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Abstract

To study the relationship between a La¤er Curve and the Green Para-
dox, we consider a Ramsey model with endogenous labor supply, where
pollution increases the consumption demand (compensation e¤ect). In
the long run, the conditions for a La¤er curve and the Green Paradox
are mutually exclusive: the curve exists under a weak compensation e¤ect
while the paradox under a strong e¤ect. In the short run, limit cycles
arise only if a La¤er curve exists but never occur in the case of Green
Paradox.
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1 Introduction

The La¤er Curve (henceforth, LC) is a well-known paradox discovered by
a Muslim scholar a long time ago1 but popularized by Arthur La¤er in the
seventies (Wanniski, 1978): the tax revenue is an inverted U-shaped function
of the tax rate and two di¤erent tax rates yield the same revenue. Since, a
number of theoretical models either static or dynamic have been published.
The introduction of a LC in Ramsey models dates back to the nineties (among
others, Irland, 1994; Schmitt-Grohé and Uribe, 1997; Trabandt and Uhlig, 2011;
Nourry et al., 2013). Di¤erent kinds of taxes generate the LC: for instance,
a higher consumption tax lowers the relative leisure price, labor supply and
consumption demand in turn, that is the tax revenue in the end.
The Green Paradox (henceforth, GP) is another surprising result of en-

vironmental literature identi�ed by Sinn (2008): the announce of a greener tax
tomorrow induces the owners of fossil fuels to increase their extraction today
and the global warming in the end. Since, theoretical literature on the GP
�ourished either in partial equilibrium (Sinn, 2008, 2012; Gerlagh, 2011) or in
general equilibrium models (Van der Meijden et al., 2015; Eichner and Pethig,
2011; Van der Ploeg and Withagen, 2012; Grafton et al., 2012).
Our paper addresses the issue of compatibility of these paradoxes under a

green taxation. Economic literature treats these phenomena separately. We
may wonder whether they are mutually exclusive through the �scal mechanism.
We consider a Ramsey economy with endogenous labor supply where the

pollution externalities generated by a consumption activity increase the mar-
ginal utility of consumption (compensation e¤ect). The government levies a
consumption tax to �nance depollution activities. We focus on the long run
(comparative statics) and the short run (local dynamics).
At the steady state, along the downward-sloping branch of a LC, a higher

consumption tax implies a lower tax revenue. However, the LC may fail to exist
if we introduce pollution in the model. Since Michel and Rotillon (1995), it
is known that pollution may increase the consumption demand (through the
so-called compensation e¤ect). If the tax revenue �nances depollution expendi-
tures, pollution increases and consumption as well under a compensation e¤ect.
Thereby, the higher tax revenue cancels out the La¤er e¤ect. We show that a
weak compensation e¤ect leads to a LC while a strong compensation e¤ect leads
to a GP. These su¢ cient conditions are incompatible. We show also that taxa-
tion is welfare-improving beyond a critical point: (1) under a weak compensation
e¤ect (su¢ cient for a LC), if households overevaluate the environmental quality
or (2) under a strong compensation e¤ect (su¢ cient for the GP), if households
underevaluate the environmental quality.
In the short run, a compensation e¤ect may give rise to a limit cycle near

the steady state of a Ramsey economy (Heal, 1982).2 We compare conditions

1"It should be known that at the beginning of a dynasty, taxation yields a large revenue
from small assessments. At the end of the dynasty, taxation yields a small revenue from large
assessments" (Ibn Khaldun, 1377, p. 230).

2Bosi and Desmarchelier (2015) �nd opposite results in the case of an environmental
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for limit cycles (through a Hopf bifurcation) with those for a LC or the GP. We
�nd that the occurrence of limit cycles implies the existence of a LC but these
cycles are ruled out in the case of GP.
The rest of the paper is organized as follows. Sections 2 to 5 introduce the

fundamentals. Section 6 focuses on the general equilibrium, while sections 7 and
8 on the steady state. Equilibrium transition and bifurcations are considered in
section 9. The case with constant elasticities is studied in section 10. Section
11 concludes. All the technical details (proofs) are gathered in the appendix.

2 Firms

A representative �rm produces a single output. A constant returns to scale
technology is represented by an aggregate production function:

Y (t) = F (K (t) ; L (t))

where K (t) and L (t) are the aggregate demands for capital and labor at time t.
For notational parsimony, the time argument t will be omitted in the following.
Assumption 1 The production function F : R2+ ! R+ is C1, homogeneous

of degree one, strictly increasing and concave. Inada conditions hold.

The �rm chooses the amount of capital and labor to maximize the pro�t
taking the real interest rate r and the real wage w as given. The program
maxK;L [F (K;L)� rK � wL] is correctly de�ned under Assumption 1 and the
�rst-order conditions write:

r = f 0 (k) � r (k) and w = f (k)� kf 0 (k) � w (k) (1)

where f (k) � F (k; 1) is the average productivity and k � K=L denotes the
capital intensity at time t. We introduce the capital share in total income and
the elasticity of capital-labor substitution:

� (k) � kf 0 (k)

f (k)
and � (k) = � (k)

w (k)

kw0 (k)

In addition, we determine the elasticities of factor prices:

kr0 (k)

r (k)
= �1� � (k)

� (k)
and

kw0 (k)

w (k)
=
� (k)

� (k)
(2)

3 Household

The household earns a capital income rh and a labor income wl where h and l
denote the individual wealth and labor supply at time t. The household pays

Kuznets e¤ect: limit cycles arise under a distaste e¤ ect, but they don�t under a compen-
sation e¤ ect.
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a pollution tax � on consumption to the public authority. Thus, the household
consumes and saves her income according to the budget constraint

(1 + �) c+ _h � (r � �)h+ wl (3)

where _h denotes the time-derivative of wealth. The gross investment includes
the capital depreciation at the rate �.
For the sake of simplicity, the population of consumers-workers is constant

over time and normalized to one: N = 1. Such a normalization implies L =
Nl = l, K = Nh = h and h = K=N = kl.

In the following, P will denote the stock of pollution (aggregate externality).
Assumption 2 Preferences are rationalized by the utility function u (c; P )�

v (l). First and second-order restrictions hold on the sign of derivatives: uc > 0,
uP < 0, vl > 0 and ucc < 0, vll > 0 jointly with the limit conditions:
limc!0+ uc =1 and liml!0+ vl = 0.

Assumption 2 does not impose any restriction on the sign of the cross-
derivative ucP Q 0. Following Michel and Rotillon (1995), the household�s
preferences exhibit a distaste e¤ect (compensation e¤ect) when pollution de-
creases (increases) the marginal utility of consumption. If the household enjoys
to consume in a pleasant environment, a higher pollution level lowers her con-
sumption demand (ucP < 0) giving rise to a distaste e¤ect (Michel and Rotillon,
1995). Conversely, the household may decide to increase her consumption de-
mand to compensate the utility loss due to a higher pollution level (ucP > 0):
a compensation e¤ect takes place (Michel and Rotillon, 1995).
It is valuable to introduce �rst and second-order preference elasticities

"c �
cuc
u
, "P �

PuP
u

and "l �
lvl
v

(4)

"cc �
cucc
uc
, "cP �

PucP
uc

and "ll �
lvll
vl

(5)

�1="cc is the consumption elasticity of intertemporal substitution while "cP
captures the e¤ects of pollution on the marginal utility of consumption. Ac-
cording to Assumption 2, "cc < 0. In terms of elasticity, the compensation e¤ect
writes "cP > 0.
In a Ramsey model, the representative household maximizes an intertem-

poral utility functional
R1
0
e��t [u (c; P )� v (l)] dt under the budget constraint

(3) where � > 0 denotes the rate of time preference. This program is correctly
de�ned under Assumption 2.

Proposition 1 The �rst-order conditions result in a static consumption-leisure
relation

uc (c; P )

1 + �
= � =

vl (l)

w
(6)

a dynamic Euler equation _� = � (�+ � � r) and the budget constraint (3), now
binding: _h = (r � �)h+ wl � (1 + �) c, jointly with the transversality condition
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limt!1 e��t�h = 0, where � denotes the multiplier associated to the budget
constraint.

Proof. See Appendix.

4 Government

An environment-oriented government spends the tax revenue to �nance depol-
lution through an abatement e¤ort (maintenance m) according to a balanced
budget rule:

m = �C (7)

For simplicity, the population is normalized to one. Thus, C = Nc = c and
budget (7) writes in intensive terms: �c = m.

5 Pollution

The aggregate stock of pollution P is a pure externality coming from consump-
tion (C). In addition, the government takes care of depollution through the
abatement expenditures m. To take things as simple as possible, we assume a
linear process:

_P = �aP + bC � 
m (8)

a � 0, b � 0 and 
 � 0 capture respectively the natural rate of pollution
absorption, the environmental impact of consumption and the pollution abate-
ment e¢ ciency. Because N = 1, the process of pollution accumulation (8) writes
in intensive terms: _P = �aP + bc� 
m.

6 Equilibrium

At the equilibrium, all markets clear. Under Assumption 2, we apply the implicit
function theorem to the static relation (6) to obtain c � c (�; P ) and l � l (�; k)
with:

�

c

@c

@�
=

1

"cc
and

P

c

@c

@P
= �"cP

"cc
(9)

k

l

@l

@k
=

� (k)

� (k)

1

"ll
and

�

l

@l

@�
=
1

"ll
(10)

This implies that:

_h

h
=

�
1 +

� (k)

� (k)

1

"ll

� _k
k
+
1

"ll

_�

�
(11)
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Proposition 2 Equilibrium dynamics are represented by the following system:

_� = g1 (�; k; P ) � [�+ � � r (k)]� (12)

_k = g2 (�; k; P ) �
[r (k)� �] k + w (k)� (1 + �) c(�;P )l(�;k) �

[�+��r(k)]k
"ll

1 + �(k)
�(k)

1
"ll

(13)

_P = g3 (�; k; P ) � �aP + (b� 
�) c (�; P ) (14)

Proof. (12) is the Euler equation of Proposition 1, (13) is the equilibrium
budget constraint of Proposition 1 where we have replaced (11). (14) is the
pollution accumulation process (8) where we have replaced the balanced budget
rule (7).
Equations (12), (13) and (14) form a dynamic system. This system has two

backward variables (k and P ) and one jump variable (�).

7 Steady state

At the steady state, _� = _k = _P = 0, the system (12)-(13)-(14) gives:

r (k) = �+ � (15)
c (�; P )

l (�; k)
=

�k + w (k)

1 + �
(16)

P =
b� 
�
a

c (�; P ) (17)

Equation (15) is the MGR of the standard Ramsey model. Assumption 1
ensures the uniqueness of k�:

k� = r�1 (�+ �) > 0

In the following of this section, for simplicity, k and w will denote k� and
w (k�).
Applying the Implicit Function Theorem to equation (17) gives � = � (P )

with
P

�

d�

dP
= "cc + "cP < 0 i¤ "cP < �"cc

Let now

� (P ) � c (� (P ) ; P )

l (� (P ) ; k)
and � � P

�

@�

@P

Thus, the existence and uniqueness of the steady state for this economy
depend upon the number of positive P � satisfying equation

� (P ) =
�k + w

1 + �
(> 0) (18)

Assumption 3 Let � < b=
 in the sequel.
This assumption ensures that P is always positive (see equation (17)).
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Proposition 3 (existence and uniqueness) Let Assumptions 1, 2 and 3 hold.
A steady state exists if

lim
P!0

� (P ) <
�k + w

1 + �
< lim

P!1
� (P ) (19)

Moreover, if "cP < �"cc, the steady state is unique.

Proof. See the Appendix.
Interestingly, "cP < �"cc is always veri�ed when preferences are character-

ized by a distaste e¤ect (or a weak compensation e¤ect). Later in this paper, we
will discuss the existence of a steady state by considering isoelastic functional
forms.

8 Comparative statics

It is worthy to consider the impact of the tax rate on the main variables. Nev-
ertheless, our general formulation doesn�t avoid the complicated case where
elasticities (5) are functions of � . The adoption of isoelastic functional forms
will rule out this unpleasant situation and will allow us to provide unambiguous
explicit conditions for the existence of both the LC and the GP.
From (15), we �nd

�

k

@k

@�
= 0

Then, the tax rate has no e¤ect on the capital level of steady state. This is
not surprising in a decentralized economy: the representative household doesn�t
internalize the pollution externality and pollution doesn�t appear in her Euler
equation, that is, at the steady state, the MGR, and doesn�t a¤ect the capital
intensity in turn.
Focus on equations (16) and (17):

l =
(1 + �) c

�k + w
and P =

b� 
�
a

c

Replacing them in the arbitrage between consumption and labor supply (6),
we �nd

wuc

�
c;
b� 
�
a

c

�
= (1 + �) vl

�
(1 + �) c

�k + w

�
(20)

Applying the Implicit Function Theorem to (20), we obtain c = ~c (�) with
elasticity

� (�) � �~c0 (�)

~c (�)
=

�

1 + �

1 + "ll + "cP

+
�
b�
�

"cc + "cP � "ll
(21)

The e¤ect of an increase in � on long-run consumption is ambiguous and
depends upon the magnitude of the pollution e¤ect on the marginal utility of
consumption. For instance, assume that preferences display a compensation
e¤ect ("cP > 0).
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Under a weak e¤ect (0 < "cP < "ll � "cc), we have � (�) < 0. This negative
impact is not surprising and advocates for the existence of a LC. Indeed, a higher
consumption tax lowers the relative leisure price which reduces labor supply and
consumption demand, inducing a lower tax revenue in turn. In section 10.3, we
will illustrate the possibility of LC.
Conversely, under an excessive compensation e¤ect ("cP > "ll� "cc > 0), we

have � (�) > 0. Of course, in this case, the LC vanishes. Such an impossibility
will be also considered in section 10.3.
However, such surprising outcome deserves an economic interpretation. The

above argument for the existence of a LC holds without pollution e¤ect on
consumption demand or, by continuity, under a low pollution e¤ect (namely,
0 < "cP < "ll�"cc). It does not take into account the general interplay between
tax revenue, pollution level and consumption demand, namely the case of an
excessive pollution e¤ect on consumption demand ("cP > "ll � "cc > 0). An
increase in the green consumption tax rate implies a lower tax revenue and a
lower depollution leading to a higher pollution level. Since preferences exhibit
a strong compensation e¤ect, the consumption demand increases and the tax
revenue as well preventing the LC existence.
Thus, LC fails to exist because of the positive relation between the green

consumption tax rate and the pollution level (our de�nition of GP revisits that
introduced by Sinn (2008)). To understand this point, we need to know the
e¤ect of the green tax rate on the pollution level of steady state.
We observe that

~l (�) � 1 + �

�k + w
~c (�)

and, thus,
�~l0 (�)
~l (�)

= � (�) +
�

1 + �
(22)

This implies
~P (�) � b� 
�

a
~c (�)

with elasticity
� ~P 0 (�)
~P (�)

= � (�)� 
�

b� 
� (23)

We remark that � (�) > 0 is a necessary condition for a positive e¤ect of �
on P (GP). As seen above, � (�) > 0 excludes the existence of a LC. That is,
the occurrence of the GP seems to exclude the LC existence. More economic
intuition will be provided in section 10.3.
These computations shed light on the welfare e¤ects of a green tax. Because

of the representative agent, the welfare function is given by her utility function.
At the steady state, this function becomes:

~W (�) �
Z 1

0

e��t
h
u
�
~c (�) ; ~P (�)

�
� v

�
~l (�)

�i
dt

=
1

�

h
u
�
~c (�) ; ~P (�)

�
� v

�
~l (�)

�i
8



Let

�� �
"P
"c


�
b�
� +

�
1+�

(1��)(�+�)
(1��)�+�

"P
"c
+ ��

(1��)�+�

with

"c �
cuc
u
, "P �

PuP
u

and "l �
lvl
v

Notice that "P ="c < 0. We have the following proposition.

Proposition 4 Let Assumptions 1, 2, and 3 hold.
(1) If "P ="c < ���= [(1� �) � + �], taxation is welfare-improving ( ~W 0 (�) >

0) if and only if � (�) < ��.
(2) If ���= [(1� �) � + �] < "P ="c < 0, taxation is welfare-improving ( ~W 0 (�) >

0) if and only if � (�) > ��.

Proof. See Appendix.
We notice that both � (�) and �� depend on � . Explicit conditions will be

provided in section 10.4.
The elasticity ratio "P ="c captures both the slope of the indi¤erence curve

and the household�s relative preference for environmental quality with respect
to consumption. Taking into account previous results about the e¤ects of � on c
and P , Proposition 4 shows that the welfare e¤ect of the green consumption tax
depends upon two elements: (1) the existence of a LC or of a GP (depending
on the sign of � (�)) and (2) households�relative preference for environmental
quality with respect to consumption (depending on the magnitude of "P ="c).
In section 10.4, we will deepen these considerations.

9 Local dynamics

Several contributions point out that pollution may promote macroeconomic in-
stability. Fernandez et al. (2012) and Itaya (2008) show that a large positive
pollution e¤ect on the marginal utility of consumption (compensation e¤ect)
may lead to local indeterminacy in a simple Ramsey economy with endogenous
labor supply when pollution comes from capital accumulation. More recently,
Bosi et al. (2015) �nd that a positive pollution e¤ect on the marginal disutility
of labor supply is also a source of endogenous �uctuations. Our model is close
to Fernandez et al. (2012) but di¤ers in three respects: (1) pollution is a stock
variable, (2) pollution comes from consumption and (3) a green consumption
tax is considered. Since we analyze a Ramsey economy with endogenous labor
supply and a consumption tax, our model is also close to Nourry et al. (2013)
but: (1) pollution matters and (2) the consumption tax rate is exogenous.
According to Heal (1982), Itaya (2008) and Fernandez et al. (2012), the

compensation e¤ect is a source of endogenous cycles. In the previous section,
we have seen that the potential occurrence of both a LC or the GP rests on
the magnitude of this e¤ect. It is valuable to compare the parameter ranges
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where endogenous cycles take place and where a LC or the GP occurs. In the
following, we tackle this question.
We linearize system (12)-(14) around the steady state to grasp the equilib-

rium stability properties. For simplicity, in this section, we consider the case
of a constant elasticity "ll = � and of a Cobb-Douglas production function:
f (k) � Ak�, that is, � (k) = � and � (k) = 1. Equation (13) writes

_k =
�

�+ �

�
[r (k)� �] k + w (k)� (1 + �) c (�; P )

l (�; k)
� [�+ � � r (k)] k

�

�
The Jacobian matrix J writes

J �

24 @g1
@�

@g1
@k

@g1
@P

@g2
@�

@g2
@k

@g2
@P

@g3
@�

@g3
@k

@g3
@P

35 (24)

=

2664
0 (1� �) (�+ �) �k 0

� �
�
�+(1��)�
�+�

k
�

�
1
"cc
� 1

�

�
� �

�
�+(1��)�
�+�

k
P
"cP
"cc

aP�
1
"cc

0 �a
�
1 + "cP

"cc

�
3775

We compute the trace, the sum of minors of order two and the determinant.

T = �� a
�
1 +

"cP
"cc

�
S =

(1� �) (�+ �) [�+ (1� �) �]
� (�+ �)

�
�

"cc
� 1
�
� a�

�
1 +

"cP
"cc

�
D = a (1� �) (�+ �) �

�

�+ (1� �) �
�+ �

�
1

�

�
1 +

"cP
"cc

�
� 1

"cc

�
We observe that

T < 0, 1 +
"cP
"cc

>
�

a
(> 0)

S < 0, 1 +
"cP
"cc

>
(1� �) (�+ �) [�+ (1� �) �]

a�� (�+ �)

�
�

"cc
� 1
�
(< 0)

D < 0, 1 +
"cP
"cc

<
�

"cc
(< 0)

We will see in section 10.5 that T , D and S are not functions of � in the
isoelastic case: � has no e¤ect on the local stability properties in this case
because the representative household adjusts her consumption and labor supply.
The analytical study of a three-dimensional dynamic system is not usual in

economics. As in Bosi and Desmarchelier (2015), it is indispensable to introduce
a general methodology to characterize local bifurcations and indeterminacy in
the case of three-dimensional dynamics with two predetermined variables (sec-
tions 9.1, 9.2, 9.3 and 9.4). However, because elasticities (5) are in general
complicated, we will apply our general methodology to the simples isoelastic
case in section 10.5.
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9.1 Bifurcations

In continuous time, a local bifurcation generically arises when the real part of
an eigenvalue � (p) of the Jacobian matrix crosses zero in response to a change
in a parameter p. Denoting by p� the critical parameter value of bifurcation, we
get generically two cases: (1) when a real eigenvalue crosses zero: � (p�) = 0,
the system undergoes a saddle-node bifurcation (either an elementary saddle-
node or a transcritical or a pitchfork bifurcation depending on the number of
steady states), (2) when the real part of two complex and conjugate eigenvalues
� (p) = a (p) � ib (p) crosses zero, the system undergoes a Hopf bifurcation.
More precisely, in the second case, we require a (p�) = 0 and b (p) 6= 0 in a
neighborhood of p� (see Bosi and Ragot, 2011, p. 76).
The occurrence of a saddle-node bifurcation (elementary saddle-node, tran-

scritical, pitchfork) requires a multiplicity of steady states. In our model, the
steady state is unique (Proposition 3). Thus, we leave aside the theory of ele-
mentary saddle-node bifurcations to focus exclusively on a general approach to
Hopf bifurcations in the case of three-dimensional dynamic systems and on the
occurrence of limit cycles.
We eventually observe that system (12)-(14) is three-dimensional with two

predetermined variables (k and P ) and one jump variable (�). Thus, multiple
equilibria (local indeterminacy) arise when the three eigenvalues of the Jaco-
bian matrix (24) evaluated at the steady state have negative real parts: either
�1; �2; �3 < 0 or Re�1;Re�2 < 0 and �3 < 0.

9.2 Saddle-node bifurcation

Proposition 5 If "cP < �"cc, then any saddle-node bifurcation (elementary
saddle node, transcritical, pitchfork) is ruled out.

Proof. Saddle-node bifurcations require the existence of multiple steady states.
If "cP < �"cc, then the steady state is unique (Proposition 3).

9.3 Hopf bifurcation

This bifurcation generates limit cycles either attractive (supercritical) or repul-
sive (subcritical).
Reconsider the Jacobian matrix J and its determinant, sum of minors of

order two and trace: D = �1�2�3, S = �1�2+�1�3+�2�3 and T = �1+�2+�3.
A Hopf bifurcation occurs when the real part of two complex and conjugate
eigenvalues � (p) = a (p)�ib (p) crosses zero. More precisely, we require a (p�) =
0 and b (p) 6= 0 in a neighborhood of p� (see Bosi and Ragot, 2011, p. 76).

Proposition 6 (Hopf bifurcation) In the case of a three-dimensional sys-
tem, a Hopf bifurcation generically arises if and only if D = ST and S > 0.

Proof. See Appendix.

Corollary 7 If "cP < �"cc, Hopf bifurcations are ruled out.
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Proof. If "cP < �"cc, then S < 0. According to Proposition 6, there is no
room for Hopf bifurcations.

9.4 Local determinacy

In our economy, there are two predetermined variables (k and P ) and a jump
variable (�). As seen above, indeterminacy requires three eigenvalues with neg-
ative real parts: either �1; �2; �3 < 0 or Re�1;Re�2 < 0 and �3 < 0.

Proposition 8 (local determinacy) If "cP < �"cc, the equilibrium is locally
unique.

Proof. If "cP < �"cc, then D > 0. If the eigenvalues are real, one eigenvalue
is positive. Then, local determinacy. If �1 and �2 are nonreal and conjugated,
then �1�2 > 0 and D = �1�2�3 > 0 imply the positivity of the third eigenvalue.
Hence, local determinacy.

Proposition 9 If all the eigenvalues are real, the equilibrium is locally indeter-
minate if and only if D;T < 0 and S > 0.

Proof. See Appendix.

10 Isoelastic case

We cannot capitalize on our general methodology if the elasticities (5) are mutu-
ally dependent and dependent on � . Comparative statics and local dynamics are
of little use without explicit results. In order to �nd these results and provide
clear-cut interpretations we need to consider explicit functional forms.

10.1 Fundamentals

Focus on widely used isoelastic functional forms:

u (c; P ) � (cP��)
1�"

1� " (25)

v (l) � �
l1+�

1 + �
(26)

f (k) � Ak� (27)

(25), (26) and (27) implies � = 1 and�
"c "P "l
"cc "cP "ll

�
=

�
1� " �� (1� ") 1 + �
�" � ("� 1) �

�
(28)

Isoelastic speci�cations (25), (26) and (27) imply that elasticities (5) become
parametric and, surprisingly, don�t depend on � .
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10.2 Steady state

Functions (25), (26) and (27) imply also the existence of a unique steady state:

� =
P "��"��

1 + �

�
b� 
�
a

�"
k =

�
�A

�+ �

� 1
1��

(29)

P =

"
w=�

1 + �

�
�k + w

1 + �

�� �
b� 
�
a

�"+�# 1
�+"+��"�

with w = (1� �)Ak�. Moreover,

c =
a

b� 
� P (30)

l =
1 + �

�k + w

a

b� 
� P

Isoelastic functional forms lead to a unique steady state even if conditions of
Proposition (3) are not met. The explicit solution for the steady state allow us
to compute the long-run impact of a green consumption tax. As we have seen
in section 8, a LC or the GP are possible. The next section provides su¢ cient
conditions for their existence.

10.3 La¤er curve and Green Paradox

In order to shed light on the relation between LC and GP, we compute the
e¤ect of � on the steady state. We will give conditions under which the green
tax rate (�) and the tax revenue (m) are related through an inverted U-shaped
curve (LC) and conditions under which � and the pollution level (P ) are linked
through a positive relation (GP).
According to (21), the equilibrium consumption depends on the tax rate:

c = ~c (�), and the tax receipts as well: m = �~c (�) � ~m (�).
We know from equation (21) the elasticity

� (�) � �

~c

d~c

d�

Solving (20) for c, we �nd explicitly

~c (�) =

 
(1� �)Ak� [�k + (1� �)Ak�]�

� (1 + �)
1+�

�
b� 
�
a

��("�1)! 1
�+"+(1�")�

where k is given by (29) and, �nally, ~m (�) � �~c (�):

~m (�) = �

 
(1� �)Ak� [�k + (1� �)Ak�]�

� (1 + �)
1+�

�
b� 
�
a

��("�1)! 1
�+"+(1�")�
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The two following propositions summarize some results of comparative sta-
tics.

Proposition 10 (existence of LC) Let 0 < � ("� 1) < "+ �. There exists a
unique �� 2 (0; b=
) such that @m=@� > 0 if and only if � < ��.

Proof. See Appendix.
The existence of a LC is not surprising. Indeed, a higher consumption tax

lowers the relative leisure price which gives an incentive to reduce consumption
and to supply less labor. Such a situation implies a lower tax revenue which
explains the counter-intuitive downward-sloping branch of the LC (see Nourry
et al. (2013) among others). Interestingly, proposition 10 no longer holds when
preferences display an excessive compensation e¤ect (namely, if � ("� 1) > "+
�). In this case, the LC fails to exist.
Let us give some intuition (see also section 8). On the downward-sloping

branch of the LC, a higher green tax rate implies a lower tax revenue entailing
a lower depollution and a higher pollution stock in turn. Under an excessive
compensation e¤ect, consumption demand increases enough to raise the tax
revenue and prevent the existence of a LC. Interestingly, the LC seems to fail
because of the positive e¤ect of the green tax rate on the pollution level (GP).
That is, the GP seems to rule out the LC. To grasp this point, we compute the
e¤ect of � on the pollution stock of steady state.

Proposition 11 (existence of GP) Let Assumptions 1, 2 and 3 hold.
If � ("� 1) < "+ �, then

�
�= ~P

��
@ ~P=@�

�
< 0.

If � ("� 1) > "+ �, then
�
�= ~P

��
@ ~P=@�

�
> 0 (GP).

Proof. Notice that P > 0 requires � 2 (0; b=
). Replace expression (21) in (23)
to verify the proposition.
We observe that, according to notation (31) and Proposition 11, the GP

arises when ' < ��=" < 0.

Corollary 12 Su¢ cient conditions for LC and GP are mutually exclusive.

Proof. Compare conditions in Proposition 10 and 11.
To the best of our knowledge, the GP literature focuses on fossil fuel ex-

traction3 to explain how a higher green tax may increase the pollution level
and exacerbate the global warming. Since the GP refers to a positive e¤ect of a
green tax on pollution, Proposition 11 points out that an excessive compensation
e¤ect (� ("� 1) > "+ �) also promotes the GP.
Interestingly, as soon as the LC disappears, the GP emerges. That is, the LC

disappears because a higher consumption tax rate increases the pollution level
(GP), under a strong compensation e¤ect, this generates a higher consumption
level which implies a higher tax revenue. Thus, in an economy where households�

3The interested reader is referred to Van der Meijden et al. (2015), Eichner and Pethig
(2011), Van der Ploeg and Withagen (2012) and Grafton et al. (2012) among others.
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preferences are characterized by a strong (weak) compensation e¤ect, the LC
fails to exist (may exist) while the GP may arise (fails to occur).
An environment-oriented government needs to know precisely the consumers�

preferences: under a strong compensation e¤ect, a higher green tax rate on
consumption may promote a higher pollution level (GP). In this case, the green
tax is not suited to clean the environment.
The reader is referred to the end of section 10 for a graphical illustration of

LC and GP.

10.4 Welfare analysis

We introduce a critical taxation point

�� � b (1� �) (� + �)� 
� [(1� �) � + �]

 (1� �) (� + �) + 
� [(1� �) � + �]

and the critical sensitivity to pollution �� � ��= [(1� �) � + �].

Proposition 13 Let assumption 1, 2 and 3 hold. Since " > 1 (compensation
e¤ect), � has a positive welfare e¤ect when � > �� jointly with:
(1) � > �� if � ("� 1) < "+ � (su¢ cient condition for LC).
(2) � < �� if � ("� 1) > "+ � (su¢ cient condition for GP).

Proof. See Appendix.
Let us explain Proposition 13. According to 28, � = �"P ="c captures the

slope of the indi¤erence curve with utility u (c; P ) and the relative preference of
environmental quality with respect to consumption.
First, assume that the economy experiences a weak compensation e¤ect

(� ("� 1) < "+ �, implying LC). According to Propositions 10 and 11, a higher
green consumption tax rate implies a lower consumption level and a lower pol-
lution level (higher environmental quality). If the household over-evaluates the
environmental quality with respect to consumption (� > ��), the utility loss in-
duced by the drop in consumption is over-compensated by the utility gain due
to a cleaner environment: the pollution tax turns out to be welfare-improving.
Now, assume that the economy experiences a strong compensation e¤ect

(� ("� 1) > " + �, implying GP). By de�nition of GP, a higher green tax rate
increases the pollution level (Proposition 11) and the consumption level in turn
(equation 30). If the representative household under-evaluates environmental
quality with respect to consumption (� < ��), the utility loss induced by the
drop in environmental quality is over-compensated by the utility gain induced
by the higher consumption level: the pollution tax turns out to be welfare
improving.

10.5 Local dynamics

Since Heal (1982), it is known that a strong compensation e¤ect can lead to
persistent deterministic cycles (Hopf) in a continuous-time Ramsey model. Such
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dynamical phenomena occur near the steady state (29). In this section, we shed
light upon the occurrence of cycles and their with the LC and the GP.
Let

' � 1� � "� 1
"

= 1 +
"cP
"cc

(31)

 � (�+ �)
1� �
�

�+ (1� �) �
�+ �

> 0

Consider (14), (38) and (39) to compute T , S and D:

T = �� a' (32)

S = � 
�
1 +

�

"

�
� a'� (33)

D = a 

�
'+

�

"

�
(34)

Let

�H �
" (1� '1)
"� 1

with

'1 =
1

2a

24�� �

"

 

�
�

s�
�� �

"

 

�

�2
+ 4 

�
1 +

�

"

a+ �

�

�35
'2 =

1

2a

24�� �

"

 

�
+

s�
�� �

"

 

�

�2
+ 4 

�
1 +

�

"

a+ �

�

�35
Proposition 14 Let " > 1. If

�H >
"

"� 1

�
1 +

 

a�

�
1 +

�

"

��
(35)

a limit cycle generically arises through a Hopf bifurcation near the steady state
at � = �H .

Proof. A Hopf bifurcation generically requires S > 0 and D = ST , that is

' < �  

a�

�
1 +

�

"

�
(36)

and ' = '1 or '2. Since '1 < 0 < '2, the Hopf bifurcation generically arises
only at ' = '1 provided that (36) holds, that is (35).

Corollary 15 (equilibrium determinacy) There is no room for local inde-
terminacy around the Hopf bifurcation point.
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Proof. A necessary condition for local indeterminacy is T < 0. At the Hopf
bifurcation point, T = � � a'1 > 0 because '1 < 0: an unstable eigenvalue
always exists when the Hopf bifurcation occurs.

Lemma 16 D > 0 implies a LC, while D < 0 implies GP.

Proof. According to 31, D > 0 if and only if � ("� 1) < " + �. Then D > 0
implies LC, while D < 0 implies GP.

Proposition 17 If a Hopf bifurcation occurs, the economy experiences a LC.
Conversely, there is no room for a Hopf bifurcation under the GP.

Proof. According to the proof of Proposition 14, at the Hopf bifurcation point,
' = '1 < 0, that is, T = �� a'1 > 0. From Proposition 6, a Hopf bifurcation
generically occurs if and only if D = ST with S > 0. Thus, D > 0 becomes a
necessary condition to observe a Hopf bifurcation. According to Lemma 16, the
existence of Hopf bifurcation implies a LC, while GP rules out the occurrence
of Hopf bifurcation.
According to Corollary 7, a Hopf bifurcation appears only when preferences

exhibit a compensation e¤ect. Nevertheless, if this compensation e¤ect becomes
excessive and, therefore, the GP takes place, any Hopf bifurcation is ruled out.
To explain this important result, we need to understand in economic terms how
a Hopf bifurcation arises around the steady state.
First of all, according to Propositions 10 and 11, a weak compensation e¤ect

implies the existence of a LC, while an excessive compensation e¤ect entails the
occurrence of the GP. Now, Let the economy be at the steady state at time t and
assume an exogenous rise in the pollution level. Focus on the pollution accumu-
lation process (12): the e¤ect of this increase on the next-period pollution level
is ambiguous. Indeed, (1) under the e¤ect of the natural pollution absorption,
the future pollution stock lowers, but (2) because of the compensation e¤ect,
the consumption demand increases, raising in turn the future pollution stock.
Hence, the e¤ect of a higher pollution level today on the pollution level tomorrow
rests on the magnitude of the compensation e¤ect. Under a weak compensation
e¤ect (compatible with the LC), (1) dominates (2), which means that a higher
pollution level today implies a lower pollution level tomorrow giving rise to a
endogenous �uctuations. Conversely, if the compensation e¤ect becomes exces-
sive (compatible with the GP), (2) dominates (1), which means that a higher
pollution level today entails a higher pollution level tomorrow, preventing the
occurrence of endogenous cycles in the end. Such an over-reaction, induced by
the excessive compensation e¤ect, neutralizes the restoring force.

10.6 Simulation

The previous section does not exclude the possibility of a Hopf bifurcation
around the steady state under a su¢ ciently strong compensation e¤ect. In
addition, we know that a green consumption tax is unable to prevent endoge-
nous cycles (see section 9). But, does this tax modify the stability of the limit
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cycle emerging through the Hopf bifurcation? Unfortunately, the Jacobian ma-
trix J is uninformative. Higher-order informations are required. To address the
important question of bifurcation criticity, we perform a numerical analysis.
We study the stability properties of the limit cycle when the economy is

located on both side of the LC using the MATCONT package for MATLAB.
We consider quarterly values (�, � and �).

Parameter � � A � � a b 
 " �
Value 0:33 1 1 0:01 0:025 0:1 0:05 0:1 2 4

(37)

We �x " to satisfy "cP > 0. Finally, we choose a, b and 
 to avoid excessive
stationary values at the Hopf bifurcation point and correctly apply MATCONT.
Following Proposition 14 and calibration (37), a Hopf bifurcation generically

occurs when � = �H = 4:933. According to proposition 10, a LC arises for
� 2 (0; 6), that is, a LC occurs at the steady state when � = �H (see Fig.1).

Fig.1 The La¤er Curve when � = �H

The location of economy along the LC depends upon the level of the green
consumption tax. First, assume that the economy lies on the upward-sloping
branch of the LC. If � = 0:05, the steady state values become

(�; k; P ) =
�
1: 286 0� 10�2; 28: 471; 0:397 23

�
MATCONT detects and computes independently a Hopf bifurcation at � =

4:9330157 � �H . The corresponding eigenvalues become:

�1 = 0:0122273i = ��2 (38)

�3 = 0:156651 (39)
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�1 and �2 are purely imaginary conjugated eigenvalues (with zero real part)
capturing the emergence of a limit cycle near the steady state. The stability of
the limit cycle depends upon the sign of the �rst Lyapunov coe¢ cient (l1) when
the dynamic system undergoes a Hopf bifurcation. Computing the coe¢ cient
with MATCONT, we �nd l1 = �5:279860 � 10�6. Since l1 < 0, the Hopf
bifurcation is supercritical and, thus, the limit cycle is stable (See Fig. 2).
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Fig.2 The stable limit cycle for � = 0:05

Now, let the economy lie on the downward-sloping branch of the LC. Fix,
for instance, � = 0:1. The steady state becomes:

(�; k; P ) =
�
7: 334 9� 10�4; 28: 471; 0:164 71

�
The critical Hopf bifurcation value does not change: � = 4:9330161 � �H (it

is independent of �). The corresponding eigenvalues are also the same than (38)
and (39) (indeed T , S and D are also independent on � : see expressions (32) to
(34)). The �rst Lyapunov coe¢ cient remains negative l1 = �5:280228 � 10�6 <
0. Therefore, the Hopf bifurcation remains supercritical and the limit cycle
stable (see Fig.3).
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Fig.3 The stable limit cycle for � = 0:1

These numerical simulations shows that the location of the economy along
the LC does not a¤ect the stability of the limit cycle.

11 Conclusion

We have considered a Ramsey model with endogenous labor supply, where pol-
lution increases the consumption demand through a compensation e¤ect. We
have seen that, in the long run, a weak compensation e¤ect leads to a LC while
a strong compensation e¤ect leads to a GP. Of course, the incompatibility of
these su¢ cient conditions suggests that LC and the GP are mutually exclusive.4

We have also shown that taxation is welfare-improving beyond a critical
point: (1) under a weak compensation e¤ect (su¢ cient for a LC) if households
over-evaluate the environmental quality or (2) under a strong compensation
e¤ect (su¢ cient for the GP) if households under-evaluate the environmental
quality.
Studying the local stability properties, we have found that the occurrence of

limit cycles implies the existence of a LC but they are ruled out in the case of
GP.
Our theoretical analysis has been complemented by a numerical simulation

showing the supercriticity (stability) of the limit cycles along both the branches
of the LC.

4Nevertheless, we observe that these conditions are only su¢ cient and the mutual exclusion
is not automatic.
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12 Appendix

Proof of Proposition 1
The consumer�s Hamiltonian function writes

~H � e��t [u (c; P )� v (l)] + ~� [(r � �)h+ wl � (1 + �) c]

The �rst-order conditions are given by @ ~H=@~� = (r � �)h+wl� (1 + �) c = _h,
@ ~H=@h = (r � �) ~� = �~�0, @ ~H=@c = e��tuc � (1 + �) ~� = 0 and @ ~H=@l =
�e��tvl + w~� = 0 jointly with the transversality condition limt!1 ~�h = 0.
Setting � � e�t~�, we �nd _� � �� = e�t~�

0
and, therefore, � (r � � � �) = � _�.

Finally, we obtain the budget constraint _h = (r � �)h + wl � (1 + �) c, now
binding.
Proof of Proposition 3
� is a continuous function. Boundary conditions (19) ensures positive solu-

tions P � of equation (18). Consider equation (18). If a steady state exists, the
monotonicity of � (� > 0) jointly with the boundary conditions (19) ensures
also the uniqueness of the steady state. More explicitly, we obtain

� =

�
�

c

@c

@�
� �

l

@l

@�

�
P

�

d�

dP
+
P

c

@c

@P
= 1� "cc + "cP

"ll

Since "ll > 0, "cP < �"cc implies � > 0.
Proof of Proposition 4
The tax elasticity of welfare function is given by

� ~W 0 (�)
~W (�)

=
u

u� v

"
"c
�~c0 (�)

~c (�)
+ "P

� ~P 0 (�)
~P (�)

#
� v

u� v "l
�~l0 (�)
~l (�)

Replacing (21), (22) and (23), we �nd

� ~W 0 (�)
~W (�)

=
[u ("c + "P )� v"l]� (�)� u"P 
�

b�
� � v"l
�
1+�

u� v (40)

(40) also writes

� ~W 0 (�)
~W (�)

=
[u ("c + "P )� lvl]� (�)� u"P 
�

b�
� � lvl
�
1+�

u� v

Replacing vl = wuc= (1 + �) (equation (6)), we �nd

� ~W 0 (�)
~W (�)

=
u

u� v

��
"c + "P �

w

1 + �

l

c
"c

�
� (�)� "P


�

b� 
� �
w

1 + �

l

c
"c

�

1 + �

�
In addition, we obtain from (16)

l

c
=

1 + �

�k + w
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This implies:

� ~W 0 (�)
~W (�)

=
u

u� v

�
� (�)

�
"P + "c

�k

�k + w

�
� "P


�

b� 
� � "c
�

1 + �

w

�k + w

�
Since

�k

�k + w
=

��

(1� �) � + �

with � = � (k) = �
�
r�1 (�+ �)

�
, but independent of � , we obtain

� ~W 0 (�)
~W (�)

=
u

u� v

�
� (�)

�
"P + "c

��

(1� �) � + �

�
� "P


�

b� 
� � "c
�

1 + �

(1� �) (� + �)
(1� �) � + �

�
We observe that, u� v = � ~W (�). Thus,

~W 0 (�) =
u"c
��

�
� (�)

�
"P
"c
+

��

(1� �) � + �

�
� "P
"c


�

b� 
� �
�

1 + �

(1� �) (� + �)
(1� �) � + �

�
Notice that u"c > 0. Then, ~W 0 (�) > 0 if and only if

� (�)

�
"P
"c
+

��

(1� �) � + �

�
>
"P
"c


�

b� 
� +
�

1 + �

(1� �) (� + �)
(1� �) � + �

Proof of Proposition 6
Necessity In a three-dimensional dynamic system, we require at the bifurca-

tion value: �1 = ib = ��2 with no generic restriction on �3 (see Bosi and Ragot
(2011) or Kuznetsov (1998) among others). The characteristic polynomial of J
is given by: P (�) = (�� �1) (�� �2) (�� �3) = �3 � T�2 + S� � D. Using
�1 = ib = ��2, we �nd D = b2�3, S = b2, T = �3. Thus, D = ST and S > 0.
Su¢ ciency In the case of a three-dimensional system, one eigenvalue is al-

ways real, the others two are either real or nonreal and conjugated. Let us show
that, if D = ST and S > 0, these eigenvalues are nonreal with zero real part
and, hence, a Hopf bifurcation generically occurs.
We observe that D = ST implies

�1�2�3 = (�1�2 + �1�3 + �2�3) (�1 + �2 + �3)

or, equivalently,

(�1 + �2)
�
�23 + (�1 + �2)�3 + �1�2

�
= 0 (41)

This equation holds if and only if �1 + �2 = 0 or �
2
3 + (�1 + �2)�3 + �1�2 = 0.

Solving this second-degree equation for �3, we �nd �3 = ��1 or ��2. Thus,
(41) holds if and only if �1+�2 = 0 or �1+�3 = 0 or �2+�3 = 0. Without loss
of generality, let �1 + �2 = 0 with, generically, �3 6= 0 a real eigenvalue. Since
S > 0, we have also �1 = ��2 6= 0. We obtain T = �3 6= 0 and S = D=T = �1
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�2 = ��21 > 0. This is possible only if �1 is nonreal. If �1 is nonreal, �2 is
conjugated, and, since �1 = ��2, they have a zero real part.
Proof of Proposition 9
Necessity In the real case, we obtain D = �1�2�3 < 0, S = �1�2 + �1�3 +

�2�3 > 0 and T = �1 + �2 + �3 < 0.
Su¢ ciency We want to prove that, if D;T < 0 and S > 0, then �1; �2; �3 <

0. Notice that D < 0 implies �1; �2; �3 6= 0.
D < 0 implies that at least one eigenvalue is negative. Let, without loss of

generality, �3 < 0. Since �3 < 0 and D = �1�2�3 < 0, we have �1�2 > 0. Thus,
there are two subcases: (1) �1; �2 < 0, (2) �1; �2 > 0. If �1; �2 > 0, T < 0
implies �3 < � (�1 + �2) and, hence,

S = �1�2 + (�1 + �2)�3 < �1�2 � (�1 + �2)2 = ��21 � �22 � �1�2 < 0

a contradiction. Then, �1; �2 < 0.
Proof of Proposition 10
Consider (21). Because the second-order elasticities are constant with re-

spect to � , we �nd

�0 (�) =
� (�)

� (1 + �)
+

�

1 + �


 (b+ 
)

(b� 
�)2
"cP

"cc + "cP � "ll

We observe that "cP < "ll � "cc is equivalent to � ("� 1) < " + �. Since
0 < � ("� 1) < "+ � jointly with � 2 (0; b=
) (that is P > 0, see equation (17)),
we have � (�) < 0 with �0 (�) < 0 (monotonicity). In addition:

� (0) = 0 and lim
�!(b=
)�

� (�) = �1

Let �� 2 (0; b=
) be solution of � (�) = �1. Because of continuity, monotonic-
ity and boundary conditions, this solution exists and is unique.
We observe that

�

m

@m

@�
= 1 + � (�) > 0, � (�) > �1, � < �� (42)

Therefore, the function m = m (�) is concave with a maximum at � = ��.

Proof of Proposition 13
Consider (21) and replace parametric expressions (28) to obtain

� (�) =
� ("� 1) 
�

b�
� + (1 + �)
�
1+�

� ("� 1)� "� �

(21), (22) and (23) become respectively

�~c0 (�)

~c (�)
= � (�) ,

�~l0 (�)
~l (�)

= � (�) +
�

1 + �
,
� ~P 0 (�)
~P (�)

= � (�)� 
�

b� 
�
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According to Proposition 4, � has a positive e¤ect on welfare if and only if

� ("� 1) 
(1+�)b�
� + (1 + �)

� ("� 1)� "� �

�
��

(1� �) � + � � �
�
>
(1� �) (� + �)
(1� �) � + � � � 
 (1 + �)

b� 
�
(43)

Simply remark that the RHS of 43 is always negative when � > ��. In addition,
(1) and (2) introduce parametric restrictions to ensure that the LHS of 43 is
positive.
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