Unité mixte de recherche 7235

The Balassa-Samuelson model in general equilibrium with markup variations

Romain Restout

[en]This contribution embeds the Balassa-Samuelson hypothesis in a general equilibrium model that combines monopolistic competition and markup variations to examine the determinants of relative prices of nontradables. The model emphasizes the role of markup variations as an important aspect driving relative price movements. Variations in the markup makes fiscal policy non-neutral and provides a strong magnification mechanism for shocks to productivity. The empirical evidence of these predictions are examined by using a panel cointegration framework. On the whole, the econometric findings support theoretical implications, suggesting that our model is more closely in line with data relative to the supply-side Balassa-Samuelson framework that abstracts from variations in the degree of competition.[/en]

AGENDA

mardi 17 mai 2022

Rencontres économiques

9h30 à 11h30

Comment se débarrasser des énergies fossiles et développer les énergies renouvelables dans un monde en crise ?

jeudi 19 mai 2022

Lunch

Christophe Blot

Are all central bank asset purchases the same?

lundi 23 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Clara Jean (Grenoble Ecole de Management)

The Value of Your Data: Privacy and Personal Data Exchange Networks

mardi 24 mai 2022

Recherche et Economie et Socioéconomie Politique, des Institutions et des Régulations (RESPIR)

Alice Sindzingre (CEPN) et Fabrice Tricou

De 13h30 à 15h30

Six forms of hierarchy for a theoretical analysis of capitalism

lundi 30 mai 2022

Law, Institutions and Economics in Nanterre (LIEN)

Antoine Dubus (ETH Zurich)

Salle G110

Data Driven Mergers and Acquisitions with Information Synergies

mardi 31 mai 2022

Series of Webinars on Economics of Environment, Energy and Transport (SWEEET)

Juan Pablo Montero (PUC)

TBA

jeudi 9 juin 2022

Lunch

Rémi Generoso

TBA

jeudi 9 juin 2022

Groupe de travail « Intelligence artificielle »

Hugo Le Picard (IFRI)

Salle G614B

Le deep learning au service de l’analyse des énergies renouvelables en Afrique

Inscription aux Newsletters