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Abstract: This paper investigates potential contagion among the major financial institutions in developed 

economies. Using Credit Default Swaps (CDS) premia as a measure of credit or counterparty risk, our 

analysis focuses on the extreme co-movements of Financial Institutions' default contracts during the high 

level of stress undergone by the CDS markets in the aftermath of the 2007 sub-prime crisis. Our approach 

is twofold: first, under different tail dependence scenarios, we calibrate several multivariate linear 

propagation models of constant correlation. Our Monte Carlo simulation study finds evidence of contagion 

for Financial Institutions- notably in the US-and captures a non-normal dependence structure in the tails for 

the traded contracts. Second, we estimate a multivariate Dynamic Conditional Correlation-GARCH (DCC-

GARCH) model, and demonstrate significant ARCH and GARCH effects, as well as time-varying 

correlations in CDS spreads variations. Our overall analysis rejects the assumption of constant correlation. 

More importantly, it advocates changing structures in tail dependence for CDS series during times of 

financial turmoil as an important feature of banks‟ increased fragility. 

 

 

Keywords: Bank fragility, Counterparty risk, Financial crises, Extreme co-movements, Conditional 
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1 Introduction 

The study of markets linkages in periods of market turbulences has come central stage in empirical financial 

research since the 1990‟s major financial crises. Common to all these episodes was the attribution of the shock 

propagation mechanism across asset classes and/or regions, to changes in linkages pertaining to transmission 

channels other then those of economic fundamentals. The concept of financial contagion thus emerged to describe 

significant increases or structural shifts in cross market co-movements, while any continued market correlation at 

high levels is considered to be interdependence (Forbes and Rigobon, 2002). With the event of the 2007 sub-prime 

crisis and the world‟s most systemically important banking systems failing to pass the stress test, the study of 

contagion within the framework of financial and banking systems‟ stability became of paramount importance.  

 

During the 1990s decade, contagion crucially revolved around the notion of correlation breakdown: in periods 

of market stress, the propagation of shocks and hence their systematic nature would only be empirically accounted 

for through a statistically significant increase of correlation. This „breakdown‟ would specifically distinguish periods 

of normal market conditions from those of market crash. Yet several limitations in using structural shifts in 

correlation as a conclusive measure of contagion were soon evidenced by Boyer et al (1999) who showed that tests 

for changes in correlation that do not take into account conditional heteroskedasticity may be strongly biased. They 

showed that due to volatility increases during times of market stress, the correlation between two asset or market 

returns conditioning on the extreme realizations of one of them is likely to yield a correlation breakdown, even if the 

true data generation process‟s unconditional correlation is constant. Moreover they evidenced the selection bias 

induced by an arbitrary sub-sampling procedure conditioning on high and low volatility. 

A further drawback in using correlation is that it is intrinsically biased towards the normal distribution. As Bae et al. 

(2003) have noted, the main assumption about the effects of financial contagion lies in the fact that changes in the 

dependence structure seem to occur in a different way for large negative returns than in the case of small negative 

returns. Being a global measure of association, correlation doesn‟t accommodate such non-linearity in changes in the 

dependence structure. 

 

Recognising the need to go beyond the linear approach, studies based on extreme value theory (EVT) were able 

to address the correlation breakdown caveats. More importantly, the shift was made from a dependence structure 

located around the centre of a given distribution to an assessment of dependence in the tails. As de Vries (2005) 

pointed out, “what happens in the limit is a strong interpretation of what constitutes a crash. It is also informative 

about what happens at extreme but finite sample points”
2
. The advantage of semi–parametric EVT models becomes 

even more obvious in the case of heavy tailed marginal distributions, as they are able to capture relevant information 

in terms of extremes and extremes‟ dependencies. Another advantage of EVT is the flexibility it provides  

researchers in modelling and exploring the features of contagion as dependence can either asymptotically increase or 

vanish, regardless of correlation or correlation dynamics.  

 

                                                 
2 De Vries (2005), page 2. 
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The empirical analysis presented in this paper draws on EVT‟s implicit assumptions in the study of bank 

fragility. It is careful in distinguishing correlation dynamics from tail dependence breaks. The proposed 

methodological approach accommodates two of the most important dimensions of markets‟ behaviour around crises: 

non-linearity in dependence and heavy tailed distributions of asset returns. The first contribution of this study is to 

broaden our understanding of banks fragility at a time where the assessment of potential systemic breakdown of 

financial institutions is crucial for policymakers. The ongoing elaboration of nationalisation schemes, bail-out plans, 

liquidity facilities, stress-test initiatives and the revisiting of banks‟ business models along with Basel II‟s credit risk 

approach, demonstrate the path taken towards the stabilisation and reform of the global financial system. Second, it 

makes use of a dataset consisting of daily prices of Credit Default Swap (CDS) contracts. To our best knowledge, no 

empirical analysis of contagion was previously done using financial institutions‟ CDS premia
3
. Third, the research 

presented here encompasses the shortcomings of correlation-based analyses in two ways: following Bae et al. 

(2003), it focuses on CDS markets‟ synchronized tail events by using a non-parametric measure of joint downside 

and upside extreme outcomes. Second, it sheds light on both the dependence structure and dependence dynamics of 

CDS markets by estimating a multivariate Dynamic Conditional Correlation-GARCH model (Engle, 2002). The 

model‟s estimates are then used in a Monte Carlo simulation to study the joint occurrences of extreme movements. 

Contrary to Bae et al. (2003) and Minderhoud (2003), we need not assume a high volatility regime
4
 or a constant 

correlation structure underlying the sample period true dynamic process: the methodology used enables us to address 

the heteroskedasticity issue raised by Boyer et al. (1999) and Forbes and Rigobon (2002) as well as avoiding the 

selection bias induced by arbitrary conditioning sets. At the very same time, our approach encompasses the 

incremental nature of correlation dynamics, and evidences contagion as per the estimated DCC-GARCH time-

varying conditional correlations. Finally, it presents an advantage over EVT methods in that it distinguishes 

asymptotic dependence from asymptotic independence without solely relying on parametric modelling of the tail 

parts of the marginal distributions.  

 

The major findings of this paper are summarized as follows. First, this study finds evidence of a time-varying 

correlation structure for financial institutions‟ credit default swaps contracts trading in Euro and US Dollar (USD).  

Significant estimates of dynamic conditional correlations parameters show that the assumption of constant 

conditional correlation is not supported empirically within both American and European local banking and insurance 

sectors. Second, three different types of tail dependence are identified for our measure of extreme co-movements 

                                                 
3 The contagion literature has primarily made use of stock and bonds markets indices. See Baig and Goldfajn (1998), Ramchand and Susmel 

(1998), Chesney and Jondeau (2000), Longin and Solnik (2001), Ang and Bekaert (2002), Bae, Karolyi and Stulz (2003), Hartman, Straetmans 
and de Vries (2004) and Rodriguez (2007) among others.  On the other hand, empirical research using firm specific CDS premia has focused on 

the study of lead-lag relationships between several asset classes and credit derivatives markets (Norden and Weber (2004)), on the investigation 

of the default and non default components of bond spreads (Longstaff, Mithal, and Neis (2004)) or the market reaction of industry competitors 
surrounding credit events (Jorion and Zhang (2007)). Contagion analysis, as captured by significant correlation breakdowns in the auto industry 

was carried out by Coudert and Gex (2008). 
4 Bae et al (2003) explore whether contagion based on observed excess co-movements can stem from a relative increase in the volatility of stock 
market indices‟ returns. They compute a time-varying variance-covariance matrix, identify two sub-periods of low and high volatility and study 

the returns‟ multivariate distribution parameters conditioning on those two –sub periods. They simulate returns for the entire sample period 

returns based on the high volatility sample‟s parameters and find evidence of contagion. Our approach is different in that it simulates CDS price 
variations while accounting for continuously dynamic conditional volatilities and correlations, i.e., without resorting to sub-period samples.  
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regardless of the CDS returns‟ correlation dynamics. CDS co-movements can either be asymptotically dependent 

with tails exhibiting a high degree of co-dependence. Alternatively they can be asymptotically independent as 

evidenced by a multivariate normal distribution reflecting weak probabilities of extreme co-movements. Or an 

increasing and hence changing tail dependence structure would characterise Banks and Insurance CDS returns. We 

dub the latter feature as increased fragility underlying Banking and/ or Insurance sectors. Increased tail dependence 

in highly volatile CDS markets was found for the banking sectors in the US, France and Germany as well as the UK 

insurance sector. Along with tail dependence breaks, asymmetry was also evidenced, except for US Banks. A non-

normal dependence structure was found to characterise insurance companies‟ extreme co-movements in the US, 

Germany and France. Their CDS returns seem to be asymptotically dependent- as evidenced by a multivariate t 

distribution- but this dependence in the tails is rather stable. Finally, co-movements of Spanish banks are 

independent in the tails as we found that a multivariate normal distribution better describes their CDS downside and 

upside extreme co-movements. 

 

The remainder of the paper in structured in the following way. Section 2 describes the data and statistics of CDS 

returns. Section 3 describes the non-parametric measure of extreme co-movements or CDS co-exceedances, presents 

a multivariate DCC-GARCH model and the procedure of testing for constant correlation. We also discuss our Monte 

Carlo simulation approach. Section 4 reports the estimation and numerical simulations results. Section 5 concludes. 

 

 

2 Data 

2.1 Credit Default Swaps 

We are particularly interested in CDS market prices for the assessment of an existing dependence structure 

between financial institutions in developed economies. A CDS is a bilateral over-the-counter (OTC) transaction 

under which the buyer of protection is insured against a reference entity‟s credit risk and pays the seller of protection 

periodic payments of a fixed coupon or premium expressed as a function of the CDS contract notional value. The 

stream of payments is continuous over the maturity of the contract unless a specified credit event occurs and triggers 

a default contingent payment to the buyer of protection. Credit events include bankruptcy, failure to pay outstanding 

debt obligations and restructuring of a bond or loan. Default settlement is carried out in two ways: either the 

protection buyer delivers, in exchange of par to the protection seller, any bond issued by the defaulted entity that 

meets the referenced bond criteria in the contract (physical settlement), or the protection seller pays the buyer the 

cash amount of par less recovery (cash settlement). 

The CDS premium reflects the risk-neutral weighted cost of providing insurance against default. A CDS fair 

premium equates the present value of payments to the present value of expected default loss
5
. CDS premia are thus 

very often regarded as a direct measure of credit worthiness of a borrower and unlike corporate bond spreads, they 

                                                 
5 A CDS premium thus incorporates both the issuer‟s probability of default and the recovery rate in the event of default. The probability weighted 
expected loss on a given obligation is equal to Protection Notional*(1-Recovery rate)*Probability of Default of the issuer. 
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are not affected by tax and liquidity effects
6
. Moreover, CDS prices provide information in regards to both the 

cumulative probability of default and the conditional probability of default (the latter also called hazard rate) of an 

issuer, and shed light on the market‟s perception on both credit risk and its term structure. 

 

2.2 Data collection and treatment 

We conducted our analysis using data from Credit Market Analysis (CMA) which spans from December 

31
st
, 2004 to November 13

th
, 2008 (1009 observations). CMA receives CDS prices quotes from a consortium of 

fixed income sell –side and buy-side contributors such as asset managers, banks and hedge funds. Prices are 

either executed trades, or indicative bids on specific entities for different tenors and debt seniorities, or fair 

value model derived. Senior CDS mid spreads for the most actively traded and liquid maturity, i.e., 5 years, 

were collected on Banks and Insurance companies in Europe and the United States. The selection procedure 

excluded single name CDSs for which prices weren‟t available at the starting date of our sample. To ensure data 

quality and completeness, CMA quotes were first compiled from Thomson Financial Datastream, and then 

compared to the same set as well as a different set of contributors‟ prices sourced from Bloomberg. Flat curves, 

i.e., a price last value repeatedly reported, mainly when there is not enough contributors to the pricing of the 

CDS contract, were avoided either by relying on Bloomberg generic pricing (the aggregation of contributors‟ 

intraday prices) or they were simply removed. The data collection process led us to the selection of 34 names 

sampled in the following way
7
: 

 

US Banks: Wells Fargo &Co., Citigroup Inc., Bank of America Corp., Wachovia Corp., JPMorgan Chase & Co. 

UK Banks: Barclays Bank PLC, HSBC Bank PLC, Lloyds TSB Bank PLC, Royal Bank of Scotland Group PLC. 

France Banks: Crédit Agricole S.A, Natixis S.A., Société Générale, BNP Paribas. 

Germany Banks: Bayerische Hypo- und Vereinsbank AG (HVB), Deutsche Bank AG, Commerzbank AG, Dresdner 

Bank AG, WestLB AG. 

Spain Banks: Banco Bilbao Vizcaya Argentaria S.A.(BBVA), Banco Santander Central Hispano S.A., Caja de 

Ahorros de Valencia, Castellon y Alicante (Bancaja). 

 

US Insurance: Genworth Financial Inc., Lincoln National Corp., Ace Ltd., MetLife Inc. 

UK Insurance: Old Mutual PLC, Aviva PLC, Legal & General Group PLC, Royal & Sun, Royal & Sun Alliance 

Insurance PLC 

France Insurance: AXA, SCOR SE 

Germany Insurance: Allianz SE, Hannover Rueckversicherung AG, Munich Reinsurance Co. 

                                                 
6 Despite their contractual nature, CDS contracts‟ premia could include a non-default component, as recent investigations of a possible liquidity 

effect in the CDS market pointed out to positively priced liquidity risk. Liquidity risk for less actively traded CDS could be particularly large for 
short term (less then 5 years) CDS contracts. See Tang and Yan (2007). 
7 Single name- CDSs are all denominated in local currency, respectively US Dollar and Euro for American and European Entities, except for 

Spanish Bancaja, for which we chose USD CDS on a USD-denominated free float bond for quotes accuracy purposes.  
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2.3 Descriptive statistics of CDS data 

We carry out our Monte Carlo simulation experiments as well as the DCC-GARCH model estimation on each 

of the samples listed in the previous sub-section. The variable of interest is daily CDS premia changes which were 

obtained by calculating the first differences of the natural log of CDS prices. Summary statistics for all Banks and 

Insurers‟ transformed series are presented in Appendix 1.a. The augmented Dickey-Fuller test
8
 statistics reveal that 

all series are mean stationary. The Ljung-Box test statistics denote serial correlation for all countries‟ series, with the 

notable exception of US and UK Banks, and two out of three Spanish banks. The daily average CDS return is 

practically zero for all financial institutions. Both standard excess kurtosis and skewness suggest that extreme 

premia variations may be present in the series. The Jarque-Bera test statistic strongly rejects normality for all 

financial institutions‟ CDS returns
9
. Another noteworthy statistic is Moors‟ robust excess kurtosis

10
 statistic, which 

for all series, shows a large difference with the conventional one thus indicating the presence of a small number of 

outliers, a typical feature of both CDS price and returns series (see Appendix 1.c).  

 

All CDS returns series exhibit a similar pattern in terms of heavy-tailed return distributions and stationarity. 

More importantly, all country samples seem to experience synchronised movements of widening and tightening 

CDS spreads over time. This concomitant behaviour is obvious as depicted by the series‟ spread levels in Appendix 

1.b, and provides a good ground for investigating for a potentially dynamic correlation structure as market 

conditions change from normal to turbulent during crises times.  

 

CDS return series exhibit large return and volatility clustering since the start of the sub-prime crisis in July 

2007, as seen in Appendix.1.c. We therefore are particularly aware that conditional heteroskedasticity needs to be 

accounted for when analysing CDS returns co-movements, as any pair-wise correlation between CDS returns across 

countries is likely to increase during a highly volatile period, implying a contagion phenomenon that may not be 

present in the series. Finally, because the DCC-GARCH model is robust to heteroskedasticity-induced bias in 

correlation and because we are keen on exploring the conditional correlation structure throughout the entire period, 

we did not subsequently resort to normal versus stress sub-sampling of our data.  

                                                 
8 Augmented Dickey-Fuller tests also rejected both trend and intercept in CDS returns series, except for Old Mutual PLC, for which we included 
a significant deterministic time trend. Even though CDS price series present structural breaks, we did not test the null of unit root against the 

break-stationarity alternative to the extent the variable of interest is CDS returns (premia changes). 
9 Under the null hypothesis, the Jarque-Bera test statistic follows a Chi-Square distribution with two degrees of freedom. 

10 1
7 5 3 1 6 2Moors (1988) robust kurtosis coefficient is computed as  ( where is the th octile for each of 

the CDS returns' series. Because it's an octile-based measure, the coe
( ) /  = ( / 8) )  i iE E E E E E E F i

 

fficient is robust to outliers, specially in the case of a large number of 
observations. For a normallydistributed variable with zero mean and unit variance, Moors' robust kurtosis is equal to 1.23. Ou rexcess robust kurtosis
is thus centered  around that value. For a survey of robust third and fourth moments and their applications, see Kim and White (2004).
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3 Methodology 

3.1 Investigating extreme returns dependence: a Monte Carlo simulation approach 

The analysis of increased banks fragility is based on the assumption of an increasing dependence structure of 

CDS extreme returns. Joint credit events and/or credit quality deteriorations occur when entities either are exposed 

to a cyclical shock, or market-wide adverse factor, or are subject to close linkages. The latter, consensually defined 

as contagion in the existing literature, is favourable to an increased dependence structure in times of market stress 

and constitutes a channel for the transmission of idiosyncratic or entity-specific shocks.  It is important to note that 

CDS premia reflect the market perception of counterparty and/or credit risk. That is, in the case of financial 

institutions, credit dependence can either be real (e.g. loan syndication activities or interbank market ties) or 

virtually perceived by the market (e.g. the fear of insurance companies‟ over-exposure to illiquid risky assets).  

 

We are interested in investigating whether or not the 2007 financial crisis was capable of revealing an 

increased fragility, regardless of the causes of credit or counterparty risk deterioration, in the banking and insurance 

sectors in the US, the UK, Germany, France and Spain. In other words, in times of high volatility either induced by 

market downturns, or contagion driven, financial institutions can grow more and more dependent in the tails. In 

order to gauge this increased fragility, we follow Bae et al. (2003) in defining an extreme return, or „exceedance‟, as 

one that is located in the 5 percent tails of the overall CDS return distribution. We then identify the number of joint 

occurrences of returns exceeding their respective thresholds, and define the count of those joint occurrences as our 

non-parametric measure of extreme dependence. Tables 3 and 4 present the results for the US Banks and Insurance 

samples. For those two samples, the distribution of extreme co-movements is asymmetric as the days during which 

credit risk deteriorations of three or more banks or insurance companies were simultaneously observed outnumbered 

the days of bottom tails co-exceedances. 

 

We then turn to the investigation of the dependence structure of those extreme co-movements by simulating a 

pseudo-random distribution of co-exceedances that would result if correlation were constant during the sample 

period. To this end, we resort to a multivariate CDS return generating model that we calibrate using the CDS returns 

true dependence assumptions obtained with the Cholesky decomposition of the returns‟ variance-covariance matrix 

which we assume at this stage constant. We then consecutively simulate two regimes of tail dependence: a weak tail 

dependence (low co-kurtosis implying asymptotic independence) regime generated by a multivariate distribution 

with Gaussian marginals, and a strong tail dependence (high co-kurtosis implying asymptotic dependence) regime 

based on t-distributed marginals of the joint distribution of CDS returns
11

. Degrees of freedom underlying the strong 

tail dependence regime are equal to n+k-1, where n is the number of issuer in each sample and k takes values 

ranging from 1 to 25. We deliberately set k equal to 1 in order to ensure the strongest asymptotic dependence in our 

data generating process, so that each Student-t marginal distribution has k degrees of freedom. 1009 daily 

                                                 
11 We chose the multivariate normal and Student-t distributions for their elliptical properties. Elliptically contoured distributions are characterized 
by their marginals and their correlation matrix. The multivariate Student-t is introduced to capture a non normal dependence in the tails of the 

series. Each marginal distribution is symmetric with zero mean, unit variance, zero skewness  and a kurtosis equal to 3( 2) /( 4).v v For a 

detailed presentation of elliptical distributions, see Jondeau et al. (2007) 
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observations for each issuer are then generated with 5000 replications. The numerical simulation provides us with a 

distribution of co-exceedances against which we benchmark the data true joint occurrences of bottom and top tails 

returns. 

 

In a second simulation experiment, we assume a time-varying dependence structure between financial 

institutions CDS returns. Dynamic correlations are parametrically modelled by fitting a multivariate DCC-GARCH 

model (Engle, 2002) to each sample of our study. Since it is already well know that the joint tails of multivariate 

GARCH type models, and especially ones with conditionally fat-tailed errors, can produce many more joint 

exceedances than the corresponding unconditional distributions, the assumption we are seeking to test is the 

following: if any contagion was evidenced based on our benchmark model of constant correlation, can the true data 

extreme co-movements be accounted for once we assume a dynamic dependence structure? In other words, could 

the observed contagion be due to an increase in linkages between financial institutions in periods of market turmoil, 

and once dynamic correlations are accounted for, neither contagion nor asymptotic dependence would any longer 

characterize our samples? We proceed the following way: the DCC-GARCH model estimates are used as inputs to 

our Monte Carlo simulation. Using the assumptions of conditional volatilities and conditional correlations, we run 

5000 simulations of financial institutions CDS returns from a DCC-GARCH (1,1). In the simulation set-up, 

innovations are consecutively assumed to follow a multivariate normal distribution and a multivariate Student t-

distribution. For each sample, the degrees of freedom are taken from our first simulation experiment and kept 

unchanged. The simulated DCC-GARCH model provides us with a distribution of co-exceedances. We then match-

up the obtained results to those of our linear model of constant correlation. The following sub-section briefly 

presents the DCC-GARCH methodology.  

3.2 Econometric methodology 

In order to examine the time-varying interactions within each country-based CDS sample, we resort to the 

estimation of a multivariate DCC-GARCH model. Along with presenting a univariate-like framework of GARCH 

interpretation, multivariate DCC-GARCH models allow for GARCH dynamics in the estimation of the conditional 

variances and conditional correlations: by calculating the DCC parameters, the method estimates time-varying 

conditional correlations as a function of previous realizations of both volatilities and correlations.  

 

Consider the following vector specifications:  
 

1 (0, )

t t

t t t

t t t

y

y N H

z D

 

 

 

 

1/ 2 1/ 2
1, , and ( , , ) are  matrices, where  is a diagonal matrix of time-varying 

standard deviations obtained from univariate GARCH equations, and  and  are the conditional

t t t t t t N t t

t t

H D R D D diag h h N N D

H R  covariance

matrix and the dynamic conditional correlation matrix respectively of the vector stochastic process .t
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The matrix  has its , element given by , . The time-varying correlation structure is 

defined as : 

th th
t ijt ijt iit ijtH i j h h h i j

 

 
1/ 2 1/ 2

'
1 2 1 1 1 2 1

( ) ( )

(1 )

t t t t

t t t t

R diagQ Q diagQ

Q Q z z Q  

1 2

1 2

where  and  are the DCC positive scalar parameters driving the current conditional correlations through past 

standardized shocks and past conditional correlations respectively, such as  +  <1 to ensure positive definiteness

of .  and are the  conditional covariance matrix and unconditional variance matrix of . Finally  is

re-scaled to ensure ones on the diagonal are obtained in th

t t t tQ Q Q N N z Q

e final correlation matrix .tR  

1/ 2

,

The first stage of the DCC-GARCH estimation involves fitting univariate GARCH equations to the series, and yields

estimates of . Residuals are standardized using estimated standard deviations 
i ttD h

,,, , that is /  where 

are then used to estimate the DCC parameters.

i ti ti t i thz z

 

As proposed by Engle (2002), the log likelihood function can thus be written in two components, allowing for this 

two-stage estimation procedure: 

 

2 ' 2 ' 1 '

1 1

1 1
( , ) ( log(2 ) log ) ( log( ) )

2 2

T T

t t t t t t t t t t t

t t

l N D D R z R z z z   

 

 

1 2

Where the volatility component is first maximized in respect to the univariate GARCH parameters, and second, 

the correlation part is maximized to estimate  and .
 

The necessary and sufficient conditions for positive definiteness of the conditional covariance matrix are the same 

for the DCC model as for a univariate GARCH process with the following specification: 

 

2
, ,

1 1

r s

it i ij i t j ij i t j

j j

h h  , where  

1 1

1
i ir s

ij ij

j j

. 

 

Finally we are interested in testing whether CDS returns series exhibit constant correlations. We follow Engle 

and Sheppard‟s (2001) constant correlation test procedure
12

, which generalizes well to the multivariate case, as 

opposed to Bera‟s (1996) bivariate constant correlation test and Tse‟s (1998) LM test for constant correlation. We 

test the following null versus alternative hypothesis: 

 

 

0

1 1 2 2

:  

: ( ) ( ) ( ) ( ) ... ( )

t

A t t t p t p

H R R t T

H vech R vech R vech R vech R vech R
 

 

The implementation of such hypotheses testing requires the estimation and testing of a restricted VAR. The 

following equation gives the unrestricted form of the model: 

                                                 
12 We are grateful to Mr. Abdelaziz Rouabah from Banque Centrale du Luxembourg for his guidance in implementing the test‟s code on Eviews. 
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1 1 2 2

1/ 2 1 1/ 2 1 ' 1/ 2 1

...

where  is a 1 vector such as  = ( )( )  and  is a 1 vector of residuals

standardized by both estimated standard deviati

t t t p t p t

u
t t t t t t k t t

Y Y Y Y

Y kx Y vech R D r R D r I R D r kx

ons and the symmetric square root decomposition of their unconditional 

correlation matrix.  denotes a modified  that only selects elements above the diagonal.uvech vech

 

Under the null, the VAR‟s constant and lagged parameters should be equal to zero. The test statistic is equal to the 

VAR‟s restricted residual sum of squares over the unrestricted model residual sum of squares and is asymptotically 

distributed as
2

1p
. 

4 Empirical Findings 

 

We fitted a diagonal DCC-GARCH (1,1) model to all CDS returns samples
13

. The model was estimated by 

quasi-maximum likelihood (QML), with robust t ratios (Bollerslev and Wooldridge, 1992) used for the estimates 

statistical significance. Table 1 in Appendix 2.a shows the diagonal DCC-GARCH (1,1) estimates
14

 for the 9 CDS 

samples. As reported, all estimates of the lagged variance and squared innovations terms are highly significant 

denoting time-varying volatilities in CDS returns. Moreover, all variance equations satisfy the stationarity 

assumption as the sum of ARCH and GARCH coefficient for each issuer is less, yet very close to unity, implying 

considerable persistence in the volatilities of CDS returns. The correlation equations are also stationary over time 

with positive and highly significant DCC parameters, which makes it clear that the assumption of a constant 

conditional correlation is empirically challenged for financial institutions CDS returns. Our suggestions are further 

validated by Engle and Sheppard (2001) constant correlation tests‟ results. For each of the estimated DCC-

GARCH(1,1) models, we apply Engle and Sheppard (2001) proposed test. The results are reported in Table 2. For 

each sample, we reject the null hypothesis of constant correlation. Moreover, our DCC parameters estimates suggest 

that, over the period spanning December 31
st
, 2004 to November 13

th
, 2008, changes in correlations are 

predominantly driven by past realizations of conditional correlations as denoted by coefficients on θ2 close to 1. 

Even in the case of the German banking and UK insurance sectors for which estimates of θ2 are lower, the impact of 

past standardized shocks on dynamic conditional correlations is mitigated by higher estimates of the DCC‟s own 

lagged effect. Estimates of selected pair-wise correlations for each country‟s both Insurance and Banks samples are 

depicted in Appendix 2.b. 

 

 

 

                                                 
13 The DCC-GARCH model assumes conditionally multivariate returns with zero expected value and covariance matrix Ht (Engle, 2002). To the 

extent that we performed a zero mean hypothesis test and found that all our CDS returns series‟ means are statistically not different from zero, we 

did not need to de-mean our series by estimating a VAR- like mean process prior the DCC-GARCH estimation. The lags order p and q are equal 
to 1 as the analysis of squared returns autocorrelation and partial autocorrelation functions evidenced a significant first-order lag. See the 

autocorrelation and partial autocorrelation functions of selected CDS squared returns, Appendix 1.d. The choice of a first order ARCH and 
GARCH lag also made sense due to the intrinsic difficulty in estimating higher order models as the number of parameters increases.  

14  Diagonal DCC-GARCH were computed as no significant spill-over effects were found to allow for extended multivariate DCC-GARCH models
estimation. ,  ,   are the constant, the one order ARCH parami i i eter and the one order GARCH parameter respectively for each of the , ,
entities comprised in each sample.

i N
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The simulations results for the US and European banking and insurance sectors are presented in Tables 1 to 9 in 

Appendix 2.c. The tables report both the constant correlation and dynamic conditional correlation scenarios for all 

sectors. Within the constant correlation framework, the asymptotic independence scenario generates a significantly 

lower average number than the actual number of maximum simultaneous bottom and top tails returns for financial 

institutions (p-value < 0.05). In the case of UK Banks (Table 3), the simulation‟s p-value for four co-exceedances is 

0.115, yet it is obvious when looking at the actual and simulated counts of extreme synchronised co-movements, 

that the multivariate normal distribution is not able to replicate the actual number of 3 co-exceedances in the top tails 

(p-value = 0.007). Those results suggest asymptotic tail dependence, which is found to be asymmetrical in the case 

of UK Insurance companies (Table 4) and Spanish banks (Table 9) as the low kurtosis scenario is able to explain all 

lower tails co-exceedances. Simulations based on the high co-kurtosis scenario, i.e., when allowing for a strong 

dependence structure in the tails, yield mixed results. In the case of UK Banks, German and French insurance 

companies as well as Spanish banks, the multivariate Student distribution generates an average count of maximum 

positive co-exceedances that is comparable with the true data generating process, hence validating the hypothesis of  

strong dependence in the tails for those four samples. In the case of Spanish banks and French insurance companies, 

dependence in the tails is symmetrical as negative co-exceedances are also accounted for by the high co-kurtosis 

scenario. Asymmetry is on the other hand found for the German insurance sector (Table 6) and the UK banks (table 

3) as the high co-kurtosis hypothesis is rejected in the lower tails at a 10% and 5% significance level (p-value of 

0.098 and 0.006 respectively). Overall, those results suggest that over the period of interest, an increased tail 

dependence seems to characterize banking and insurance sectors in specific countries (US banks and insurers, UK 

insurers, French Banks and German banks) as both the hypothesis of constant correlation and tail dependence aren‟t 

satisfactory in explaining their CDS returns extreme, notably positive, co-movements. 

 

Compared to the time-varying correlation scenario results, those findings are nuanced.  The DCC-GARCH with 

normal distributed innovations models fail in explaining the observed number of maximum extreme co-movements 

of CDS for the majority of sectors. Exception made for the Spanish banks for which the lower and upper tails p-

values are 0.34 and 0.13 respectively, there seems to be no evidence that tail dependence found in the first stage of 

our simulation experiment can be entirely accounted for a by a changing correlation structure. When allowing for t-

distributed innovations, our simulation results easily replicate the maximum number of co-exceedances for the 

insurance sectors in the US, Germany and France (respectively 0.84, 0.76, 0.88 in the lower tails and 0.59, 0.88, 

0.82 in the upper tails), suggesting evidence of asymptotic dependence and time-varying correlations for Insurance 

companies. Finally, the results on banks in the US, France and Germany, as well as insurance companies in the UK 

are noteworthy. For those samples, DCC-GARCH based simulations, even when allowing for Student-t distributed 

innovations do not generate a comparable count of extreme co-movements neither in the top nor lower tails for US 

and German Banks, while the p-values are lower then the 10% significance level in the lower tails for French banks 

and UK insurers (0.069 for three co-exceedances of UK insurers and 0.057 for four co-exceedances of French  

banks), so that even in the lower tails, the hypothesis of a stable tail dependence structure is debatable. Those results 

suggest that tail dependence of those financial institutions exhibit breaks and that those breaks aren‟t reflected in the 

CDS returns distribution‟s overall dynamic correlation structure given by the estimated time-varying correlation 

coefficients. 
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Our empirical findings have two implications. First, while it is well known among economists that there are 

inherent difficulties in predicting systemic crises- both it their scope and intensity- rather then merely identifying 

them ex post, the current financial crisis proved one more time that it is also difficult to recognise the risks 

associated with events as they take place or rise in severity during a crisis. This Disaster-myopia
15

 driven behaviour 

directly relates to the inclination of economic agents to underestimate the probability of occurrence of adverse 

events, notably when those events last took place in the very distant past. This readiness not to recognize or estimate 

stress events and associated risks as they occur, especially after prolonged periods of stability, makes it difficult for 

both policy-makers and market participants to gauge the marginal contribution of a particular distressed financial 

institution in the disruption of the entire banking or financial system. Because it is based on daily observations and 

on a joint tail risk measure, our analytical model can help capture systemic risk as it occurs, since it is capable of 

differentiating and hence pointing out to non linearities in tail dependence, or in other words, increasing risk that 

multiple financial institutions become simultaneously distressed.  

 

Increased tail dependence was found to characterise major economies‟ banking sectors (the US, France and 

Germany) and to less extent insurance companies (only UK insurers‟ DCC-GARCH  model simulations with t-

distributed innovations couldn‟t generate a comparable count of positive extreme co-movements at the 5 % 

significance level, see Table 4, Appendix 2.c). This result suggests that the financial crisis was rather of a systemic 

nature in banking sectors with stress events such as the Lehman Brothers bankruptcy and the near failure of  Bear 

Sterns, as opposed to being a rather contained crisis in global insurance sectors. In sum, the analysis presented here 

could be jointly used with other approaches such as early warning signals/financial soundness and market indicators 

in order to determine when a financial institution, given the state of global capital and liquidity markets, is 

increasingly contributing to the whole sector or system‟s fragility, in other words, when systemic risk becomes 

apparent.  

 

A second implication of our results pertains to the inevitable interaction of credit and counterparty risks in the 

CDS markets. Counterparty risk directly relates to the probability of the counterparty of a CDS contract to fail to 

meet its payment obligations if the reference entity were to default. If a CDS seller defaults, the protection buyer 

will look to replace the trade with a different counterparty at a price often different (higher) than the original 

contract price. The defaulted counterparty is legally bound to pay the additional cost of trade replacement. Those 

costs, if unpaid by the defaulted counterparty, can incur significant losses to the protection buyer. The Lehman 

debacle proved that the actual losses due to trade novation costs when a financial institution defaults as a 

counterparty can be much greater than the losses on its debt instruments, i.e, when the same defaulted financial 

institution is the reference entity in the contract. In the days following Lehman Brothers‟ default and the resulted 

increase in CDS volatility, several market participants suffered losses in novating their trades with other financial 

institutions on account of simultaneous jumps in CDS spreads across the board
16

. 

 

 

 

                                                 
15 See Haldane (2009) for a presentation of the concept of “Distaster Myopia “resulting in Banks‟ failures in risk management practices prior and 

during the 2007 financial crisis. 
16 ECB, page 33.   
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The Lehman episode was consequently able to reveal at least two structural features in CDS trading that played 

in favour of increased counterparty risk and, as we believe, increased systemic risk. The over-concentration of CDS 

markets since the start of the crisis in 2007 led a few dealers to account for a big share of traded volumes. More 

importantly, concentration risk in the market resulted in greater systemic risk as both counterparty risk and exposure 

by the major CDS dealers increased. In 2008, the five largest CDS dealers were JP Morgan, Goldman Sachs, 

Morgan Stanley, Deutsche bank and Barclays. According to the Depository Trust and Clearing Corporation (DTCC) 

data, the five largest CDS dealers were, as of April 2009, counterparties to almost 50% of the total outstanding 

notional trades
17

. Despite the fact that our simulation study was conducted over samples of banks and insurance 

companies selected on a national scale, and given that three out of the five names were included in this study, we 

believe, that this concentration risk, resulting in greater systemic risk, might have been apparent in the case of 

Germany and the US. 

 

A second factor which we believe contributed to increased tail dependence in Banks CDS returns is the stronger 

interconnectivity of the CDS market as a network over the past two years. Stronger interconnectivity resulted in an 

increase in correlation between financial institutions CDS spread movements since the start of the crisis in July 2007 

(see Appendix 2.b selected DCC-GARCH estimated pair-wise correlation coefficients). Those stronger linkages 

resulted primarily from both the over-concentration of the CDS markets and the increase in demand for protection 

against the failure of financial institutions that were hit by the crisis. This, in turn further deteriorated their CDS 

spreads levels, as they turned out to be counterparties to other financial institutions. Counterparty risk thus emerged 

to add a layer to credit risk as financial institutions became both counterparties and underlying reference entities to 

CDS transactions, and mechanically fed into successive rounds of spread decompression when market participants 

realized that the potential impact of a financial institution‟s default as both an obligor and a counterparty needed to 

be hedged against.  

 

Those findings are in line with those of financial markets structure research. Cont et al. (2009) have shown that 

CDS networks‟ complexity constitutes a channel for the diffusion of systemic risk within a network of financial 

institutions. The enhanced complexity of the trading network, in the aftermath of the 2007 sub-prime crisis, 

increased the potential impact of a financial institution‟s default, which in turn resulted in a synchronised increase in 

financial institutions‟ CDS spreads. It is in that sense that tail dependence breaks can be viewed as a key feature of 

contagion that ought to be particularly assessed for systematically important financial institutions. 

 

 

 

 

 

 

 

 

 

                                                 
17 ECB, page 21.   
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5 Summary 

This paper provides evidence that the dependence structure between CDS returns of financial institutions in the 

US and Europe changed since the start of the financial crisis in 2007. Changes in dependence adjusted for high 

volatility on CDS markets- as denoted by statistically significant DCC parameters- are captured by DCC-GARCH 

(1,1) models. We also evidence different patterns of tail dependence for financial institutions CDS returns. Based on 

numerically simulated extreme co-movements, we demonstrate the increased fragility of the banking sectors in the 

US, France, Germany as well as the UK insurance sector and point out to a changing dependence structure in the 

tails. More importantly, we show that, for those sectors, changes in tail dependence aren‟t revealed through changes 

in correlation. Those results seem to characterize the extreme co-movements of the largest CDS dealers evidencing 

that counterparty risk might have possibly contributed to the increased fragility of those sectors. More broadly, our 

findings provide a basis for a better understanding of CDS market dynamics and extreme dynamics which are both 

of growing importance to policymakers and risk management practitioners. Future research is needed to control for 

fundamentals and market structure variables for a deeper understanding of CDS returns extreme co-movements.  
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Appendix 1.a: Descriptive statistics on CDS returns (31/12/2004 – 13/11/2008) 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

             

      

  

Wells Fargo Citigroup BoA Wachovia JP Morgan GenworthFin. LincolnNat. Ace Metlife

 Mean 0.0018 0.0025 0.0022 0.0021 0.0015 0.0038 0.0034 0.0005 0.0032

 Maximum 0.412 0.437 0.299 0.839 0.295 0.374 0.691 0.436 0.538

 Minimum -0.395 -0.431 -0.362 -1.269 -0.383 -0.312 -0.411 -0.235 -0.353

 Std. Dev. 0.064 0.065 0.060 0.081 0.057 0.054 0.062 0.052 0.053

 Skewness 0.063 -0.155 -0.201 -3.213 -0.264 1.14 1.53 0.90 0.96

 Excess Kurtosis 8.81 11.23 6.23 74.40 7.56 9.73 19.40 9.86 17.67

 Excess Robust Kurtosis 0.70 0.66 0.88 0.70 0.87 0.90 0.58 0.63 0.48

 Jarque-Bera 3261* 5301.9* 1641.1* 234435.4* 2416.8* 4199.9* 16208.8* 4219.8* 13273.0*

 ADF -30.7* -30.5* -31.1* -33.3* -28.9* -18.4* -34.0* -19.7* -28.3*

 L-B(35) 31.5 49.1 39.4 203.6 59.4* 75.1* 69.9* 65.3* 93.6*

* denotes significance at the 5% level

US Banks Sample US Insurance Sample

RBS Barclays HSBC Lloyds TSB Old Mutual Aviva Legal & General Royal & Sun

 Mean 0.0025 0.0026 0.0023 0.0021 0.0029 0.0024 0.0028 0.0009

 Maximum 0.455 0.452 0.487 0.496 0.282 0.582 0.362 0.339

 Minimum -0.707 -0.443 -0.381 -0.424 -0.317 -0.323 -0.210 -0.402

 Std. Dev. 0.082 0.070 0.065 0.074 0.047 0.057 0.046 0.061

 Skewness -0.552 -0.226 0.527 0.050 0.074 1.224 0.948 0.109

 Excess Kurtosis 8.01 6.42 7.35 5.41 6.72 14.36 8.44 7.41

 Excess Robust Kurtosis 0.67 0.68 1.25 0.70 1.19 1.14 1.32 0.70

 Jarque-Bera 2750.1* 1743.1* 2317.8* 1229.5* 1897.9* 8916.5* 3143.6* 2309*

 ADF -34.7* -30.4* -33.1* -34.68151* -33.4* -32* -30.9* -35.4*

 L-B(35) 46.7** 38.9 36.1 48.3** 98.7* 62.1* 50* 73.7*

* denotes significance at the 5% level, ** denotes significance at the 10% level

UK Banks Sample UK Insurance Sample

HVB Deutsche Bank Commerzbank Dresdner Bank WestLB Allianz Hannover Re Munich Re

 Mean 0.0015 0.0021 0.0013 0.0014 0.0018 0.0017 0.0013 0.0012

 Maximum 0.655 0.537 0.599 0.496 0.772 0.613 0.532 0.545

 Minimum -0.381 -0.476 -0.464 -0.281 -0.478 -0.359 -0.255 -0.358

 Std. Dev. 0.071 0.070 0.069 0.068 0.080 0.064 0.056 0.063

 Skewness 0.95 0.27 0.81 0.59 1.17 0.592 1.173 0.845

 Excess Kurtosis 12.45 8.86 15.51 8.08 18.67 14.66 13.04 11.58

 Excess Robust Kurtosis 0.49 0.61 0.73 0.43 3.32 0.95 0.96 0.99

 Jarque-Bera 6663.4* 3309.9* 10219.8* 2801.7* 14878.1* 9091.5* 7382.4* 5755.9*

 ADF -37.7* -32.1* -24* -32.7* -35* -18.3* -29.9* -31.3*

 L-B(35) 73.8* 33.3 53.1* 42.9 60* 60.9* 38.9 45.7

* denotes significance at the 5% level

Germany Banks Sample Germany Insurance Sample

Crédit Agricole Natixis Société Générale BNP Paribas AXA SCOR

 Mean 0.0021 0.0030 0.0022 0.0018 0.0021 0.0005

 Maximum 0.365 0.774 0.38 0.627 0.626 0.345

 Minimum -0.270 -0.509 -0.273 -0.315 -0.319 -0.236

 Std. Dev. 0.064 0.062 0.065 0.071 0.055 0.049

 Skewness 0.01 1.37 0.34 0.80 1.65 0.47

 Excess Kurtosis 3.88 33.03 4.04 8.61 21.19 6.37

 Excess Robust Kurtosis 0.88 1.89 0.86 1.13 0.73 0.88

 Jarque-Bera 631.6* 46181* 704.1* 3226.6* 19342.1* 1741.9*

 ADF -33.8* -37.8* -33.9* -35.2* -31.8* -31.6*

 L-B(35) 34.7 58.8* 51.3* 56.4* 66.6* 47.9*

* denotes significance at the 5% level

France Banks Sample France Insurance Sample
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BBVA Santander Bancaja

 Mean 0.0020 0.0020 0.0035

 Maximum 0.315 0.325 0.831

 Minimum -0.322 -0.335 -0.388

 Std. Dev. 0.061 0.062 0.069

 Skewness 0.32 0.14 2.76

 Excess Kurtosis 5.08 4.47 34.98

 Excess Robust Kurtosis 0.910 0.682 na

 Jarque-Bera 1103.6* 843.1* 52718.3*

 ADF -31.5* -31.5* -35.3*

 L-B(35) 42.1 36 75.5*

* denotes significance at the 5% level

Spain Banks Sample
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Appendix 1.b: US and Europe financial institutions CDS prices (31/12/2004 – 13/11/2008) 
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Appendix 1.c: US and Europe selected financial institutions CDS returns (31/12/2004 – 13/11/2008) 
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Appendix 1.d: selected US and Europe financial institutions CDS squared returns autocorrelation 

functions  
      

   

 
 

   
    

 

 

Selected US and Europe financial institutions CDS squared returns partial autocorrelation 

functions  
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Appendix 2.a: Multivariate DCC-GARCH models estimates 
 

 

 Banks Insurance 

 US Germany France UK Spain US UK Germany France 

1  0.0002* 

(0.0001) 

0.0004* 

(0.0002) 

0.0003* 

(0.0002) 

0.0004* 

(0.0002) 

0.00017* 

(0.0001) 

0.0001 

(0.0001) 

0.0009* 

(0.0002) 

0.0002* 

(0.0001) 

0.0003** 

(0.0002)  

2  0.0002 

(0.0605) 

0.0004 

(0.06) 

0.0005 

(0.0409) 

0.0004 

(0.0448) 

0.0002 

(0.05) 

0.0002 

(0.0456) 

0.0002 

(0.0838) 

0.0001 

(0.0601) 

0.0003 

(0.0594)  

3  0.0001 

(0.063) 

0.0003 

(0.05) 

0.0003 

(0.0584) 

0.0001 

(0.0448) 

0.001 

(0.054) 

0.0001 

(0.0677) 

0.0003 

(0.1479) 

0.0002 

(0.043) 
- 

 

4  0.0002 

(0.0001) 

0.0004* 

(0.0001) 

0.0003 

(0.0002) 

0.0003 

(0.0002) 
- 

0.0001 

(0.0001) 

0.0009* 

(0.0001) 
- - 

 

5  0.0005 

(0.0473) 

0.0012 

(0.059) 
- - - - - - - 

 

1  0.208* 

(0.052) 

0.118* 

(0.049) 

0.174** 

(0.095) 

0.166* 

(0.038) 

0.246* 

(0.0001) 

0.214* 

(0.069) 

0.389* 

(0.066) 

0.237* 

(0.00004) 

0.276* 

(0.105)  

2  0.184* 

(0.0001) 

0.221* 

(0.0001) 

0.203* 

(0.082) 

0.175* 

(0.055) 

0.195* 

(0.038) 

0.247* 

(0.063) 

0.309* 

(0.054) 

0.197* 

(0.054) 

0.168* 

(0.0002)  

3  0.147* 

(0.04) 

0.15* 

(0.045) 

0.324* 

(0.0001) 

0.197* 

(0.00007) 

0.108* 

(0.041) 

0.16* 

(0.00005) 

0.354* 

(0.0001) 

0.208* 

(0.039) 
- 

 

4  0.233* 

(0.046) 

0.205* 

(0.043) 

0.191* 

(0.052) 

0.167* 

(0.039) 
- 

0.151* 

(0.042) 

0.158* 

(0.076) 
- - 

 

5  0.565* 

(0.00004) 

0.097* 

(0.0002) 
- - - - - - - 

 

1  0.771* 

(0.045) 

0.807* 

(0.045) 

0.764* 

(0.067) 

0.791* 

(0.039) 

0.746* 

(0.001) 

0.771* 

(0.052) 

0.294* 

(0.057) 

0.747* 

(0.0001) 

0.671* 

(0.046)  

2  0.797* 

(0.035) 

0.743* 

(0.055) 

0.711* 

(0.0001) 

0.749* 

(0.00009) 

0.771* 

(0.065) 

0.743* 

(0.00005) 

0.688* 

(0.0004) 

0.795* 

(0.063) 

0.727* 

(0.084)  

3  0.832* 

(0.0001) 

0.795* 

(0.002) 

0.66* 

(0.059) 

0.799* 

(0.033) 

0.696* 

(0.179) 

0.83* 

(0.063) 

0.608* 

(0.06) 

0.787* 

(0.041) 
- 

 

4  0.745* 

(0.17) 

0.712* 

(0.078) 

0.77* 

(0.053) 

0.793* 

(0.036) 
- 

0.83* 

(0.054) 

0.622* 

(0.147) 
- - 

 

5  0.414* 

(0.086) 

0.71* 

(0.219) 
- - - - - - - 

 

1  0.067* 

(0.009) 

0.151* 

(0.002) 

0.066* 

(0.025) 

0.064* 

(0.009) 

0.052* 

(0.009) 

0.013* 

(0.006) 

0.162* 

(0.012) 

0.06* 

(0.011) 

0.081* 

(0.008)  

2  0.887* 

(0.022) 

0.523* 

(0.007) 

0.873* 

(0.067) 

0.901* 

(0.018) 

0.94* 

(0.011) 

0.98* 

(0.016) 

0.419* 

(0.029) 

0.895* 

(0.03) 

0.85* 

(0.024)  

* denotes significance at the 5% level. ** denotes significance at the 10% level. Numbers in parentheses are robust standard errors. 

Table 1:   Multivariate DCC-GARCH estimation results 
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Table 2:   Constant Correlation test results 

 

DCC-GARCH : Constant correlation test test statistic p-value

Banks

US 0.145 0.000

Germany 0.218 0.001

France 0.072 0.000

UK 0.152 0.000

Spain 0.101 0.000

Insurance

US 0.215 0.001

Germany 0.098 0.000

France 0.044 0.000

UK 0.095 0.000



 

 25 

Appendix 2.b: DCC estimates – Selected pair-wise correlations 
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Appendix 2.c: Monte Carlo simulations results 

 

Table 1: Monte Carlo simulation results for US Banks 

 
 

Table 2: Monte Carlo simulation results for US Insurance companies 

Low Kurtosis Scenario 0 1 2 3 4 5 0 1 2 3 4 5

Actual 887 69 19 7 8 19 884 71 16 15 8 15

Multivariate Normal distribution             

Simulated Mean 868 79 31 17 10 5 868 79 31 16 10 5

Standard Deviation 6.36 8.35 4.92 3.59 2.75 2.06 6.4 8.31 4.99 3.56 2.73 2.08

Min 845 49 15 5 1 0 845 47 14 6 2 0

Max 896 110 50 30 19 13 891 108 49 34 21 14

p-value 0.001 0.902 0.995 0.999 0.807 0.000 0.006 0.845 0.999 0.709 0.807 0.000

High Kurtosis Scenario

Multivariate t-distribution (df=5)            

Simulated Mean 881 64 28 17 12 8 881 64 27 17 12 8

Standard Deviation 6.44 8.1 4.89 3.66 2.9 2.41 6.34 7.89 4.9 3.58 2.92 2.41

Min 860 37 11 6 3 0 857 36 14 5 2 0

Max 903 95 46 30 22 17 905 94 48 31 23 17

p-value 0.196 0.300 0.977 0.999 0.924 0.000 0.355 0.206 0.996 0.718 0.923 0.004

DCC GARCH- Normal distributed innovations           

Simulated Mean 862 86 32 16 9 4 861 86 32 16 9 4

Standard Deviation 9.44 11.58 5.61 3.71 2.94 2.53 9.65 11.92 5.72 3.71 2.91 2.53

Min 832 41 10 5 0 0 828 45 12 4 0 0

Max 912 126 49 29 22 18 905 129 54 30 22 18

p-value 0.007 0.941 0.989 0.998 0.649 0.000 0.016 0.912 1.000 0.684 0.670 0.002

DCC GARCH- t distributed innovations (df=5)            

Simulated Mean 852 99 31 16 8 2 852 99 31 16 8 2

Standard Deviation 22.8 26.7 9.89 5.34 6.09 3.86 22.8 26.79 9.75 5.3 5.98 3.86

Min 788 15 4 0 0 0 795 10 6 0 0 0

Max 933 191 70 35 33 27 933 180 69 36 30 27

p-value 0.081 0.873 0.904 0.964 0.501 0.009 0.097 0.851 0.957 0.607 0.499 0.022

Number of negative (co-)exceedances Number of positive (co-)exceedances

Low Kurtosis Scenario 0 1 2 3 4 0 1 2 3 4

Actual 864 102 31 8 4 873 95 22 11 8

Multivariate Normal distribution           

Simulated Mean 855 116 29 9 1 855 116 29 9 1

Standard Deviation 5.09 8.32 4.29 2.58 1.09 5.08 8.31 4.17 2.5 1.06

Min 838 85 12 0 0 837 88 14 1 0

Max 875 146 43 20 6 874 145 46 20 7

p-value 0.026 0.848 0.996 0.136 0.001 0.000 0.999 0.511 0.507 0.000

High Kurtosis Scenario

Multivariate t-distribution (df=4)            

Simulated Mean 873 89 30 13 4 873 89 30 13 4

Standard Deviation 5.74 8.67 4.46 2.97 1.9 5.71 8.56 4.55 3.07 1.92

Min 851 60 14 2 0 851 57 17 3 0

Max 896 120 48 25 12 894 119 49 29 13

p-value 0.957 0.071 0.469 0.962 0.653 0.552 0.242 0.976 0.752 0.057

DCC GARCH- Normal distributed innovations           

Simulated Mean 851 122 28 7 1 851 122 28 7 1

Standard Deviation 8.13 12.87 4.65 2.92 1.35 8.05 12.79 4.63 2.9 1.34

Min 822 60 9 0 0 824 51 12 0 0

Max 895 172 47 20 12 906 168 46 21 14

p-value 0.059 0.944 0.319 0.393 0.060 0.011 0.980 0.936 0.113 0.003

DCC GARCH- t distributed innovations (df=4)            

Simulated Mean 898 55 28 18 10 898 55 29 18 10

Standard Deviation 16.13 20.06 6.99 4.71 5.91 16.31 20.27 7.17 4.69 6.02

Min 841 9 6 0 0 843 9 6 0 0

Max 946 139 58 35 39 946 133 65 35 39

p-value 0.972 0.026 0.375 0.980 0.849 0.929 0.046 0.834 0.942 0.590

Number of negative (co-)exceedances Number of positive (co-)exceedances
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Table 3: Monte Carlo simulation results for UK Banks 

 

 

               Table 4: Monte Carlo simulation results for UK Insurance companies 

Low Kurtosis Scenario 0 1 2 3 4 0 1 2 3 4

Actual 880 88 19 10 12 874 94 18 18 5

Multivariate Normal distribution           

Simulated Mean 863 104 30 10 3 863 104 30 10 3

Standard Deviation 5.38 8.45 4.41 2.75 1.54 5.46 8.65 4.44 2.7 1.51

Min 845 76 15 1 0 843 71 13 2 0

Max 884 134 47 21 11 882 138 44 20 11

p-value 0.001 0.973 0.996 0.588 0.000 0.027 0.877 0.998 0.007 0.115

High Kurtosis Scenario

Multivariate t-distribution (df=4)            

Simulated Mean 879 81 29 14 6 879 81 30 14 6

Standard Deviation 5.79 8.59 4.64 3.15 2.12 5.73 8.4 4.61 3.2 2.15

Min 856 51 14 3 0 860 52 12 4 0

Max 900 113 48 25 15 899 109 50 28 15

p-value 0.450 0.233 0.994 0.918 0.006 0.829 0.075 0.997 0.123 0.690

DCC GARCH- Normal distributed innovations           

Simulated Mean 862 105 30 10 3 862 106 30 10 2

Standard Deviation 7.84 11.78 4.78 3.14 1.96 7.9 11.87 4.66 3.17 1.92

Min 839 60 15 0 0 836 68 13 1 0

Max 892 141 48 22 14 890 146 48 24 14

p-value 0.015 0.935 0.992 0.516 0.002 0.070 0.842 0.997 0.013 0.135

DCC GARCH- t distributed innovations (df=4)            

Simulated Mean 860 107 29 10 2 860 107 29 10 2

Standard Deviation 21.04 30.51 8.08 6.87 4.33 21.18 30.72 8.18 6.92 4.35

Min 807 16 2 0 0 808 14 3 0 0

Max 939 200 67 36 36 939 198 64 38 32

p-value 0.178 0.737 0.914 0.471 0.054 0.249 0.677 0.928 0.147 0.171

Number of negative (co-)exceedances Number of positive (co-)exceedances

Low Kurtosis Scenario 0 1 2 3 4 0 1 2 3 4

Actual 850 123 27 9 0 870 102 19 8 10

Multivariate Normal distribution           

Simulated Mean 849 125 28 6 1 849 125 28 6 1

Standard Deviation 5.18 8.69 4.22 2.3 1.01 5.16 8.69 4.19 2.3 0.97

Min 829 91 11 0 0 833 95 12 0 0

Max 868 157 45 16 6 868 152 44 17 6

p-value 0.447 0.598 0.630 0.167 1.000 0.000 0.997 0.990 0.292 0.000

High Kurtosis Scenario

Multivariate t-distribution (df=4)            

Simulated Mean 867 98 31 11 3 867 97 31 11 3

Standard Deviation 5.68 8.86 4.52 2.82 1.66 5.62 8.67 4.51 2.87 1.66

Min 845 63 13 3 0 848 67 15 1 0

Max 888 132 47 23 10 888 126 52 22 11

p-value 0.999 0.002 0.814 0.799 1.000 0.316 0.315 0.998 0.888 0.001

DCC GARCH- Normal distributed innovations           

Simulated Mean 846 130 27 6 1 846 130 27 6 1

Standard Deviation 5.83 9.77 4.35 2.33 0.97 5.81 9.73 4.29 2.32 0.97

Min 824 94 12 0 0 827 95 10 0 0

Max 867 168 42 17 6 867 162 44 16 6

p-value 0.270 0.766 0.539 0.120 1.000 0.000 0.998 0.977 0.199 0.000

DCC GARCH- t distributed innovations (df=4)            

Simulated Mean 843 134 28 4 0 843 134 28 4 0

Standard Deviation 9.14 15.79 6.08 2.59 0.95 9.13 15.8 6.08 2.53 0.98

Min 819 75 11 0 0 818 71 7 0 0

Max 882 176 54 19 12 884 181 59 18 10

p-value 0.226 0.765 0.536 0.069 1.000 0.007 0.970 0.949 0.113 0.000

Number of negative (co-)exceedances Number of positive (co-)exceedances
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Table 5: Monte Carlo simulation results for German Banks 

 

 

Table 6: Monte Carlo simulation results for German Insurance companies 

Number of positive (co-)exceedances

Low Kurtosis Scenario 0 1 2 3 4 5 0 1 2 3 4 5

Actual 842 119 23 13 9 3 844 112 28 17 4 4

Multivariate Normal distribution             

Simulated Mean 827 131 35 13 3 0 826 131 35 13 3 0

Standard Deviation 5.84 9.03 4.82 3.05 1.71 0.65 5.79 8.89 4.82 3.03 1.73 0.65

Min 808 98 19 4 0 0 806 95 18 3 0 0

Max 849 163 53 23 10 6 850 162 53 24 11 4

p-value 0.005 0.910 0.995 0.544 0.005 0.009 0.002 0.987 0.939 0.114 0.454 0.001

High Kurtosis Scenario

Multivariate t-distribution (df=5)             

Simulated Mean 845 105 34 16 6 2 846 105 34 16 6 2

Standard Deviation 6.38 9.14 5.07 3.39 2.23 1.2 6.34 9.01 5.04 3.38 2.28 1.19

Min 820 76 16 5 0 0 824 70 19 5 0 0

Max 868 144 52 30 15 7 871 135 51 29 18 7

p-value 0.736 0.075 0.991 0.847 0.168 0.195 0.624 0.25 0.907 0.436 0.906 0.061

DCC GARCH- Normal-distributed innovations             

Simulated Mean 826 131 35 13 3 0 826 131 35 13 3 0

Standard Deviation 6.76 10.15 5.06 3.14 1.84 0.71 6.68 10.1 4.95 3.06 1.81 0.74

Min 803 97 18 2 0 0 805 96 18 4 0 0

Max 847 167 54 26 12 4 852 164 52 24 12 4

p-value 0.016 0.89 0.9958 0.482 0.007 0.014 0.005 0.98 0.933 0.107 0.447 0.004

DCC GARCH- t distributed innovations (df=5)             

Simulated Mean 825 132 37 12 3 0 825 132 37 12 3 0

Standard Deviation 11.15 16.18 5.93 3.94 2.23 0.83 11.31 16.3 5.78 3.93 2.24 0.87

Min 788 79 16 0 0 0 791 60 19 0 0 0

Max 867 193 59 28 16 7 878 190 59 26 15 8

p-value 0.073 0.802 0.991 0.389 0.022 0.030 0.056 0.900 0.943 0.115 0.360 0.013

Number of negative (co-)exceedances

Low Kurtosis Scenario 0 1 2 3 0 1 2 3

Actual 923 40 25 21 917 48 27 17

Multivariate Normal distribution         

Simulated Mean 903 69 25 11 903 70 25 11

Standard Deviation 4.38 7.2 3.97 2.67 4.42 7.25 3.92 2.67

Min 885 44 12 3 888 43 11 3

Max 919 99 41 22 921 95 42 21

p-value 0.000 1.000 0.532 0.001 0.001 0.999 0.330 0.027

High Kurtosis Scenario

Multivariate t-distribution (df=3)         

Simulated Mean 914 53 25 17 914 53 25 17

Standard Deviation 4.44 7 4.04 2.97 4.51 7.07 4.06 3.04

Min 897 31 10 5 900 31 10 6

Max 929 81 39 28 929 78 40 29

p-value 0.029 0.977 0.517 0.098 0.311 0.79 0.315 0.533

DCC GARCH- Normal-distributed innovations     

Simulated Mean 900 75 25 10 900 75 25 10

Standard Deviation 7.55 11.9 4.59 4.1 7.5 11.83 4.61 4.1

Min 874 25 9 0 874 24 10 0

Max 936 118 41 32 934 118 41 33

p-value 0.004 0.997 0.498 0.012 0.020 0.987 0.334 0.060

DCC GARCH- t-distributed innovations (df=3)         

Simulated Mean 930 31 23 26 930 31 23 25

Standard Deviation 9.15 11.8 6.49 7.17 9 11.57 6.53 7.11

Min 882 6 3 0 880 5 6 0

Max 951 103 45 44 950 106 45 44

p-value 0.793 0.217 0.380 0.761 0.921 0.086 0.279 0.882

Number of positive (co-)exceedancesNumber of negative (co-)exceedances
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Table 7: Monte Carlo simulation results for French Banks 

 

 
 

Table 8: Monte Carlo simulation results for French Insurance companies 

Low Kurtosis Scenario 0 1 2 3 4 0 1 2 3 4

Actual 865 108 18 12 6 873 91 29 9 7

Multivariate Normal distribution           

Simulated Mean 855 116 29 9 1 855 116 29 9 1

Standard Deviation 5.09 8.32 4.29 2.58 1.09 5.08 8.31 4.17 2.5 1.06

Min 838 85 12 0 0 837 88 14 1 0

Max 875 146 43 20 6 874 145 46 20 7

p-value 0.026 0.848 0.996 0.136 0.001 0.000 0.999 0.511 0.507 0.000

High Kurtosis Scenario

Multivariate t-distribution (df=4)            

Simulated Mean 871 91 30 13 4 871 91 30 13 4

Standard Deviation 5.6 8.54 4.43 3.01 1.75 5.62 8.55 4.48 3.02 1.78

Min 848 57 14 4 0 851 62 14 3 0

Max 893 125 49 24 10 891 122 48 24 11

p-value 0.893 0.030 0.999 0.682 0.133 0.415 0.541 0.601 0.935 0.056

DCC GARCH- Normal distributed innovations           

Simulated Mean 854 118 28 8 1 854 118 28 8 1

Standard Deviation 6.89 10.85 4.51 2.93 1.28 6.8 10.76 4.56 2.93 1.27

Min 827 79 12 0 0 833 81 12 0 0

Max 883 162 44 23 13 879 154 46 24 11

p-value 0.060 0.819 0.994 0.131 0.008 0.006 0.992 0.489 0.435 0.004

DCC GARCH- t distributed innovations (df=4)            

Simulated Mean 852 119 30 7 1 852 119 30 7 1

Standard Deviation 17.18 26.24 7.72 6.27 2.46 17.19 26.29 7.81 6.24 2.48

Min 811 24 4 0 0 812 24 5 0 0

Max 930 193 69 34 26 928 191 67 34 24

p-value 0.215 0.678 0.953 0.232 0.057 0.123 0.859 0.538 0.357 0.044

Number of negative (co-)exceedances Number of positive (co-)exceedances

Low Kurtosis Scenario 0 1 2 0 1 2

Actual 922 72 15 925 66 18

Multivariate Normal distribution       

Simulated Mean 918 81 11 918 81 11

Standard Deviation 2.71 5.42 2.71 2.66 5.32 2.66

Min 909 60 2 909 60 2

Max 928 98 21 928 98 21

p-value 0.083 0.96 0.083 0.006 0.997 0.006

High Kurtosis Scenario

Multivariate t-distribution (df=2)       

Simulated Mean 926 63 19 926 63 19

Standard Deviation 3.06 6.12 3.06 3.13 6.27 3.13

Min 916 40 9 916 42 9

Max 938 84 31 937 84 30

p-value 0.938 0.111 0.938 0.731 0.390 0.731

DCC GARCH- Normal-distributed innovations    

Simulated Mean 918 80 11 918 80 11

Standard Deviation 3.27 6.54 3.27 3.31 6.62 3.31

Min 909 56 2 909 54 2

Max 930 98 23 931 98 24

p-value 0.138 0.918 0.138 0.027 0.984 0.027

DCC GARCH- t-distributed innovations (df=2)       

Simulated Mean 933 50 26 933 50 26

Standard Deviation 8.99 17.97 8.99 9.01 18.02 9.01

Min 907 6 0 907 8 0

Max 955 102 48 954 102 47

p-value 0.887 0.134 0.887 0.819 0.208 0.819

Number of positive (co-)exceedancesNumber of negative (co-)exceedances
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Table 9: Monte Carlo simulation results for Spanish Banks  

 

 

 

 
 

Low Kurtosis Scenario 0 1 2 3 0 1 2 3

Actual 896 76 34 3 894 82 28 5

Multivariate Normal distribution         

Simulated Mean 884 98 25 1 884 98 25 1

Standard Deviation 3.47 6.51 3.21 1.16 3.47 6.51 3.22 1.16

Min 872 74 14 0 873 75 11 0

Max 897 121 38 7 896 122 36 7

p-value 0.000 1.000 0.005 0.175 0.003 0.996 0.224 0.014

High Kurtosis Scenario

Multivariate t-distribution (df=3)         

Simulated Mean 896 79 29 5 896 78 29 5

Standard Deviation 3.97 6.8 3.5 2.1 4.08 6.95 3.49 2.14

Min 881 56 15 0 881 51 19 0

Max 911 105 42 14 911 105 41 14

p-value 0.528 0.677 0.115 0.920 0.719 0.336 0.679 0.642

DCC GARCH- Normal-distributed innovations     

Simulated Mean 884 99 24 2 884 99 24 2

Standard Deviation 6.73 12.23 5.16 2.09 6.71 12.16 5.12 2.1

Min 860 60 3 0 863 51 7 0

Max 909 145 41 13 913 139 42 13

p-value 0.052 0.974 0.026 0.341 0.082 0.923 0.251 0.130

DCC GARCH- t-distributed innovations (df=3)         

Simulated Mean 893 82 32 2 893 82 32 2

Standard Deviation 11.4 21.11 9.29 3.18 11.31 20.99 9.29 3.15

Min 857 26 1 0 856 32 0 0

Max 934 151 50 32 929 153 51 28

p-value 0.476 0.526 0.518 0.314 0.539 0.428 0.710 0.171

Number of positive (co-)exceedancesNumber of negative (co-)exceedances


