Unité mixte de recherche 7235

Minimum Variance Portfolio Optimisation under Parameter Uncertainty: A Robust Control Approach

Bertrand Maillet, Sessi Tokpavi, Benoit Vaucher

[en]The global minimum variance portfolio computed using the sample covariance matrix is known to be negatively affected by parameter uncertainty. Using a robust control approach, we introduce a portfolio rule for investors who wish to invest in the global minimum variance portfolio due to its strong historical track record but seek a rule that is robust to parameter uncertainty. Our robust portfolio theoretically corresponds to the global minimum variance portfolio in the worst-case scenario, with respect to a set of plausible alternative estimators of the covariance matrix, in the neighbourhood of the sample covariance matrix. Hence, it provides protection against errors in the reference sample covariance matrix. Monte Carlo simulations illustrate the dominance of the robust portfolio over its non-robust counterpart, in terms of portfolio stability, variance and risk-adjusted returns. Empirically, we compare the out-of-sample performance of the robust portfolio to various competing minimum variance portfolio rules in the literature. We observe that the robust portfolio often has lower turnover and variance and higher Sharpe ratios than the competing minimum variance portfolios.[/en]

AGENDA

jeudi 19 mai 2022

Lunch

Christophe Blot

Are all central bank asset purchases the same?

lundi 23 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Clara Jean (Grenoble Ecole de Management)

The Value of Your Data: Privacy and Personal Data Exchange Networks

lundi 30 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Antoine Dubus (ETH Zurich)

Salle G110

Data Driven Mergers and Acquisitions with Information Synergies

mardi 31 mai 2022

Series of Webinars on Economics of Environment, Energy and Transport (SWEEET)

Juan Pablo Montero (PUC)

TBA

jeudi 9 juin 2022

Lunch

Rémi Generoso

TBA

jeudi 9 juin 2022

Groupe de travail « Intelligence artificielle »

Hugo Le Picard (IFRI)

Salle G614B

Le deep learning au service de l’analyse des énergies renouvelables en Afrique

mardi 14 juin 2022

Series of Webinars on Economics of Environment, Energy and Transport (SWEEET)

Andrew Plantiga (UCSB)

TBA

mercredi 15 juin 2022

Économies du monde musulman

Amel Bouzid (CREAD, Alger)

Natural and Regulatory Underlying Factors of Food Dependency in Algeria

Inscription aux Newsletters