Unité mixte de recherche 7235

L. Walras and C. Menger: Two ways on the path of modern monetary theory

Andrés Alvarez, Vincent Bignon

[en]This paper shows that modern monetary theory can be better understood through the differences between Menger and Walras. Since the 1980s attempts to establish coherent microfoundations for monetary exchange have brought Menger’s theory of the origin of money to the forefront and sent walrasian methods to the backstage. However, during the first decade of the XXIth century models inspired on mengerian monetary theory, mainly represented by the search monetary approach, are trying to reintroduce neowalrasian elements. This paper aims at clarifying the main theoretical implications of this movement, through an analysis of the Menger‐Walras divide on money. This divide allows us to show new proof of the deep theoretical differences among the so‐called marginalist authors and of the richness of this historical period as a source for modern economics.[/en]


mardi 17 mai 2022

Rencontres économiques

9h30 à 11h30

Comment se débarrasser des énergies fossiles et développer les énergies renouvelables dans un monde en crise ?

jeudi 19 mai 2022


Christophe Blot

Are all central bank asset purchases the same?

lundi 23 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Clara Jean (Grenoble Ecole de Management)

The Value of Your Data: Privacy and Personal Data Exchange Networks

mardi 24 mai 2022

Recherche et Economie et Socioéconomie Politique, des Institutions et des Régulations (RESPIR)

Alice Sindzingre (CEPN) et Fabrice Tricou

De 13h30 à 15h30

Six forms of hierarchy for a theoretical analysis of capitalism

lundi 30 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Antoine Dubus (ETH Zurich)

Salle G110

Data Driven Mergers and Acquisitions with Information Synergies

mardi 31 mai 2022

Series of Webinars on Economics of Environment, Energy and Transport (SWEEET)

Juan Pablo Montero (PUC)


jeudi 9 juin 2022


Rémi Generoso


jeudi 9 juin 2022

Groupe de travail « Intelligence artificielle »

Hugo Le Picard (IFRI)

Salle G614B

Le deep learning au service de l’analyse des énergies renouvelables en Afrique

Inscription aux Newsletters