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1 Introduction

The distribution of financial asset returns is often modeled following mixtures of normal distributions

that have different parameters (Dacorogna et al., 2001). The distributional and dynamic properties

of volatility appear especially important for risk-management purposes, since different specifications

will yield to various pricing structures (Guillaume et al., 1997). The investigation of such properties

has been revivified by the recent literature on realized volatility, which relies on the use of intraday

data. Since the seminal contributions of Andersen, Bollerslev, Diebold and Labys (henceforth ABDL,

2001), Andersen, Bollerslev, Diebold and Ebens (henceforth ABDE, 2001), and Barndorff-Nielsen and

Shephard (henceforth BNS, 2002), among others, the literature on realized volatility measures has

been very prolific4.

This article uses tick-by-tick data of CO2 emissions allowances, valid for compliance under the EU

Emissions Trading Scheme (EU ETS), exchanged on the European Climate Exchange (ECX) based

in London. More particularly, we use the futures contract of maturity December 2008 to examine the

unconditional and conditional (dynamic) distributions of the ECX CO2 emissions futures volatility.

This new analysis appears important on such an emerging market, where the understanding of the

volatility properties of CO2 prices will allow a better characterization of the relevant stochastic process

to price derivatives (Tucker (2001), Chevallier et al. (2009)). It appears also of primary importance to

hedge against various kinds of institutional, economic or financial risks (see Busch and Hoffman, 2007).

Hence, the research question developed in this article may be of precious use for risk-management

purposes, which requires a careful understanding of the volatility of CO2 prices.

The statistical properties of daily realized volatilities in futures markets has been investigated, among

others, in Thomakos and Wang (2003). Their analysis of D-Mark, E-Dollar, S&P500 and T-bonds

shows that standard deviations exhibit long memory, while standardized returns are serially uncorre-

lated. They also found that the unconditional distributions of daily returns’ volatility are leptokurtic

and highly skewed to the right, while the distributions of standardized returns and logarithmic stan-

dard deviations are close to a Gaussian distribution.

Luu and Martens (2003) test the mixture-of-distributions-hypothesis (MDH) (Clark (1973), Tauchen

and Pitts (1983)) by comparing volatility models using daily and intraday data. Our approach consists

in applying this research question to the study of ECX CO2 emissions futures. The first use of intraday

data for CO2 emissions markets may be related to Benz and Klar (2008), who investigate the price

discovery between various exchanges. To our best knowledge, our article constitutes the first attempt

to derive the volatility properties of CO2 emissions futures using realized measures.

Our data set contains one year of tick-by-tick data from ECX CO2 emissions futures, corresponding

to the 2008 futures contract. The choice to restrain our analysis to the 2008 contract is motivated

by (i) the erratic behavior of spot prices during 2005-2007 due to banking restrictions (Alberola and

Chevallier, 2009), which proved to be less robust than futures for price signalling in the medium-term;

and (ii) the validity of the 2008 contract during Phase II (2008-2012), which offers the “bankability”

4Surveys may be found in Zivot (2005), McAleer and Medeiros (2008), Andersen and Benzoni (2009).
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of CO2 emissions allowances until the end of Phase III (2013-2020).

Since the end of 2007, both the liquidity of the EU ETS and the availability of high-frequency data

have been increasing. ECX emissions futures are indeed the most heavily traded emissions contracts,

followed by spot and option prices. The volume of intraday transactions recorded on the ECX CO2

emissions futures market is approximately equal to one tenth of Foreign Exchange (FX) markets, which

are opened 24 hours. With an average of 700 trades per day and 50 seconds between each transaction,

the tick-by-tick data gathered for ECX CO2 emissions futures is somewhat comparable to the values

found on other financial markets, such as the level of daily transactions for the D-Mark as documented

in Thomakos and Wang (2003).

This article provides the first empirical application of the methodology by ABDL (2001) and ABDE

(2001) to ECX CO2 emissions futures. We use one year of 15-minute returns5 from the futures

contract to estimate the daily realized volatility, and hence to describe the distribution and time-

series properties of ECX CO2 emissions futures. Compared to previous literature, the estimates of

intraday volatility based on realized measures are more accurate than the estimates based on daily

data which are used in Paolella and Taschini (2008), Benz and Truck (2009), Daskalakis et al. (2009)

and Oberndorfer (2009), among others.6

Our methodology consists in dealing with the distributional, dynamic, and forecasting properties

of realized volatility for ECX CO2 emissions futures. We study the unconditional distributions of

realized volatility measures, while testing for several transformations to approach normality. We also

test whether the MDH holds for ECX CO2 emissions futures. Then, we investigate the dynamics of

realized volatility measures using an Heterogeneous Autoregressive Model of the Realized Volatility

(HAR-RV) developed in Corsi (2009) versus GARCH specifications. We finally propose a forecasting

exercise, by testing the predictive accuracy of the HAR-RV model versus other models of conditional

volatility based on daily data.

Our main results may be summarized as follows. We first document the near normality of the loga-

rithmic form of realized volatility measures for the ECX 2008 futures contract. This is standard in

financial literature, as the “spot volatility” which governs the Brownian motion is generally assumed to

be lognormally distributed. Nevertheless, the standardized returns (using realized volatility) are not

normally distributed, which stands against the MDH. Standardized returns using GARCH volatilities

are more normally distributed, which is not usual for financial series. Finally, the HAR-RV model

with a daily and a weekly component outperforms unambiguously GARCH specifications in terms of

dynamic modeling and forecasting accuracy. The latter result is due to the superiority of realized

measures in estimation using intraday data over lower frequency variations.

Several directions may be pursued in extension of our work. The investigation of jump components in

realized volatility measures appears of primary interest, by using standardized bi-power and tripower

5The optimal sampling frequency is chosen so as to limit the impact of market microstructure effects.
6Our analysis remains univariate. Using high-frequency data, a multivariate analysis such as Cartea et al. (2007) or
Bunn and Fezzi (2007) does not seem appropriate, because of the complex relationships linking CO2 emissions and
energy markets. Thus, the study of realized covariance and realized correlations of ECX CO2 emissions futures with
other high-frequency energy futures price series is not considered here.
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variation (Andersen, Bollerslev and Diebold, henceforth ABD, 2007). The formal determination of

the optimal sampling frequency also appears as a promising area for future research using specific

microstructure noise detection tests (see Awartani et al., 2009).

The remainder of the article is organized as follows. Section 2 provides an overview of futures trad-

ing on the EU ETS. Section 3 reviews estimation methods for realized volatility, discusses optimal

sampling frequency issues and maturity effects characteristic of futures contracts. Section 4 studies

the unconditional distribution of ECX CO2 emissions futures returns and realized volatility, as well

as the distributional properties of returns and standardized returns, using several transformations for

realized volatility measures. Section 5 investigates realized volatility dynamics, and especially long

memory components using the HAR-RV model. Section 6 provides a forecasting exercise to test the

accuracy of the HAR-RV model against the predictive power of daily GARCH forecasts. Section 7

concludes.

2 The European CO2 emissions futures market

In this section, we present first the key design issues on the European CO2 emissions futures market,

second we discuss the main characteristics of futures trading on ECX, and third we proceed with a

preliminary analysis of the intraday data used.

2.1 Design and transactions growth

Let us discuss first some key design issues, as well as the growth of transactions recorded on the

European CO2 emissions market since its creation on January 1, 2005.

2.1.1 Key design issues

The European Union Emissions Trading Scheme (EU ETS) has been created by the Directive 2003/87/CE.

Across its 27 Member States, the EU ETS covers large plants from CO2-intensive emitting industrial

sectors with a rated thermal input exceeding 20 MWh. One allowance exchanged on the EU ETS cor-

responds to one ton of CO2 released in the atmosphere, and is called an European Union Allowance

(EUA). 2.2 billion allowances per year have been distributed during Phase I (2005-2007). 2.08 billion

allowances per year will be distributed during Phase II (2008-2012). With a value of around =C20 per

allowance, the launch of the EU ETS thus corresponds to a net creation of wealth of around =C40

billion. In January 2008, the European Commission extended the scope of the EU trading system to

other sectors such as aviation and petro-chemicals by 2013, and confirmed its functioning for a third

Phase until 2020.

2.1.2 Transactions growth

During Phase I of the EU ETS (2005-2007), the total volume of allowances exchanged has been steadily

increasing. The number of transactions has been multiplied by a factor four between 2005 and 2006,
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going from 262 to 809 million tons. This increasing liquidity of the market has been confirmed in 2007,

where the volume of transactions recorded is equal to 1.5 billion tons. This peak of transactions may

be explained by the growth of the number of contracts with delivery dates from December 2008 to

December 2012, which represented 4% of total exchanges in 2005, and 85% in 2007. These transactions

reached =C5.97 billion in 2005, =C15.2 billion in 2006, and =C24.1 billion in 2007, thereby confirming

the status of the EU ETS as the largest emissions trading scheme to date in terms of transactions.

In 2008, the carbon market was worth between =C89 billion and =C94 billion, up more than 80% year-

on-year, according to analysts (Reuters). The launch of secondary certified emission reduction (CER)7

contracts on ECX certainly fostered this growth rate of transactions.

2.2 Futures trading

As discussed below, due to the non-reliable behavior of spot prices during Phase I (2005-2007), we

decide to use futures prices valid for Phase II (2008-2012). More specifically, we choose to investigate

in this article the volatility dynamics of the December 2008 futures contract traded in =C/ton of CO2

on ECX.

2.2.1 Price development

ECX futures trading started on April 22, 2005 with varying delivery dates going from December 2005

to December 2012. Futures contracts with vintages December 2013 and 2014 were introduced on April

8, 2008. Daily closing prices trade at =C13.32/ton of CO2 as of January 15, 2009, and have reached a

maximum price of =C32.90/ton of CO2 in 20088.

Insert Figure 1 about here

Figure 1 shows the futures price development for contracts of maturities December 2005 through

2014 from April 22, 2005 to January 16, 2009. We may observe that futures prices for delivery

during Phase II (2008-2012) proved to be much more reliable than futures prices for delivery during

Phase I (2005-2007), due to the banking restrictions enforced between the two Phases (Alberola and

Chevallier (2009)). Market observers noticed a divergence between Phase I spot and futures prices

- which decreased towards zero - and Phase II futures prices - which conveyed a medium-term price

signal around =C20/ton of CO2 throughout the historical data available for the second phase of the

scheme. The price development for Phase II futures comprises a lower bound around 15=C/ton of CO2

in April 2007, and an upper bound around 35=C/ton of CO2 in November 2008.

7According to the article 12 of the Kyoto Protocol, Credit Development Mechanism (CDM) projects consist in achieving
GHG emissions reduction in non-Annex B countries. After validation, the UNFCCC delivers credits called CERs that
may be used by Annex B countries for use towards their compliance position. CERs are fungible with EU ETS allowances
with a maximum limit of around 13.4% on average.

8In the longer term, analysts forecast EUA prices of =C20-25/ton of CO2 over Phase II and =C25-30/ton of CO2 over
Phase III, which will run from 2013-20 (Reuters).
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2.2.2 Contract specifications

The ECX CO2 emissions futures contract is a deliverable contract where each member with a position

open at cessation of trading for a contract month is obliged to make or take delivery of emission

allowances to or from national registries. The unit of trading is one lot of 1,000 emission allowances.

Each emission allowance represents an entitlement to emit one tonne of carbon dioxide equivalent gas.

Market participants may purchase consecutive contract months to March 2008, and then December

contract months from 2008 to 20129. Trading occurs from 07:00AM to 05:00PM GMT. Allowances

delivery typically occurs by mid-month of the expiration contract date. The ECX December 2008

futures contracts expired on December 15, 2008. The first delivery of the underlying CO2 allowance

occurred on December 16, 2008, and the last delivery on December 18, 2008.

2.3 Preliminary analysis of the intraday data

Our sample contains one year of tick-by-tick transactions for the ECX futures contract of maturity

December 2008, going from January 2 to December 15, 2008. This is equivalent to 240 days of trading

after cleaning the data for outliers, and until the expiration of the contract. Intraday data with a one-

year time horizon have been studied, for instance, by Taylor and Xu (1997) for the DM/$ exchange

rate. The total amount of intraday observations in our sample is equal to 167,004. The ECX CO2

emissions futures tick data thus corresponds to one tenth of the transactions recorded on FX markets

- which are opened 24 hours and reach more than 15,000 trades per day. However, this level of

transactions appears comparable to the values found for other markets. For instance, Thomakos and

Wang (2003) note that the average number of price changes per day is 163 for the Eurodollar, 3,366 for

the S&P500, and 1,710 for T-bonds. The average amount of transactions for the ECX CO2 emissions

futures tick-by-tick data is equal to 700 trades per day. This corresponds to an average of 50 seconds

between each transaction.

In the next section, we detail how to compute realized volatility measures.

3 Estimation of realized volatility

In this section, first we review the theoretical background to derive realized volatility measures from

intraday data, second we present different estimation methods, third we discuss the issue of optimal

sampling frequency choice and the maturity effect in the futures contract.

3.1 Theory

Let p(t) denote a logarithmic asset price at time t. Abstract from a jump process, the continuous-time

diffusion process generally employed in asset and derivatives pricing may be expressed by a stochastic

differential equation as:

9Note spreads between two futures contracts may also be traded.
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dp(t) = µ(t)dt + σ(t)dW (t) with 0 ≤ t ≤ T (1)

with µ(t) a continuous and locally bounded variation process, σ(t) a strictly positive càdlàg (right

continuous with left limits) stochastic volatility process, and W (t) a standard Brownian motion. Note

that the formulation in equation (1) is very general, includes most of the processes generally used in

standard asset pricing theory (see ABDL (2001)) and may accommodate for long memory components.

Next, let us consider the quadratic variation (QV) for the cumulative return process r(t) ≡ p(t)−p(0):

[r, r]t =

∫ t

0

σ2(s)ds (2)

The QV simply equals the integrated volatility of the process described in equation (1). Now, assume

that returns are sampled on a ∆-period yielding rt,∆ ≡ p(t)− p(t−∆). The realized variance10 (RV)

is defined as the sum of the corresponding 1/∆, which is assumed to be an integer for simplicity,

high-frequency intraday squared returns, or:

RVt+1(∆) ≡
1/∆
∑

j−1

r2
t+j.∆,∆ (3)

Andersen and Bollerslev (1998) followed by ABDL (2001) and BNS (2002) among others demonstrated

that, as the sampling frequency of the underlying returns increases, the RV converges uniformly in

probability to the increment of the QV process, or:

RVt+1(∆) →
∫ t

0

σ2(s)ds (4)

when ∆ → 0. Thus, RV is a consistent estimator for the integrated volatility used throughout asset

pricing theory. In other words, as the sampling frequency increases, the estimation error of the RV

diminishes.

3.2 Estimation methods

Theory suggests that optimal sampling corresponds to sampling at the highest possible frequency.

In practice, this is far from being true as shown in a series of articles starting with Andersen and

Bollerslev (1998). In fact, the logarithmic return process which is truly observed does not comply

with the hypothesis of a semimartingale for the underlying process, which is a necessary hypothesis

for deriving results discussed in the previous section. This issue is discussed in ABDL (2001) and

Zhang et al. (2005) for instance. The latter authors describe this phenomenon as emerging from

market microstructure problems, whose main examples are the existence of a bid-ask spread, non-

synchronous trading, etc.

10Some authors refer to this as realized volatility, but we reserve this term for the square root of realized variance that is
also considered in this article.
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To mitigate the impact of microstructure noise, various methodologies have been employed in the

empirical financial literature. These include the determination of the optimal ∆ as described in Aı̈t-

Sahalia et al. (2005) after the noise has been modelled, the use of subsampling schemes as in Zhang

et al. (2005), resorting to pre-filtering methods as in Andreou and Ghysels (2002) or kernel-based

methodologies as in Zhou (1996) or Hansen and Lunde (2006). In order to investigate the relevance

of different sampling methods for the analysis of the ECX emissions futures 2008 contract, we do not

only follow ABDL (2001) as is the case in most of the existing empirical literature, but we also consider

two other methodologies.

First, we consider the traditional un-weighted estimator used for instance in ABDL (2001) and BNS

(2002). This estimator is the natural estimator in view of theoretical developments in quadratic

variation and perfectly fits equation (3), as it is the sum of squared realized returns on a given

sampling frequency. For each day d and sampling frequency 1/m, we compute:

RV d,m =

m
∑

i=1

r2
i,m (5)

Second, we estimate realized volatility following Zhang et al. (2005). Their sub-sampling method

appears particularly relevant for use with the ECX emissions futures intraday data, because of the

limited number of daily transactions compared to other more actively traded financial assets. The

idea behind sub-sampling is that when a given sampling frequency, say 1/m, is chosen in light of the

microstructure noise limited impact, a large share of the data is ignored. To fully account for the

available information, Zhang et al. (2005) propose to average the measure of realized volatility at 1/m

frequency but for different starting times. Let:

RV d,m,p =

m+p
∑

i=1+p

r2
i,m (6)

be the realized variance measure at sampling frequency 1/m, but with the first observation chosen

at 1 + p with p < 1
m . By evaluating RV d,m,p for starting times 1, 1 + p, 1 + 2p, ..., 2 and keeping the

sampling frequency 1/m, we move our estimation window, and thus exploit a larger part of the data

set. Zhang et al. (2005) then propose to average the measure considering all starting values.

Third, we retain a kernel-based estimator as first proposed in Zhou (1996). After testing for various

kernel estimates, such as the modified Tukey-Hanning kernel, our choice goes to the Bartlett kernel-

based estimator, which shows better performance with respect to the variability of the estimators with

respect to their inputs11.

We then consider, as is now common in the literature12, three different proxies for volatilities. First, we

study the realized variance as defined in equation (3) with a sampling frequency of 15 minutes, in view

of the volatility signature plots in Figure 3 (see more on this below). Second, following ABDL (2001)

11Hansen and Lunde (2006) discuss this issue, and provide more details on the practical application of kernel-based
methods.

12See ABD (2007) and references therein.
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we examine the square root of the realized variance, denoted realized volatility, or RV
1/2
t . Third, we

consider the logarithm of the realized volatility, or log(RV
1/2
t ), also known for its convenient properties

in small samples13. As will be discussed below, the logarithmic transformation represents one among

other power transformations. A better choice may emerge following Gonçalves and Meddahi (2008).

Insert Figure 2 about here

Figure 2 plots the three proxies of volatilities (left, middle and right panels) for the three estimation

methods selected (top, middle and bottom panels). The time-series reveal the presence of jumps and

structural breaks that may be taken into account using multipower variation measures.14 Note also

that the time-series on the left panel reflect the exclusion of the “once-in-a-generation” (Cai et al.

(2001), ABDL (2003)) anomalous carbon price movement detected on October 13, 2008 which seems

to coincide with the depressing effect of the “credit crunch” crisis on the prices of global commodity

markets.

Insert Table 1 about here

Table 1 reports the descriptive statistics for the three proxies of volatility with the three estimation

methods. We observe that the daily realized variance and the daily realized volatility in standard

deviation form present nonzero skewness and excess kurtosis15. These descriptive statistics therefore

reveal a “fat tailed” leptokurtic distribution for the ECX CO2 emissions futures contract of maturity

December 2008, except for the daily realized volatility in logarithmic form.

3.3 Optimal sampling frequency and maturity effect

As is usual, we need to estimate the highest frequency at which the microstructure noise can be

neglected. To this purpose, we use volatility signature plots, where the realized volatility measure

described in equation (5) is computed and plotted at different sampling frequencies.

Insert Figure 3 about here

Figure 3 shows the volatility signature plot for the full (top) and November-December (bottom)

samples. As in ABDL (2001) and ABDE (2001), we use these volatility signature plots to estimate

the range of sampling frequencies where the volatility is strongly increasing, indicating the increasing

presence of microstructure noise.

For the full sample, it appears that the choice of 15-minute returns should allow to minimize the impact

of the microstructure noise, while ensuring for each day a sufficient number of observations. The use

of 15-minute returns for the ECX carbon tick data also appears as a conservative choice compared to

13Some articles (e.g. ABD (2007)) consider the series of the logarithm of the realized variance instead of the logarithm of
the standard deviation of the realized variance. This is of course equivalent up to a scalar.

14This aspect is left for further research.
15Note for a normally distributed random variable skewness is zero, and kurtosis is three.
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5-minute returns usually chosen for FX markets. Of course, the use of volatility signature plot as a

simple graphical tool to determine the optimal frequency is questionable. To overcome this difficulty,

Awartani et al. (2009) propose a statistical test allowing to assess the incremental impact of the

microstructure noise between two possible frequencies. As such, a rolling version of their procedure

can be viewed as a statistically robust implementation of the volatility signature plot method in ABDL

(2001). Because our contribution remains more empirically-oriented, we choose to proceed with the

graphical method.

Looking at Figure 3 reveals different patterns between the full sample and the end-of-year sub-sample.

We observe that the level of volatility is slightly higher at the end of the year. This is a quite

standard effect on commodity futures markets, also known as the “Samuelson effect”. Samuelson

(1965) advocated in his seminal article that volatility is increasing near the maturity of futures contract

as a response to an increasing flow of information.16 Thus, to verify the Samuelson hypothesis,

we should observe that the futures price volatility increases as the futures contract approaches its

expiration date. This characteristic of financial assets has been recently proven to be valid using

intraday data for a wide range of futures market, including agricultural futures (Duong and Kalev,

2008).

The inspection of the volatility signature plots for the last months of 2008 tends to confirm this

hypothesis. The effects of microstructure noise seem visually more important. More importantly, the

dispersion of the estimator is larger due to the low level of observations used to compute the realized

variance. For the November-December period, the realized volatility estimate can lie anywhere between

0.01 and 0.025 using a sampling frequency around 15 minutes. This variability is lower for the full

sample, which goes from 0.015 to 0.020 for the same sampling frequency. Nevertheless, in view of

the moderate effect that we observe at the end of the sample, we choose to keep a 15-minute interval

between two observations as being representative of the optimal frequency for the entire sample.

In the next section, we explain the empirical results obtained.

4 Unconditional distribution of futures returns and realized

volatility

In this section, we study the unconditional distribution of realized volatilities and returns for the

ECX December 2008 futures contract. We first focus on the unconditional distribution of our three

proxies for realized volatility. We then study the distributional properties of daily raw returns, RV-

standardized and GARCH-standardized-returns.

4.1 Distribution of realized variance and volatility

Insert Figure 4 about here

16See also Illueca and Lafuente (2006) for an application of the realized volatility measure to the investigation of the
expiration-day effect.
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We first plot unconditional distribution of realized variances and realized volatilities in the left and

middle panels of Figure 4. The distribution of these volatility measures appears strongly right-skewed.

Insert Table 2 about here

This is confirmed by normality test statistics in Table 2. The kurtosis of the series indicates fat tails

compared to a Gaussian distribution.

Insert Figure 5 about here

Quantile-Quantile (QQ) plots against normality in Figure 5 unambiguously reject normality for realized

variance and volatility. Next, we turn to the logarithmic transformation, which is common practice

since ABDL (2001), to near normality.

4.2 Distribution of the logarithmic transformation of volatility

We begin our analysis by using the logarithmic transformation as in most of the existing literature. The

kernel-based distributions plotted in the right panel of Figure 4 indicate a less skewed density than for

realized variance or its square root. Indeed, in view of the plotted distributions and quantile-quantile

plots in the right panel of Figure 5, it appears that the logarithmic transformation of the realized

volatility, while remaining left-skewed, does a better job in nearing normality. It should be noted that

our kernel-based distributions are only based on 240 trading days. This limited data availability may

explain the departure from normality, which is expected in small sample experiments.

To sum up, our analysis shows that the logarithmic transformation of the daily realized volatility

is closer to normality than other forms of volatility. This result is in line with previous literature

on the modeling of stochastic volatility (see ABDL (2001, 2003) among others), which has practical

applications in option pricing.

4.3 Alternative transformations

The logarithmic transformation is only one transformation among others. Alternative transformations

have been proposed to improve the normal approximation in small samples. Chen and Deo (2004)’s

transformation is based on a power transformation, from which the exponent is then estimated. Un-

fortunately, the exponent has to be estimated knowing the asymptotic variance of realized volatility,

which is not the case in practice. Gonçalves and Meddahi (2008) thus coin this statistic as “infeasible”,

and rely on Edgeworth expansions to determine the optimal parameter β of the Box-Cox transforma-

tion to retain in order to eliminate the skewness. We tested various values of β to better take into

account the residual skewness in our series. We did not find better transformations compared to the

initial logarithmic transformation17.

17The results of these tests are no reported here due to space constraints, but are available from the authors upon request.
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4.4 Distributional properties of returns and standardized returns

Let Rt be the daily open-to-close continuously compounded return of the futures contract for day t.

Insert Figure 6 about here

Daily raw returns are plotted in Figure 6. As is common for financial time-series, returns exhibit

volatility clustering.

Insert Table 3 about here

Descriptive statistics of daily returns are provided in Table 3. We observe that the unconditional

distribution of returns is close to normality with a sample skewness of -0.047 and a sample kurtosis of

3.24, thus resulting in a Jarque-Bera statistic value of 0.69 corresponding to a p-value of 0.70.

Next, we compute the series of daily standardized returns. Following Clark’s (1973) seminal contri-

bution for cotton futures returns, the standardized returns should follow a normal distribution if the

process governing the realized volatility is log-normal and the process governing returns is normal.

According to Clark’s vocable, the volatility process is the “directing process”, and the distribution of

standardized returns is said to be “subordinated” to the distribution of returns. The resulting process

is thus a lognormal-normal mixture, so-called the “mixture-of-distribution hypothesis” (MDH) in the

literature18.

Insert Figure 7 about here

For the ECX CO2 emissions 2008 futures data, it is obvious that standardized returns are not normally

distributed (see Figure 7). Table 3 indicates a sample skewness of 0.89 and a sample kurtosis of 8.84.

Gaussianity is clearly rejected at all confidence levels, and does not need further investigation. As

in Areal and Taylor (2002), the rejection of the MDH may be due to (i) the imperfect estimation of

the logarithmic volatility through the realized estimator19, and (ii) the extreme outlier occurring on

October 13, 2008, which strongly deforms our distribution. Another explanation for non-normality may

be found in Fleming and Paye (2005), who argue that microstructure noise biases kurtosis estimates for

standardized returns. The intuition behind this result is that microstructure noise is less likely to occur

for large absolute returns, because large absolute returns are often associated with larger volumes. As

such, the realized volatility is underestimated for large absolute return days, thus inflating the tails of

the standardized returns distribution. Because of the limited number of observations in the present

work, it appears difficult to verify this assumption. This would necessitate many large absolute return

days and a thorough analysis of the microstructure bias conditionally on the presence of a large

absolute return.
18A very clear presentation of the MDH is given in Jondeau et al. (2007), sections 3.3 and 3.4. This hypothesis is

investigated for futures returns in Areal and Taylor (2002) and Martens and Luu (2003), among others.
19Note we did not introduce the possibility of jumps in our analysis through more robust estimators as bipower or tripower

estimators (see ABD (2007)). Indeed, the presence of jumps may distort the distribution of standardized returns. This
area is left for further research.
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The rejection of the MDH for the ECX CO2 emissions 2008 futures contract has strong implications

for derivatives pricing in these markets20. The jump-free diffusion process which is commonly assumed

for option pricing does not seem suitable for the CO2 emissions allowance market. There may be two

different explanations for that. First, the process may include jumps. Options would then be better

priced using jump-diffusion models. Second, the independence assumption between the Brownian

motion and the volatility process may be violated. This also has some consequences for the pricing of

derivatives, as more complex models need to be considered.

We also investigate graphically the presence of leverage, i.e. an increase in volatility following negative

returns. Such an asymmetry may have consequences in terms of volatility modeling, because a good

working knowledge of returns would help to model volatility.

Insert Figure 8 about here

By contrast, the absence of asymmetric effect seems apparent in Figure 8, which provides a scatterplot

of realized volatility in logarithmic form against lagged standardized returns. This conclusion has, of

course, to be taken with care in light of the limited number of daily observations in our study.

It is common in the financial literature to examine the parametric modeling of volatility through

GARCH or stochastic volatility (SV) models. More precisely, GARCH volatilities may be used to

standardize daily returns, and may be compared with realized volatility results. Following Benz and

Truck (2009), we specify the AR(1)-GARCH(1,1) model:

Rt = β0 + β0Rt−1 + ǫt (7)

ht = α0 + α1ǫ
2
t−1 + α2ht−1 (8)

with Rt the daily returns, and ǫt the error term in equation (7). Equations (7) and (8) are estimated

by Quasi Maximum Likelihood (QML) (Gourieroux et al. (1984)) using the BHHH algorithm (Berndt

et al. (1974)).

Insert Table 4 about here

Estimation results of the AR(1)-GARCH(1,1) model are presented in Table 4. Residual tests for the

chosen specification provide evidence that any autocorrelation in the residuals and squared residuals

has been removed21. The distribution of GARCH-standardized returns is more normal than the

distribution of realized volatility-standardized returns (see Table 3 and Figure 7). This result is

unusual in the financial economics literature, as GARCH-standardized returns are generally more fat-

tailed than realized volatility-standardized returns. The natural leptokurticity of GARCH models is

20European options with various strike prices have indeed been introduced in October 2006 on ECX (see Chevallier et al.

(2009)).
21To conserve space, the autocorrelation and partial autocorrelation functions of the residuals and squared residuals are

not reproduced here, and may be obtained upon request to the authors.
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generally argued to be insufficient to accommodate the empirical excess kurtosis of financial time-

series22.

Insert Figure 9 about here

Figure 9 plots the time series of the AR(1)-GARCH(1,1) model. We observe that GARCH estimates

are significantly smoother than realized estimates. In light of our empirical study, GARCH modeling

appears more suitable to reach normality once returns have been standardized. This result highlights

the critical role which may be played by jumps in the time-series of ECX CO2 emissions 2008 futures.

In the next section, we investigate the properties of the conditional distribution of futures returns and

realized volatility.

5 Modeling realized volatility dynamics

In this section, we are interested in modeling the conditional distribution of volatility. This investi-

gation has practical applications for forecasting purposes, and may also be of interest for traders who

need accurate volatility estimates for derivatives pricing.

We first investigate the autocovariance in the realized variance, the realized volatility, and the loga-

rithm of volatility series.

Insert Figure 10 about here

Figure 10 plots the autocorrelation function (ACF) and partial autocorrelation function (PACF) es-

timated for the naive estimator23. We detect the presence of serial correlation for realized variance

and realized volatility at least with one lag. For the log-transformation of the volatility series, the

estimated autocorrelation does not appear to decay exponentially, but rather hyperbolically. This may

be an indication of the presence of an unit root.

Insert Table 5 about here

The test statistics provided in the first column of Table 5 indicate the rejection of the unit-root

hypothesis in all cases. In what follows, we focus on the existence of long memory in the data

generating process.

Because the tick-by-tick time-series of ECX CO2 emissions futures is very short to investigate the

presence of long memory, we consider two estimation procedures for the fractional integration coeffi-

cient, as in ABDL (2001) and Areal and Taylor (2002). First, let ST be the variance of the sum of

22Log-likelihood based on fat-tailed distributions (generalized error distribution (GED), Student, etc.) is commonly used
to accommodate this high degree of kurtosis. We did not find however any improvement in our estimation by using a
similar approach.

23Similar plots were obtained for the two other estimators, and thus are not reported here to conserve space.
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T consecutive observations of, say, logarithm of the realized volatility log(RV
1/2
t ). For long memory

processes, the variances ST follow a scaling law such that:

T−(2d+1)ST → C (9)

as T → ∞ with d > 0, and C is a constant24.

Insert Figure 11 about here

Figure 11 plots the sample variances ST of the partial sums of the realized logarithmic standard

deviations against the logarithm of the aggregation level for T . The regression coefficient corresponds

to 2d+1, and thus leads to an implicit value of the fractional integration coefficient reported in Table

5.

The second methodology to estimate this coefficient is the Geweke-Porter-Hudak’s (henceforth GPH,

1983) method (see Brockwell and Davis (1991) for a formal presentation, or Corsi (2009) for a discus-

sion). The GPH estimate is based on the regression of the logarithm of the periodogram estimate of

the spectral density against ln(ω) over a range of frequencies ω with:

w2df(ω) → C (10)

as Tω → 0 and C a constant. Again, the estimates are comprised in the range of [0, 0.5], which

indicates the presence of long memory.

In view of these strong indications of long memory in the log time-series, we choose to rely on Corsi’s

(2009) parsimonious HAR-RV model for at three main reasons. First, recall that our dataset contains

only 240 trading days. This is clearly too few for ARFIMA modeling, despite the presence of long

memory25. Second, Pong et al. (2008) show that long memory may not be distinguished from short

memory below 250 trading days. Second, the HAR-RV model succeeds in reproducing the long memory

features of the time-series, while being easier to estimate particularly on a shorter time-horizon. Third,

the heterogeneous behavior assumed between economic agents may be justified by the fact that traders,

utilities and financial institutions operating on the EU ETS have different investment horizons. The

HAR-RV model is used in ABD (2007), Corsi et al. (2008), and Liu and Maheu (2009) among

others. The economic intuition behind this model is that different groups of investors have different

investment horizons, and consequently behave differently (see Müller et al. (1997) for the presentation

of the HARCH original model relying on the Heterogeneous Hypothesis).

The original HAR-RV model by Corsi (2009) is formally a constrained AR(22) model, slightly different

from ABDL (2001) and Corsi et al. (2008)26. The HAR-RV model using daily, weekly and monthly

24In comparison, setting d = 0 is a feature of short memory.
25Note that ARFIMA estimation does not appear suitable alternatives for the one-year ECX emissions futures with

tick-by-tick data, since the estimation of formal long memory models would require several years of data.
26ABDL (2001) formally use an AR(5). In this article, we adopt an intermediate specification by selecting a simplified

HAR-RV model with only a weekly component, thus leading to a constrained AR(5) specification. Note that our choice
is also econometrically motivated by the Q(20) test statistics reported in Table 3.
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realized-volatility components may be defined as follows:

√

RVt = α0 + αd

√

RVt−1 + αw(
√

RV )t−5:t−1 + αm(
√

RV )t−22:t−1 + ut (11)

or in logarithmic form:

log RVt = α0 + αd log RVt−1 + αw(log RV )t−5:t−1 + αm(log RV )t−22:t−1 + ut (12)

Following ABD (2007), the HAR-RV model for forecasting with the horizon h may be defined in

general form by using the multiperiod realized variation (the sum of the corresponding one-period

measures):

RVt,t+h = h−1[RVt+1 + RVt+2 + . . . + RVt+h] (13)

and by definition, RVt,t+1 ≡ RVt+1. The HAR-RV model proposed by Corsi (2009) is a specific case of

equation (13) for which h = 1, thereby assuming that traders have investment horizons corresponding

to one-day ahead, one-week ahead, and one-month ahead forecasts.

As demonstrated below, the ECX CO2 emissions 2008 futures contract only requires a weekly compo-

nent, thus simplifying Corsi’s initial model. For each estimator and for RV , RV 1/2 and log(RV 1/2),

we estimate the following specification:

RVt,t+h = β0 + β1RVt + β2RVt−5,t + ut (14)

Insert Table 6 about here

Insert Table 7 about here

Insert Table 8 about here

Estimates are reported in Tables 6 to 8. From Table 6, we may observe that the HAR-RV model

performs poorly in fitting the daily realized variance, as shown by the low R2 from 0.0003 (regression

(9)) to 0.0109 (regression (1)). These results are in line with previous literature on realized volatility,

where the “raw” realized variance is difficult to model. The results displayed in Table 7 show the same

pattern for the daily realized volatility, where the values obtained for the R2 range from 0.0653 (re-

gression (8)) to 0.1211 (regression (1)). This improvement from realized variance to realized volatility

is common in other empirical studies (see for instance ABDL (2001, 2003)). The best results are gener-

ally achieved using the logarithmic transformation. Table 9 shows indeed a dramatic improvement in

the results obtained. The R2 values obtained for the daily realized volatility in logarithmic form range

from 0.2798 (regression (2)) to 0.3691 (regression (4)). These values are comparable to ABD (2007)

for FX markets and S&P 500 futures. We may conclude that the fit of the HAR-RV model for the
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log-series of the ECX CO2 emissions 2008 futures data is much better than the fit for realized variance

or realized volatility. The dramatic improvement in the fit of realized volatility models when using

the log-transformation is well documented in the literature (see ABDL (2001, 2003), ABD (2007),

and Corsi (2009) among others). A better in-sample fit leads to a better out-of-sample forecasting

accuracy.

In the next section, we provide a forecasting exercice using the HAR-RV model versus the GARCH

specification.

6 Forecasting

In this section, we use Mincer-Zarnowitz regression techniques, as in ABD (2003, 2005), to investigate

the forecasting power of our competing models27. To compare the forecasting accuracy of the HAR-RV

model versus the GARCH model estimated in the previous section, we run the following regressions:

(vt+1) = b0 + b1(vt+1|t,HAR−RV ) + b2(vt+1|t,GARCH) + ut+1 (15)

(vt+1)
1/2 = b0 + b1(vt+1|t,HAR−RV )1/2 + b2(vt+1|t,GARCH)1/2 + ut+1 (16)

log(vt+1)
1/2 = b0 + b1 log(vt+1|t,HAR−RV )1/2 + b2 log(vt+1|t,GARCH)1/2 + ut+1 (17)

Due to the limited historical dataset for ECX CO2 emissions futures, we only consider one-step-ahead

forecasts28. The HAR-RV model is estimated with a daily and a weekly component for the three

estimators.

Insert Figure 12 about here

The corresponding forecasts for the daily realized variance, the daily realized volatility, and the daily

realized volatility in logarithmic form versus actual observations are displayed in Figure 1229.

If the forecasting properties of the HAR-RV model are satisfactory, the b0 coefficient should be equal

to zero, the b1 coefficient should be equal to one, and the introduction of an alternative model (here

a GARCH model) through the coefficient b2 should not increase significantly the R2 of the regression.

Thus, we are especially interested in the stability of the b0 and b1 coefficients, as well as in the increase

of the R2 between models. The b2 coefficient depends on the scaling of the different variables, and

thus is subject to a wide variability.

Insert Table 9 about here

27These are also known as “encompassing regressions”.
28i.e. at each period t we use the data observed until t−1, and base our forecasts on the parameters of the model estimated

over the period [0, t− 1]. The first forecast is made using 100 observations, the second forecast 101 observations, and so
on.

29Note that contrary to Figure 2, we decided to keep in our forecasting exercise the outlier on October 13, 2008, possibly
due to the “credit crunch” effect as discussed in Section 3.2.
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The main results of our forecasting exercise are presented in Table 9. The model which provides

the best results is the logarithmic model. This result is not surprising, since the logarithmic model

estimates were characterized by the highest values for the R2 in Table 8. Our results confirm the

robustness of the HAR-RV model. As predicted, we observe that the b0 coefficients are close to zero,

while the b1 coefficients are close to one in all regressions (RVt, RV
1/2
t , log(RV

1/2
t )). Besides, the

GARCH estimates do not seem to improve significantly the R2 of the regressions, especially in the

case of RVt. For RV
1/2
t and log(RV

1/2
t ), we only observe a slight increase of the R2, but the GARCH

coefficient is only significant at the 10% level for the log-series. This property of GARCH models

is widely documented in previous literature. Indeed, GARCH forecasts track much better the broad

temporal movements in the volatilities for lower frequency variations, and their accuracy tends to

perform poorly at higher frequencies.

Accordingly, our forecasting results do not seem to indicate that the mixture of the HAR-RV and

GARCH models improves significantly the forecast accuracy of our estimates. For all regressions, the

b1 coefficients are lower than one, and the values of the R2 do not seem significantly higher.

Overall, we demonstrate in this section the accuracy of the HAR-RV model, as well as the inaccuracy

of GARCH forecasts and their inability to adapt to high-frequency movements. As noted in ABDL

(2003)30, this is due to the superiority of realized measures in estimation. As such, superior estimates

of present conditions translate into superior forecasts of the future31.

7 Conclusion

This article constitutes the first attempt to use realized measures of volatility for a specific energy

commodity, namely the ECX CO2 emissions futures contract of maturity December 2008. We proceed

as is standard in the realized volatility literature to assess the distributional and dynamic properties

of realized volatility for this contract. Besides, this article constitutes one of the first attempts to

analyze the properties of CO2 prices in the EU ETS using high-frequency data.

Our main findings may be summarized as follows: (1) the unconditional distribution of daily returns

are near normal; (2) any attempt to standardize these returns using realized measures and to a lesser

extent GARCH estimates does not lead the distribution to Gaussianity; (3) we thereby strongly reject

the mixture-of-distribution-hypothesis developed by Clark (1973) and Tauchen and Pitts (1983); (4)

the dynamics of realized volatility is well captured using the HAR-RV model with a daily and a

weekly component, which outperforms significantly the GARCH specification; and (5) the predictive

accuracy of the HAR-RV model outperforms unambiguously other models of conditional volatility

based on daily data.

This work may be extended in several directions. First, the ECX CO2 emissions futures tick-by-tick

30“We have identified the quadratic variation and its empirical counterpart, the realized volatility, as the key objects of

interest for volatility measurement, and we consequently assess our various volatility forecasts relative to this measure.

It is perhaps not surprising that models built directly for the realized volatility produce forecasts superior to those obtained

from less direct methods, [...]” (ABDL, 2003, p. 613).
31Note the forecasts presented here only constitute a statistical metrics, and not an economic metrics such as the value of

CO2 allowances used for option pricing or portfolio management.
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data set considered here only covers one-year with about 240 trading days and 700 transactions per

day, thereby multiplying parameter and model uncertainties. These uncertainties could be reduced

using bootstrap methods as developed very recently in Gonçalves and Meddahi (2009). These authors

mainly resort to the wild bootstrap method to increase the number of available intraday data each

day, without suffering from the so-called “microstructure-noise” bias.

Second, the inclusion of jumps within realized volatility measures appears necessary to fit the charac-

teristics of CO2 futures highlighted in previous literature. Daskalakis et al. (2009) use a jump-diffusion

model to approximate the random behavior of CO2 prices. Benz and Truck (2009) analyze the spot

price behavior with a Markov-switching model. Lin and Lin (2007) model CO2 prices as a result of

mean-reversion with varying trends, combined with state-dependent price jumps and volatility struc-

ture, and show that mean-reversion fares better in forecasting futures prices.

Third, the use of realized volatility for ECX CO2 emissions futures contracts may be useful for option

pricing (see Stentoft (2008) for a first application to option stock markets) with a high-frequency

measure of volatility. This may be of great help on such an emerging commodity market, as on the

EU ETS any attempt to price derivatives is subject to strong uncertainties.

Fourth, the “maturity effect” encountered when selecting the sampling frequency here may be checked

on other markets for more robust conclusions, and statistical tests may be used to determine the

optimal sampling frequency. Indeed, if realized volatility is significantly different at different moments

in the life of a futures contract, hedge ratios should be modified accordingly.
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Figure 1: CO2 futures prices of maturities December 2005 through 2014 from April 22, 2005 to January
16, 2009
Source: ECX
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Figure 2: Daily realized variance (RVt, left panel), daily realized volatility in standard deviation form

(RV
1/2
t , middle panel), and daily realized volatility in logarithmic form (log(RV

1/2
t ), right panel) for

the three estimators (naive on the first row, Zhang et al. (2005) sub-sampling estimator on the second
row, and Bartlett kernel-based estimator on the third row).
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Figure 3: Volatility signature plots for the full (top) and November-December (bottom) samples using
the naive estimator for realized variance.
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Figure 4: Centered kernel density estimates of the unconditional distribution for the daily realized

variance (RVt, left panel), the daily realized volatility in standard deviation form (RV
1/2
t , middle

panel), and the daily realized volatility in logarithmic form (log(RV
1/2
t ), right panel) based on 15-

minute returns. The first row is for the naive estimator, the second row is for the Zhang et al. (2005)
sub-sampling estimator, and the third row is for the Bartlett kernel-based estimator.
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Figure 5: QQ plots for the realized variance (left panel), realized standard deviation (middle panel)
and log of the standard deviation (right panel) for the three estimators (naive on the first row, Zhang
et al. (2005) sub-sampling estimator on the second row, and Bartlett kernel-based estimator on the
third row).
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Figure 6: Time-series of daily raw returns.
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Figure 7: Smoothed Gaussian kernel distribution of daily returns (left panel), realized volatility (naive
estimator) standardized returns (middle panel) and GARCH standardized returns (right panel).
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Figure 8: Scatterplot of the logarithmic realized volatility against lagged standardized returns.
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Figure 9: Time series of GARCH volatility measure.
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Figure 10: Autocorrelation and partial autocorrelation functions of the daily realized variance (RVt,

left panel), daily realized volatility in standard deviation form (RV
1/2
t , middle panel), and daily

realized volatility in logarithmic form (log(RV
1/2
t ), right panel) for the naive estimator.
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Figure 11: Scaling plot of the sample variances ST of the partial sums of the realized logarithmic
standard deviations against the logarithm of the aggregation level.
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Figure 12: Forecasting of the daily realized variance (RVt, left panel), the daily realized volatility in

standard deviation form (RV
1/2
t , middle panel), and the daily realized volatility in logarithmic form

(log(RV
1/2
t ), right panel) with the HAR-RV model for the three estimators (naive on the first row,

Zhang et al. (2005) sub-sampling estimator on the second row, and Bartlett kernel-based estimator
on the third row).



Mean SD Median Min Max Skewness Kurtosis Ljung-Box
(20)

Naive estimator
RVt 0.0130 0.0184 0.0064 0.0001 0.1313 3.2097 16.6500 7.1942

RV
1/2
t 0.0948 0.0636 0.0800 0.0029 0.0636 1.2998 5.1144 82.886

log(RV
1/2
t ) -2.5652 0.7369 -2.5218 -4.4419 -0.5553 -0.3279 2.9927 420.63

Zhang et al. (2005) subsampling estimator
RVt 0.0085 0.0104 0.0052 0.0001 0.0804 2.9814 15.7588 3.3318

RV
1/2
t 0.0798 0.0467 0.0718 0.0037 0.2835 1.1008 4.7061 74.181

log(RV
1/2
t ) -2.6966 0.6551 -2.6313 -4.4489 -0.5944 -0.4657 3.4233 376.51

Bartlett kernel-based estimator
RVt 0.0065 0.0079 0.0037 0.0001 0.0555 3.0012 15.4313 2.2043

RV
1/2
t 0.0702 0.0403 0.0609 0.0040 0.2356 1.1365 4.8489 59.803

log(RV
1/2
t ) -2.8119 0.6264 -2.7932 -4.4386 -0.6454 -0.3229 3.3850 334.17

Table 1: Descriptive statistics of the daily realized variance (RVt), daily realized volatility (RV
1/2
t ), and daily realized volatility in logarithmic

form (log(RV
1/2
t )) for the naive, subsampling, and kernel-based estimators.

Note: The number of trading days is 240. SD stands for standard deviation. Ljung-Box test statistics are computed for a maximum number of
20 lags.



Lilliefors Crámer-
Von
Mises

Jarque-
Bera

Watson Anderson-
Darling

Naive estimator
RV 1/2 0.127955

(0.0000)
1.350926
(0.0000)

1080.817
(0.0000)

1.089644
(0.0000)

8.055166
(0.0000)

log(RV 1/2) 0.062920
(0.0522)

0.205757
(0.0045)

22.16161
(0.000015)

0.164762
(0.0095)

1.347298
(0.0017)

Zhang et al. (2005) subsampling estimator
RV 1/2 0.128204

(0.0000)
1.047318
(0.0000)

4607.472
(0.0000)

0.870926
(0.0000)

9.000989
(0.0000)

log(RV 1/2) 0.079671
(0.0036)

0.353115
(0.0001)

34.84085
(0.0000)

0.286651
(0.0002)

2.259627
(0.0000)

Bartlett kernel-based estimator
RV 1/2 0.120181

(0.0000)
1.171580
(0.0000)

8198.267
(0.0000)

0.994852
(0.0000)

9.903061
(0.0000)

log(RV 1/2) 0.075590
(0.0013)

0.264016
(0.0009)

25.42408
(0.0000)

0.219758
(0.0016)

1.671065
(0.0003)

Table 2: Normality test statistics for the realized standard deviation and logarithmic
transformation with the three estimators.

Note: The values reported in parentheses are the p-values.



Mean SD Skewness Kurtosis Jarque-

Bera

Q(20) Q2(20)

Daily returns Rt 0.0000337 0.029600 -0.047258 3.242590 0.691953 75.609 51.660

RV-

standardized

daily returns

0.001904 0.498409 0.893659 8.846009 381.4887 66.923 152.95

GARCH-

standardized

daily returns

0.3078 46.3145 0.1034 3.4476 2.4622 72.154 19.500

Table 3: Descriptive statistics of continuously compounded daily returns, realized
volatility (naive estimator) standardized returns, and GARCH standardized daily re-
turns.

Note: The number of trading days is 240. SD stands for standard deviation, Q(20) and Q2(20)
stand for the Ljung-Box Q test statistics and the Ljung-Box Q2(20) test statistic computed up to 20

lags for returns and squared returns, respectively.



Daily returns
Mean equation
β0 0.000045

(0.0015)
β1 -0.3881***

(0.0677)
Variance equation
α0 0.0000945

(0.0000668)
α1 0.1839**

(0.0945)
α2 0.6973***

(0.1572)
R2 0.1300
Adj. R2 0.1155

Table 4: AR(1)-GARCH(1,1) model estimates for daily returns

Note: The dependent variable is the daily return. Robust standard errors in
parenthesis. *** indicates significance at 1%, ** at 5% and * at 10% levels.



ADF test d(GPH) d̂ from regression
Naive estimator
RVt -13.9122 0.4376 –

RV
1/2
t -11.1715 0.3318 –

log(RV
1/2
t ) -4.2934 0.6849 0.4634

Zhang et al. (2005) subsampling estimator
RVt -14.6932 0.4399 –

RV
1/2
t -11.3561 0.3247 –

log(RV
1/2
t ) -4.4725 0.6964 0.4588

Bartlett kernel-based estimator
RVt -15.0757 0.4306 –

RV
1/2
t -11.8635 0.3066 –

log(RV
1/2
t ) -3.7696 0.6520 0.4711

Table 5: ADF test statistics up to 14 lags, d(GPH) Geweke-Porter-Hudak estimates

of the fractional integration parameter, and d̂ coefficients estimated from regressions
for the daily realized variance (RVt), the daily realized volatility in standard deviation

form (RV
1/2
t ), and the daily realized volatility in logarithmic form (log(RV

1/2
t )) with

the naive, subsampling and kernel-based estimators.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
β0 0.0130

(0.0028)
0.0137
(0.0022)

0.0130
(0.0028)

0.0090
(0.0019)

0.0093
(0.0015)

0.0090
(0.0019)

0.0074
(0.0016)

0.0075
(0.0013)

0.0074
(0.0016)

β1 0.0810
(0.0746)

0.1013
(0.0645)

0.0323
(0.0741)

0.04683
(0.0648)

0.0139
(0.0739)

0.0211
(0.0649)

β2 0.0762
(0.1505)

0.1556
(0.1315)

0.0594
(0.1580)

0.0916
(0.1395)

0.0283
(0.1619)

0.0424
(0.1435)

R2 0.0109 0.0102 0.0059 0.0026 0.0021 0.0018 0.0005 0.0004 0.0003
Adj. R2 0.0024 0.0061 0.0017 -0.0059 -0.0020 -0.0024 -0.0080 -0.0037 -0.0039
Log-lik. 484.29 494.19 483.69 564.60 575.98 564.50 595.53 607.52 595.51
AIC -4.0960 -4.1187 -4.0995 -4.7796 -4.8031 -4.7873 -5.0428 -5.0671 -5.0511
SC -4.0519 -4.0896 -4.0701 -4.7354 -4.7740 -4.7578 -4.9986 -5.0380 -5.0217

Table 6: OLS estimates for the daily realized variance (RVt) with the HAR-RV model (three estimators, naive: columns (1) to (3); subsampling:
columns (4) to (6); kernel: columns (7) to (9)).

Note: The model estimated is RVt = β0 + β1RVt−1 + β2RVt−6,t−1 + ut.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
β0 0.0490

(0.0107)
0.0680
(0.0076)

0.0497
(0.0108)

0.0388
(0.0088)

0.0577
(0.0061)

0.0390
(0.0089)

0.0366
(0.0081)

0.0538
(0.0054)

0.0367
(0.0081)

β1 0.1904
(0.0770)

0.3118
(0.0615)

0.1522
(0.0773)

0.2960
(0.0619)

0.1181
(0.0775)

0.2554
(0.0627)

β2 0.3174
(0.1234)

0.5013
(0.0996)

0.3782
(0.1255)

0.5281
(0.1004)

0.3787
(0.1298)

0.4964
(0.1046)

R2 0.1211 0.0975 0.0980 0.1207 0.0877 0.1060 0.0971 0.0653 0.0881
Adj. R2 0.1136 0.0937 0.0941 0.1131 0.0839 0.1022 0.0894 0.0613 0.0842
Log-lik. 290.55 293.69 287.49 359.07 362.22 357.12 382.36 386.22 381.19
AIC -2.4472 -2.4409 -2.4297 -3.0304 -3.0144 -3.0223 -3.2286 -3.2152 -3.2271
SC -2.4030 -2.4118 -2.4003 -2.9862 -2.9853 -2.9929 -3.1844 -3.1861 -3.1977

Table 7: OLS estimates for the daily realized volatility in standard deviation form (RV
1/2
t ) with the HAR-RV model (three estimators, naive:

columns (1) to (3); subsampling: columns (4) to (6); kernel: columns (7) to (9)).

Note: The model estimated is RV
1/2
t = β0 + β1RV

1/2
t−1 + β2RV

1/2
t−6,t−1 + ut.



(1) (2) (3) (4) (5) (6) (7) (8) (9)
β0 -0.6329

(0.1850)
-1.2134
(0.1479)

-0.6452
(0.1884)

-0.6663
(0.1893)

-1.1683
(0.1493)

-0.6866
(0.1960)

-0.7345
(0.2039)

-1.2884
(0.1581)

-0.7512
(0.2101)

β1 0.2480
(0.0789)

0.5275
(0.0549)

0.3299
(0.0776)

0.5678
(0.0534)

0.3058
(0.0781)

0.542864
(0.0545)

β2 0.5041
(0.1043)

0.7473
(0.0713)

0.4226
(0.1022)

0.7449
(0.0711)

0.4325
(0.1045)

0.7322
(0.0733)

R2 0.3477 0.2798 0.3200 0.3691 0.3226 0.3200 0.3429 0.2946 0.2995
Adj. R2 0.3421 0.2768 0.3171 0.3637 0.3197 0.3171 0.3373 0.2916 0.2965
Log-lik. -220.98 -228.18 -225.88 -190.05 -200.23 -198.87 -184.02 -194.03 -191.54
AIC 1.9062 1.9851 1.9394 1.6430 1.6923 1.7095 1.5917 1.6404 1.6471
SC 1.9504 2.0142 1.9688 1.6872 1.7214 1.7389 1.6358 1.6695 1.6766

Table 8: OLS estimates for the daily realized volatility in logarithmic form (log(RV
1/2
t )) with the HAR-RV model (three estimators, naive:

columns (1) to (3); subsampling: columns (4) to (6); kernel: columns (7) to (9)).

Note: The model estimated is log(RV
1/2
t ) = β0 + β1log(RV

1/2
t−1 ) + β2log(RV

1/2
t−6,t−1) + ut.



b0 b1 b2 R2

Daily realized variance (RVt)
HAR-RV 0.006327

(0.02075)
0.5678
(1.3777)

0.0011

GARCH daily 0.01301
(0.00434)

1970.17
(3120.91)

0.0028

HAR-RV +
GARCH daily

0.00699
(0.0208)

0.4156
(1.4074)

1788.50
(3190.7)

0.0033

Daily realized volatility in standard devi-

ation form (RV
1/2
t )

HAR-RV -0.00654
(0.0240)

1.0408***
(0.2419)

0.1139

GARCH daily 0.05527
(0.0130)

45.8000***
(13.879)

0.0703

HAR-RV +
GARCH daily

-0.0069
(0.0238)

0.8526***
(0.2735)

23.403
(15.322)

0.1281

Daily realized volatility in logarithmic

form (log(RV
1/2
t ))

HAR-RV 0.1479
(0.2517)

1.0656***
(0.0942)

0.4704

GARCH daily 2.3640***
(0.8599)

0.6945***
(0.1188)

0.1917

HAR-RV +
GARCH daily

1.2419*
(0.7032)

0.9724***
(0.1090)

0.1854*
(0.1113)

0.4800

Table 9: Estimates of the Mincer-Zarnowitz regression (equations 15 to 17) using
forecasts for the daily realized variance, the daily realized volatility, and the daily
realized volatility in logarithmic form obtained from the naive estimator.

Note: The values reported in parentheses are robust standard errors.


