However, if this effect does
not compensate the positive effect of k on labor supply, a higher β entails a
higher consumption in the long run.

Focus now on equations (17), (23) and (28). The higher the depreciation
rate δ, the lower the capital stock k and, in turn, the lower the labor supply l
and and the pollution stock P . According to equation (23), the impact of δ on
k and, in turn, on l, depends on the elasticity of capital-labor substitution σ. A
stronger σ induces a larger negative effect of δ on k. Since the negative effect of
δ on P depends crucially on its impact on k, it follows that the negative impact
of δ on P is also magnified under a large elasticity σ. Notice that λP < 0. We
know also that a higher δ implies a lower P . Let the pollution elasticity of labor
supply be not too negative. In this case, under a sufficiently large σ, the effect
of k on l dominates the effect of P on l. Thus, a higher δ leads the household
to substitute leisure to working time, that is to consume less in the long run.

3.3 Short run (continued)

Specification (29) gives the following Jacobian:

J =





1 + λk λc λP

εlcλk − 1−α
σ

βr εcc + εlcλc εlcλP + εPc

0 0 1





−1





1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

εlcλk εcc + εlcλc εlcλP + εPc

(1− a) (α+ λk) (1− a)λc a+ (1− a)λP





with an elasticity matrix (27):

E =





−ε 0 0
0 ϕ εlP
0 γ (1 + ϕ) εPP





Therefore,

J =





1 + λk λc λP

− 1−α
σ

βr −ε 0
0 0 1





−1





1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

0 −ε 0
(1− a) (α+ λk) (1− a)λc a+ (1− a)λP



 (31)
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with:

ρ =
1− β

β
+

1− α

α
r

and

λc = −
ε

ϕ
, λP = −γ

1 + ϕ

ϕ
, λk =

α

σ

1

ϕ

To know the location of the eigenvalues of the Jacobian matrix w.r.t. the unit
circle, we study the sign of the characteristic polynomial P (x) in x = −1, 0, 1.
Tedious computations give the following values:

P (0) = (1− a)
(1− α) (1− δ) εσ

(1− α)βrλc − εσ (1 + λk)
(λP − λ1) > 0 iff λP < λ1

(32)

P (1) =
βrρ (1− α) (1− a) (1− λc − λP )

(1− α) βrλc − εσ (1 + λk)
< 0 (33)

P (−1) = (1− a)
(1− α) [βrρ+ 2εσ (2− δ)]

(1− α)βrλc − εσ (1 + λk)
(λP − λ2) > 0 iff λP < λ2

(34)

where

λ1 ≡ −
a

1− a

1 + (1 + ρ)βλk

β (1− δ) (1− α)
< 0

λ2 ≡ −
1 + a

1− a

(1− α) βr [ρ− (2 + ρ)λc] + 2εσ [1 + 1/β + (2 + ρ)λk]

(1− α) [βrρ + 2εσ (2− δ)]
< 0

Assumption 3 a < β.
We notice that, under Assumption 3,

λP < 0 <
β − a

1− a
< λ3 ≡

β − a

1− a

1 + ϕσ − β (1− α) (1− δ)

ϕσβ (1− α) (1− δ)

Let D and T be the determinant and the trace of J respectively.

Lemma 10 Under Assumption 3, D < 1.

Proof. D < 1 is equivalent to

D = −P (0) = (1− a)
(1− α) (1− δ) εσ

εσ (1 + λk)− (1− α) βrλc

(λP − λ1) < 1

that is to λP < λ3.
Focus now on the issue of equilibrium uniqueness.
Two variables are predetermined (kt and Pt), one is not predetermined (ct).

P (1) < 0 implies that one eigenvalue is real and greater than one. Thus,
equilibrium determinacy (locally). The question now is whether there are zero,
one or two eigenvalues inside the unit circle.

14



There are two possible cases:
(1) λ1 < λ2,
(2) λ2 < λ1.
We observe that λ1 < λ2 iff

1 + a

a
<

[1 + (1 + ρ)βλk] [βrρ+ 2εσ (2− δ)]

β (1− δ) ((1− α)βr [ρ− (2 + ρ)λc] + 2εσ [1 + 1/β + (2 + ρ)λk])

Notice that the RHS does not depend on a.
Focus on the second case (for instance, if a is sufficiently small or a = 0). In

this case, λ2 < λ1.

Proposition 11 (equilibrium uniqueness) Let a be null or sufficiently small
and Assumption 3 hold. There are three cases.

(1) λP < λ2 < λ1 < 0. The eigenvalues xi are such that x1 < −1 < 0 <
x2 < 1 < x3: local overdeterminacy.

(2) λ2 < λP < λ1 < 0. The eigenvalues xi are such that −1 < x1 < 0 <
x2 < 1 < x3: local determinacy.

(3) λ2 < λ1 < λP < 0. Under Assumption 3, there are two eigenvalues
inside the unit circle and one outside: |x1| , |x2| < 1 < x3. Thus, local determi-
nacy.

When λP = λ2 the system generically undergoes a flip bifurcation.

Proof. Consider the three eigenvalues: x1, x2 and x3. We know that x3 > 1
because P (1) < 0.

Points (1) and (2) are immediate: simply notice that λ2 < λ1 and consider
the signs of expressions (32) and (34) in the cases λP < λ2 < λ1 < 0 and
λ2 < λP < λ1 < 0 respectively.

Focus now on point (3). In this case, we get: P (−1) < 0, P (0) < 0 and
P (1) < 0.

Under Assumption 3, Lemma 10 applies and D = x1x2x3 < 1. Since P (1) <
0, we have x3 > 1 and, so x1x2 < 1. There are two cases: these eigenvalues are
(3.1) real or (3.2) nonreal.

In the subcase (3.1), D < 1 implies that at least one of the two eigenvalues
x1 and x2 > x1 is inside the unit circle. Let, without loss of generality, x2 be in
the unit circle that is −1 < x2 < 1. If 0 < x2 < 1, since P (1) < 0, there exists
x̄ ∈ (0, x2) such that P (x̄) > 0. Since P (0) < 0, we have also 0 < x1 < x̄ < 1.
Thus, 0 < x1 < x2 < 1. Similarly, one can show that −1 < x2 < 0 implies
−1 < x1 < x2 < 0 because P (−1) < 0.

In the subcase (3.2), x1 and x2 are nonreal and conjugated. Thus, |x1| |x2| =
|x1x2| < 1 and, since they have the same modulus, |x1| = |x2| < 1.

Corollary 12 Under Assumption 3, there is no room for Hopf bifurcations.

Proof. We know that P (1) < 0, that is x3 > 1. Under Assumption 3, Lemma
10 applies and, therefore, D = x1x2x3 < 1. Thus, x1x2 < 1. The Hopf
bifurcation generically arises when x1 and x2 are nonreal and x1x2 = 1. Then
Assumption 3 is incompatible with the occurrence of a Hopf bifurcation.
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The occurrence of deterministic fluctuations deserves an interpretation. Fo-
cus on the case of a sufficiently small a, that is λ2 < λ1 < 0, and a sufficiently
negative impact of pollution on labor supply (λP close to λ2).

In this case, an increase in pollution lowers enough the labor supply. The
penury of labor input decreases considerably the production and pollution in
turn. Thus, a rise in pollution is followed by a drop in pollution at the end: a
cycle of period two arises.

We observe that the first part of the mechanism is essentially static through
the consumption-labor arbitrage: indeed the negative impact on pollution on
labor supply is captured by the elasticity λP coming from this arbitrage. Con-
versely, the second part is dynamic through the pollution accumulation process:
the lower production today results in a lower pollution tomorrow.

Notice that a is a measure of pollution persistence. The occurrence of cycles
is magnified when a is close to zero because this inertia fails, pollution becomes
more volatile and the comparative effect of production on the pollution process
becomes maximal.

4 Conclusion

We have considered an economy à la Ramsey where production pollutes and the
negative externality distorts the household’s consumption-leisure choice. In this
framework, we have proved that a sufficiently large (negative) effects of pollution
on labor supply may promotes macroeconomic volatility (deterministic cycles
near the steady state) through a flip bifurcation. It seems that, in the empirical
case considered by recent literature, pollution works as a destabilizing force also
through its impact on labor supply. In this sense, our work provides a theoretical
argument in favor of environmental friendly fiscal policies.
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