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Abstract

This paper compares the goodness-of-fit of eight option-based approaches used to extract
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sen time to maturity. The mixture of log-normals, Edgeworth expansion, hermite polynomials,
jump diffusion and Heston models are more in line and have heavier tails than the log-normal
distribution. Moreover, according to the goodness of fit criteria we compute, the jump diffusion
model provides a much better fit than the other models on the period just-before the crisis for
relatively short maturities. However, during this same period, the mixture of log-normal models
performs better for more than three month maturity. Furthermore, in the troubled period and the
period just-after the crisis, we find that semi-parametric models are the methods with the best
accuracy in fitting observed option prices for all maturities with a minimal difference towards
the mixture of log-normals model.
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1 Introduction

The Risk-Neutral Density (RND) is an interesting tool for an investor who seeks to measure how
market expectations evolve over time. A huge literature arose from the early 1990s on the most
appropriate way to estimate this density. At the origin of all the methods, we find the famous work
of Breeden and Litzenberger (1978), who are the pioneers who determined a relationship between
option prices and the RND.

Malik and Thomas (1997) have developed a nonparametric method to estimate the American
option prices. This technique has been adopted by Bahra (1996) and Schernick, Garcia and Tiru-
pattur (1996) on European options. It is a representation of RND based on a linear combination
of log-normal density fonctions. These authors estimated the RND of the oil price during the
Gulf crisis and found that the estimated density is different from the density obtained by standard
methods. Söderlind and Svensson (1997) showed how this method can be applied to different
financial assets with emphasis on its use, like monetary policy. Abadir and Rockinger (1997) de-
termined farm formulas of option prices using Kummer functions (hypergeometric) as a basis for
RND. Backus, Foresi, Li and Wu (1997) have approached the conditional distribution of underlying
assets prices by Gram-Charlier series expansion.

Another approach has been proposed by Jarrow and Rudd (1982). They have developed a
method of option valuation under the assumption that the underlying asset does not follow a
log-normal distribution. They showed that the RND can be obtained by an Edgeworth expan-
sion. Carrodo and Su (1996) used the Jarrow and Rudd approach to determine the skewness and
kurtosis of the price of S&P500 options. A similar approach is that of Madan and Milne (1994),
Abken, Madan and Ramamurti (1996) and Coutant (1999) who determined the RND from a Her-
mite polynomial approximation. Similarly, El Hassan and Kucera (1998) used the Fourier-Hermite
development in order to evaluate European and American index options.

Among other recent researchs, Heston (1993) has provided a quasi-analytical solution for pric-
ing options in a stochastic volatility framework. Breeden and Litzenberger (1978) showed that the
option price second derivative over the strike gives the risk-neutral density. Based on this relation-
ship between option prices and RND, Rzepkawski (1996) adopted the Heston method to extract the
RND. Similarly, Neuhauss (1995) used the direct relationship of Breeden and Litzenberger (1978)
working with the distribution function instead of the risk-neutral density. Rubinstein (1994, 1996)
and Jackwerth (1996) suggested a method based on binomial trees. Rubinstein (1994) developed
a tree to estimate the implicit prices of contingent assets1 from prices options. His method is to
minimize the gap between the tree implied probabilities and the probabilities determined from the
tree of Cox-Ross-Rubinstein (1979). Aït-Sahalia (1996) and Aït-Sahalia and Lo (1998) estimated the
S&P500 Risk-Neutral Density by performing Kernel techniques estimation. Campa, Chang and
Reider (1998) compared three different RND estimating methods of the underlying asset. These
methods are a smoothing of the smile through a degree three polynomial, a Rubinstein implicit
tree and a mixture of log-normal distributions.

Galati and Melick (1999) estimated the moments using a mixture of log-normal laws in order to
understand how the central bank interventions are perceived by foreign exchange markets traders
regarding JPY / USD options between 1993 and 1996. Weinberger (2001) and Anagnar, Bedendo,
Hodges and Tompkins (2002) found a typical form of the implied S&P500 risk neutral distribution
after the crisis. Panigirtzoglou and Skiadapoulos (2004) studied implied distributions dynamics
and provided algorithms that make their results applicable to the options and risk management

1A contingent asset is an asset that pays one unit of good consumed when a world state takes place and nothing else.
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framework. Mark, Feike and Lo(2005) showed that the RND is a function of both the underlying
asset returns and volatility. Enzo, Handel and Härdle (2006) estimated the RND using the same ap-
proach developed by Aït-Sahalia and Lo (1998). Finally, Jondeau, Ser-Huang Poon and Rockinger
(2007) compared the performance of various parametric and semi-parametric methods to extract
RND.

Some authors argued that the RND coresponds to real world density only if investors are risk
neutral. Thus, the difference between the two densities stemps from the existence of a risk pre-
mium. Consequently, it is interesting to study the ability of the estimated RND extracted from
options prices to assess the real density, its forecasting ability as well as the choice of the suitable
RND estimation technique.

In this paper, we estimate parametrically, semi-parametrically and nonparametrically the RND
functions of CAC 40 index options between January 1st 2007 and December 31st 2007, and we com-
pare the goodness-of-fit of eight option-based approaches during a normal and troubled period.
To our knowledge, this is the first application dealing with European options using structural and
non-structural approaches of RND functions estimation. Specially, we use nonparametric estima-
tion methods of the RND, that is the kernel and the tree-based methods as well as six parametric
and semi-parametric option-based approaches: (i) the numerical approximation of the RND based
on the second derivative of option prices with respect to the strike price, as suggested by Breeden
and Litzenberger (1978), (ii) the mixture of log-normal distributions following Melick and Thomas
(1997), (iii) the Edgeworth expansion around the log-normal distribution of Jarrow and Rudd
(1982), (iv) the Hermite polynomials, suggested by Madan and Mline (1994), (v) Heston’s stochas-
tic volatility model (1993) and (vi) the jump diffusion model following Bates (1991). To our best
knowledge, our study is the first that combines the three approaches : parametric, semi-parametric
and nonparametric methods of RND estimation.
The paper is organized as follows. Section 2 discusses our methodological non-structural ap-
proaches of RND functions estimation. Section 3 presents the structural methods we use to extract
the RND functions. Section 4 describes our data, and contains the estimation results as well as
related comments regarding the comparison of the various RND estimation methods. Section 5
concludes.

2 Non-structural approaches of RND functions estimation

2.1 The Breeden and Litzenberger relation

Breeden and Litzenberger (1978) were the first to derive the RND using the following price of a
call option formula :

C(St, t) = e−rτE∗ [max (ST − K, 0) |St, t] (1)

= e−rτ
∫
∞

0
max (ST − K, 0) q (ST |St, t) dST.((1))

Where for date t and maturity date T, we denote C the call price, r is the risk-free interest rate, S is
the underlying asset price, K is the strike price and q(.) is the undiscounted RND.

Differentiating this equation with respect to the exercise price K yields the discounted cd f

∂C
∂K

= −e−rτ
∫
∞

K
q(ST)dST. (2)
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and differentiating twice yields the discounted pd f 2

∂2C
∂K2

∣∣∣K=ST = e−rτq(ST).(3)

These equations show that the second derivative of the call price yields the discounted RND3.
This suggests that a first method to extract RND is to approximate it numerically applying the
finite difference approach to ( 3). Nevertheless, this method relies on the hypothesis that there
exist traded option prices for many strikes. This is not likely to be the case in practice. Also, it has
been shown that RNDs estimated in this manner are very unstable. In fact, differentiating twice
exacerbates even tiny errors in the prices and may be difficult4. That is why it is necessary to extract
RND using alternative methods that put more structure on the option prices.Before describing such
methods, we briefly show how the parameters of these models are estimated.

2.2 RND parameters estimation

Suppose that we have to estimate a given model with respect to a set of parameters θ. Assume
that for horizon τ, we have Nτ

c strike prices for which we have call options and Nτ
p strike prices

for which we have put options. For date t and horizon τ, observed call and put options prices
are denoted Ct,τ,i i = 1, ...,Nτ

c and Pt,τ,i i = 1, ...,Nτ
p . Theoretical call and put option prices, implied

by the assumed model, are denoted Ct(K, τ, θ) and Pt(K, τ, θ), respectively, for strike price K and
horizon τ. Then, the parameter vector θ ∈ Θ is typically estimated by non-linear least squares, by
minimizing for each day and each maturity

min
θ ∈ Θ

Nτ
c∑

i=1

wc
i
(
Ct,τ,i − Ct(Ki, τ, θ)

)2 +

Nτ
p∑

i=1

wp
i

(
Pt,τ,i − Pt(Ki, τ, θ)

)2 . (4)

where wc
i and wp

i are weights associated with option i and Θ is the domain of θ. These weights
could be given by a measure of liquidity of a given option.

2.3 Parametric methods

2.3.1 Black & Scholes Model

The price dynamics of an underlying asset of a Black & Scholes Model ( BSM) is a Geometric
Brownian motion. Under the log-normal assumption, the volatility is constant across both the
exercice price and horizons. The BSM underlying asset price is given by :

dSt = (µ +
σ2

2
)Stdt + σStdWt (5)

2Breeden and Litzenberger (1978) suggest to evaluate the RND using this approximation

∂2C
∂K2 ≈ e−rτ C(Ki+1) − 2C(Ki) + C(Ki−1)

(∆K)2 .

where ∆K = 50. See also Roncalli (1997).
3It should be mentioned that q(.) is the undiscounted RND whereas e−rτq(.) represents an Arrow -Debreu state price,

which is referred to as the RND.
4For instance, if option prices suffer from non-synchronicity bias (that is, the underlying asset price is not observed at

the same time as the option price), if the option price is fudged because of some microstructure reason (for instance, due to
the bid-ask spread).
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where µ and σ represent respectively the instantaneous return assets expectations and volatility.
Wt is a Brownian motion under the real probability measure P.
When markets are complete, Harrison and Pliska (1981) show that there exists a risk-neutral
transformation that leads to the following formula :

dSt = rStdt + σStdWQ
t (6)

where WQ
t is a Brownian motion under the risk-neutral probability measure Q.

The call option price CBS maturing at date T = t + τ, with strike price K and dividend yield δt,τ,
is given by :

CBS(St,K, τ, r, δt,τ, σ) = e−rτ
∫
∞

0
max[ST − K, 0] fBS(ST)dST

= StΦ(d1) − Ke−rτΦ(d2). (7)

Where Φ(.) is the standard cumulative normal distribution function and

d1 =
log(St/K) + (r − δt,τ + σ2

2 )τ

σ
√
τ

, d2 = d1 − σ
√
τ. (8)

Consequently, the RND is a log-normal density with a mean m = (ln(St) + (r − δt,τ) − σ2

2 )τ and
variance s2 = σ2τ :

fBS(ST) = erτ ∂
2CBS

∂K2

∣∣∣K=ST

=
1

ST
√

2πσ2τ
exp

[
−

[log(ST) −m]2

2s2

]
. (9)

All Black & Scholes parameters , except the volatility, are directly observable. Nevertheless, the
BSM hypothesis, according to which the returns are homoscedastic and normally distributed, does
not fit with empirical evidence showing that densities are skewed and leptokurtik.

2.3.2 Mixture of log-normal distributions

Bahra (1996), Melick and Thomas (1997) and Södernlind (1997) are among the first to describe the
RND as a mixture of distributions. For option pricing, the most well-known distribution studied
in the litterature is the mixture of log-normal densities. The reason is that it appears as a trivial
extension of the Black & Scholes model that involves the single log-normal density function.

l (ST,m, σ) =
1

ST
√

2Πs2
exp

−1
2

(
log (ST) −m

s

)2 . (10)

A mixture of such densities yields

q (ST;θ) =

M∑
i=1

αil (ST,mi, si) . (11)
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where θ regroups all the unknown parameters αi,mi and si f or i = 1, ...,M, and M denotes the
number of mixtures describing the RND. Obviously, to guarantee that q is a density, we must have
αi > 0 for all i = 1, ...,M, and α1 + ... + αM = 1. In other words, q should be a convex combinaison
of various log-normal densities.

The option price for such a mixture of log-normal distributions is, for a given strike K and time
to maturity τ = T − t

CLN (K, θ) = e−rτ
∫ +∞

K
(ST − K) q (ST;θ) dST

= e−rτ
∫ +∞

K
(ST − K)

M∑
i=1

αil (ST,mi, si) dST

= e−rτ
M∑

i=1

αi

∫ +∞

K
(ST − K) l (ST,mi, si) dST. (12)

where we define the volatility over the horizon of the option as si = σi
√
τ, to simplify notations.

The last equality is obtained by simply inverting the sum and integral operators. There are various
ways to evaluate the integral. For instance, we have5∫ +∞

K
(ST − K) l

(
ST, µ, s

)
dST = (E [ST |ST > K] − K) Pr [ST |ST > K]

= exp
(
m +

1
2

s2
) [

1 −Φ

(
log(K) −m − s2

s

)]
− K

[
1 −Φ

(
log(K) − µ

s

)]
(13)

Finally, the option price is given by

CLN (K;θ) = e−rτ
M∑

i=1

αi

exp
(
µi +

1
2

s2
i

) 1 −Φ

 log(K) −mi − s2
i

si

 − K
[
1 −Φ

(
log(K) −mi

si

)]
= e−rτ

M∑
i=1

αiexp
(
µi +

1
2

s2
i

)
Φ

−log(K) + mi + s2
i

si

 − e−rτK
M∑

i=1

αiΦ

(
−log(K) + mi

si

)
(14)

Under the risk-neutral probability, we have to impose the martingale condition stating that the
current price St under the RND is equal to the expected discounted price of the underlying asset
e−rτE [ST], so that6

St = e−rτE [ST] = e−rτ
M∑
j=1

α jexp
(
m j +

1
2

s2
j

)
. (15)

5This result builds on Johnson, Kotz and Balakrishman (1994) who indicate that if S follows a log-normal distribution
with mean µ and variance σ2, then

E[S|S > K] = exp
(
µ +

1
2

s2
) 1 −Φ (U − σ)

1 −Φ (U)

where U =
(log(K)−m)

σ
6In order to estimate the parameters αi, mi and si, we use this minimization program

min
m1,m2, s1, s2, α1, α2

N∑
i=1

(
Ct,τ,i − Ct(Ki, τ, θ)

)2
+

N∑
i=1

(
Pt,τ,i − Pt(Ki, τ, θ)

)2
+ [e−rτ

2∑
j=1

α jexp
(
m j +

1
2

s2
j

)
]2.
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As an alternative, we can directly use the BSM formula and set, in a similar spirit to what
precedes,

CLN (K, θ) =

M∑
i=1

αi
[
StΦ

(
d1,i

)
− Ke−rτΦ

(
d2,i

)]
(16)

where d1,i =
[
log (ST/K) +

(
miτ + 1

2 s2
i

)]
/si, and d2,i = d1,i − si, the martingale condition may be

imposed as follows
St = CLLN (0, θ) (17)

This condition just means that, for a strike price of 0, the option will always get exercised and,
hence, at maturity we will always get the underlying asset.
In practice, imposing K = 0 in the BSM formula is not a good idea because log (0) is not defined. It is
possible to approach this limit case by setting K equal to some very small value. There are several
advantages of using this technique. First,the implementation is straightforward, because it suffices
to slightly modify the usual BSM formula by introducing the additional parameter µ. Second, the
implementation via the BSM formula introduces the current price of the underlying asset, St. The
parameter µ, will therefore be of the magnitude of an annualized asset return. This means that its
value can be easily bounded, which is a welcome feature for numerical purposes. Third, the time
to maturity τ is explicitly taken into account. This means that µi will be an annualized number
which implies that parameters extracted for different maturities are directly comparable.

The mixture of distribution approach comes, however, at a cost. A first drawback in fitting a
mixture of distributions is the symmetry between the densities. To illustrate this point, assume
that a given RND can be correctly described by a mixture involving exactly two normal densities.
Using obvious notations, we can write

q (ST, α,m1,m2, s1, s2) = α l (ST,m1, s1) + (1 − α) l (ST,m2, s2) (18)

Obviously, the same density is obtained if we invert the two log-normal distributions, i.e,
q (ST, 1 − α,m1,m2, s2, s1). Clearly, the order of the parameters plays a critical role here. For an
optimization program, this means, however, that several parameter vectors are associated with a
same density. This in turn could yield numerically unstable programs where the optimizer cycles
in an infinite loop.

Another difficulty lies in testing the number of distributions that are involved in the RND. One
may be tempted to use a likelihood-ratio type test to check if the ith density should be included in
the mixture by testing if αi = 0. However, if αi = 0, the parameters mi and si associated with the
ith density are unidentified. Stated differently mi and si could take any value, because they would
not play a role in the density q. Sometimes, such parameters are called down and specific tests
need to be developed. This type of problems appears also in switching regressions. There is no
obvious solution to it. Critical values may be obtained by simulations. In partice, one may add
distributions up to the point where adding them yields to no further improvement.

There exist various solutions to help the optimizer converge in terms of MSE. In the event of
two densities, M = 2, we start with a grid for α. Since it is known that 0 ≤ α ≤ 1, one may subdivide
the interval [0, 1] into equally spaced points, where αi = i∆, for i = 0, ...,N. In practice, ∆ = 0.1 often
yields very good results as Jondeau, Ser-Huang Poon and Rockinger (2007) find. Furthermore, to
avoid the problem of symmetry mentioned above, it is possible to impose that the densities remain
in a given order. One possibility that appears to give satsisfactory results is to impose that s1 > s2.
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The first density will then have a larger standard deviation than the second one. Similar extensions
may be given for the case where M = 3. The α parameters may be taken over a simplex.7

2.4 Semi-parametric methods

2.4.1 Edgeworth expansions

This method is developed by Jarrow and Rudd (1982) for which a numerical application can be
found in Corrado and Su (1996). The idea is to capture deviations from log-normality by an
Edgeworth expansion of RND q(ST |θ) around the log-normal density. The construction of an
Edgeworth expansion is conceptually similar to computing a Taylor expansion but applies to
functions in general and to densities in particular. In a conventional Taylor expansion, the function
is approximated by a simple polynomial around a given point. Here, the RND is approximated
by an expansion around a log-normal distribution. A clear advantage of the expansion approach
is that the approximation, by involving parameters that can be varied, allows generating more
general functions. Flamouris and Giamouridis (2002) and Beber and Brandt (2003) studied also
the Edgeworth expansions. Let Q be the cd f of a random variable ST and q its density. Let’s define
the characteristic function of S as φQ(u) =

∫
eisuq(s)ds. If moments of ST exist up to order n, then

there exist cumulants of the distribution Q, denoted κQ, j and implicity defined by the expansion

log
(
φQ(u)

)
=

n−1∑
j=1

κQ, j
(iu) j

j!
+ ◦(un−1) (19)

Thus, if the characteristic function φQ(.) is known, by taking an expansion of its logarithm around
u = 0, it is possible to obtain the cumulants. We have these relationships between the cumulants
and moments up to the fourth order κQ,1 = E [ST] , κQ,2 = V [ST] , κQ,3 = E

[
(ST − E [ST])3

]
, κQ,4 =

E
[
(ST − E [ST])4

]
− 3V [ST]2.

Jarrow and Rudd show that an Edgeworth expansion of the fourth order for the true probabiliy
distribution Q around the log-normal cd f L can be written, after imposing that the first moment
of the approximating density and the true density are equal,

(
κQ,1 = κL,1

)
. The density q(s) is

q(s) = l(s)+
κQ,2 − κL,2

2!
d2l(s)
ds2 −

κQ,3 − κL,3

3!
d3l(s)
ds3 +

(
κQ,4 − κL,4

)
+ 3

(
κQ,2 − κL,2

)2

4!
d4l(s)
ds4 +ε (s) (20)

where ε (s) captures terms neglected in the expansion. The various terms in the expansion corre-
spond to adjustments of the variance, skewness, and kurtosis. The interpretation of this expansion
is similar to a Taylor expansion.

Jarrow and Rudd further show that, under the approximated density, the price of a European
call option with strike K can be approximated as

C(Q) = e−rτ
∫
∞

K
(ST − K) q(ST)dST

≈ e−rτ
∫
∞

K
(ST − K) l(ST)dST + e−rτκQ,2 − κL,2

2!

∫
∞

K
(ST − K)

d2l(ST)
dS2

T

dST

7For further details, see Jondeau, Ser-Huang Poon and Rockinger (2007).
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−e−rτκQ,3 − κL,3

3!

∫
∞

K
(ST − K)

d3l(ST)
dS3

T

dST+e−rτ

(
κQ,4 − κL,4

)
+ 3

(
κQ,2 − κL,2

)2

4!

∫
∞

K
(ST − K)

d4l(ST)
dS4

T

dST.

(21)
Notice that the first term is simply the Black-Scholes formula. In addition, the log-normal distri-
bution has the following property∫

∞

K
(ST − K)

d jl(ST)

dS j
T

dST =
d j−2l(ST)

dS j−2
T

∣∣∣S=K, f or j ≥ 2.(22)

We deduce for the call option price

C (Q) ≈ C(L) + e−rτκQ,2 − κL,2

2!
l(K) − e−rτκQ,3 − κL,3

3!
dl(K)
dST

+ e−rτ

(
κQ,4 − κL,4

)
+ 3

(
κQ,2 − κL,2

)2

4!
d2l(K)
dS2

T

.

(23)
For the log-normal density, the first cumulants are given by

κL,1 = Sterτ,

κL,2 =
[
κL,1ϑ

]2 ,

κL,3 =
[
κL,1ϑ

]3
(
3ϑ + ϑ3

)
,

κL,4 =
[
κL,1ϑ

]4
(
16ϑ2 + 15ϑ4 + 6ϑ6 + ϑ8

)
. (24)

where ϑ =
(
eσ2τ
− 1

)1/2
and where the first relation follows from risk-neutral valuation. Jarrow

and Rudd suggest identifying the second moment by imposing κL,2 = κQ,2. This argument is also
justified on numerical grounds by Corrado and Su (1996) who notice that without this condition
there exists a problem of multicolinearity between the second and the fourth moments. Rather
than estimating the remaining cumulants, κQ,3 and κQ,4, Corrado and Su (1996) estimate standar-
lized skewness and kurtosis ( written respectively γQ,1 and γQ,2), which are defined through the
relationships :

γQ,1 =
κQ,3

(κQ,2)3/2
= 3ϑ + ϑ3,

γQ,2 =
κQ,4

(κQ,2)2 = 16ϑ2 + 15ϑ4 + 6ϑ6 + ϑ8. (25)

These expressions also hold for the log-normal density. The skewness and kurtosis of the log-
normal density can therefore be derived easily from the cumulants above.
With the assumption of equality of the second cumulants for the approximating and the true
distributions, it follows that

C(Q) ≈ C(L) − e−rτ
(
γQ,1 − γL,1

) κ3/2
L,2

3!
dl(K)
dST

+ e−rτ
(
γQ,2 − γL,2

) κ2
L,2

4!
d2l(K)
dS2

T

(26)
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Using this expression, it is easy to estimate with nonlinear least squares the implied volatility,
σ2, skewness, γQ,1, and kurtosis, γQ,2. The expression of the RND can be obtained after twice
differentiating ( 26) with respect to K and then evaluation over ST

q(ST) = l(ST) − (γQ,1 − γL,1)
κ3/2

L,2

6
d3l(ST)

dS3
T

+ (γQ,2 − γL,2)
κ2

L,2

24
d4l(ST)

dS4
T

. (27)

where the partial derivatives can be computed iteratively using

dl(ST)
dST

= −

(
1 +

log(ST) −m
σ2τ

)
l(ST)
ST

. (28)

d2l(ST)
dS2

T

= −

(
2 +

log(ST) −m
σ2τ

)
1

ST

dl(ST)
dST

−
1

S2
Tσ

2
l(ST). (29)

d3l(ST)
dS3

T

= −

(
3 +

log(ST) −m
σ2τ

)
1

ST

d2l(ST)
dS2

T

−
2

S2
Tσ

2

dl(ST)
dST

+
1

S3
1Tσ2

l(ST), (30)

d4l(ST)
dS4

T

= −

(
4 +

log(ST) −m
σ2τ

)
1

ST

d3l(ST)
dS3

T

−
3

S2
Tσ

2

d2l(ST)
dS2

T

+
3

S3
Tσ

2

dl(ST)
dST

−
2

S4
Tσ

2
l(ST), (31)

where m = log(St) + (r − σ2/2)τ. The RND in the Edgeworth case will be a polynomial whose
coefficients directly command the skewness and kurtosis of the RND. We also remark that the
RND involves rather complicated terms with derivatives of the log-normal density.

2.4.2 Hermite polynomials

An alternative, yet similar, semi-parametric approach relies on an approximation of the Gaussian
density based on Hermite polynomials. The theoretical foundation of this method is elaborated
in Madan and Mline (1994) and applied in Abken, Madan, and Ramamurtie (1996) and Coutant,
Jondeau, and Rockinger (2001).

For numerical reasons, Madan and Mline consider the map from the actual prices into the space
generated by standardized log-returns z. Let’s denote the volatility over the horizon of the option
as s = σ

√
τ,

ST = Stexp
(
µτ −

1
2

s2 + sz
)
⇒ z =

log(ST/St) − (µτ − 1
2 s2)

s
(32)

The standarlized log return z has zero mean and unit variance.
If we focus on a call option, the payoff of such an option, as a function z, is

c(St,K, µ, s, τ) = max
(
Stexp

(
µτ −

1
2

s2 + sz
)
− K, 0

)
= g(z), (33)

Hence the price of a call option may be written as

C(St,K, µ, s, τ) = e−rτ
∫ +∞

0
c(St,K, µ, s, τ)qz(z)dz
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= e−rτ
∫ +∞

0
g(z)qz(z)dz (34)

Here, the notation g(z) illustrates that the result holds for all sorts of payoffs. qz(.) denotes the
risk-neutral density of z. We can go from the RND defined in z space to the RND defined in ST
space using the following change of variable

q(ST)dST = qz

 log(ST/St) − (µτ − 1
2 s2)

s

 × 1
s
× dST (35)

Now, we assume that any payoff g(z) may be expressed as a function of basis elements. It turns out
that a basis for the Gaussian space is given by Hermite polynomials. In other words, there exist
real numbers ak such that any payoff can be written as

g(z) =

∞∑
k=0

akhk(z), (36)

with ak =
∫

z g(z)hk(z)Φ(z)dz, where Φ(z) is the Gaussian distribution and hk(z) denotes Hermite
polynomials normalized to unit variance, defined as

h0(z) = 1,

h1(z) = z,

h2(z) =
1
√

2
(z2
− 1),

h3(z) =
1
√

6
(z3
− 3z),

h4(z) =
1
√

24
(z4
− 6z2 + 3). (37)

The coefficients ak can be interpreted as the covariance between the option payoff and the kth
Hermite polynomial risk. Consequently, the price of the call option becomes

C(St,K, µ, s, τ, r) = e−rτ
∞∑

k=0

ak

∫
z

hk(z)qzdz. (38)

Madan and Milne (1994) assume that the RND qz(z) can be represented as the product of a
change of measure density and a reference measure density

qz(z) = λ(z)Φ(z). (39)

Here, the reference measure density Φ(z) is simply the Gaussian one and the risk-neutral change
of measure density λ(z) is approximated by a Hermite polynomial expansion

λ(z) = erτ
∞∑

l=0

πlhl(z) (40)
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Under the reference measure, z is by construction normally distributed with zero mean and unit
variance. But more generally, the RND qz(z) may incorporate some departure from normality. The
RND can be rewritten as

qz(z) = Φ(z)

 ∞∑
l=0

πlhl(z)

 (41)

Theπl are interpreted as the implicit price of polynomial risk hl(z). Obviously, since the polynomial
components are not traded, these risks can not be traded either. For practical purposes, the infinite
sum can be truncated up to the fourth order. Since the Hermite polynomial of order l will depend on
the lth moment, we will also refer to π3 and π4 as the price of skewness and kurtosis, respectively.
It can be easily shown that for qz(z) to be a density, we need π0 = e−rτ. Besides, since z is the
standardized log-return (with zero mean and unit variance by construction), it follows that the
shifts for the mean π1 and the variance π2 of qz(z) relative to the reference measure can be set equal
to 0. Hence, we estimate the mean µ and the variance σ2 of log-returns and set π1 = π2 = 0 . We
obtain

qz(z) = Φ(z)

erτ
l=0∑
4

πlhl(z)

 = Φ(z)erτ (e−rτ + π3h3(z) + π4h4(z)
)

= Φ(z)
(
1 +

b3
√

6
(z3
− 3z) +

b4
√

24
(z4
− 6z2 + 3)

)
(42)

Where the bi = erτπi, i = 3, 4, are the future value of the ith price of risk coefficient. The parameters
b3 and b4 correspond to the skewness and kurtosis if the reference measure density of z is chosen
to be the normal distribution. It is important to emphasize that unlike the Edgeworth case, since a
further change of variable from z to ST has to made, b3 and b4 will not correspond to the skewness
and kurtosis of the underlying price process ST but to the skewness and kurtosis of log-returns z.
Finally, the skewness and kurtosis of the expansion are given by

Skewness [z] =
√

6b3 (43)

Kurtosis [z] = 3 +
√

24b4 (44)

The parameters σ , b3 and b4 can be obtained using a nonlinear estimation method.
The general expression for the price of a call option is given by

C(St,K, µ, s, τ, r) =

∞∑
k=0

∞∑
l=0

akπl

∫
z

hl(z)hk(z)Φ(z)dz =

∞∑
k=0

akπk (45)

where the second equality holds because Hermite polynomials form an orthogonal system . When
the infinite sum is truncated up to the fouth order, we obtain

C(St,K, µ, s, τ, r) = e−rτa0 + π3a3 + π4a4 (46)

Therefore, it remains to be shown how to obtain the ak coefficients. Abken, Madan and Ramamurtie
(1998) introduce the call option generating function

G(u,St,K, µ, s, τ) =
1
√

2Π

∫ +∞

−∞

c(u,St,K, µ, s, τ)exp
(
−

1
2

(z − u)2
)

dz, (47)
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where u is a dummy variable. The coefficients ak can then be obtained from the generating function
as

ak(St,K, µ, s, τ) =
∂kG(u,St,K, µ, s, τ)

∂uk
|u=0

1
√

k!
(48)

The evaluation of G(u,St,K, µ, s, τ) is shown to be

G(u,St,K, µ, s, τ) = Stexp
(
µτ + su

)
Φ(d1(u)) − KΦ(d2(u)) (49)

where d1(u) = log(St/K) + (µτ/s + s/2) + u and d2(u) = d1(u) − s. From there on, it is possible to
compute the coefficients ak. Let’s introduce the notation d j = d j(0), that is we evaluate the d j(0) at
zero. We obtain after tedious computations, and introducing the notations Φ

′

, Φ
′′ andΦ

′′′

, for the
first, second, and third derivatives of standard normal density with respect to its argument

a0 = SteµτΦ(d1) − KΦ(d2)

a1 = sSteµτΦ(d1) + SteµτΦ(d1) − KΦ(d2)

a2 =
1
√

2

[
s2SteµτΦ(d1) + 2sSteµτΦ(d1) + SteµτΦ

′

(d1) − KΦ
′

(d2)
]

a3 =
1
√

6

[
s3SteµτΦ(d1) + 3s2SteµτΦ(d1) + 3sSteµτΦ

′

(d1) + SteµτΦ”(d1) − KΦ”(d2)
]

a4 =
1
√

24

[
s4SteµτΦ(d1) + 4s3SteµτΦ(d1) + 6s2SteµτΦ

′

(d1) + 4sSteµτΦ”(d1) + SteµτΦ
′′′

(d1) − KΦ
′′′

(d2)
]

(50)
This method has been applied in Coutant, Jondeau and Rockinger (2001) to interest-rate options.

Jondeau and Rockinger (2001) have also shown how conditions on b3 and b4 could be imposed so
that the polynomial approximation remains positive.

2.5 Non-parametric methods

2.5.1 Tree-based methods

The tree-based method has been presented by Rubinstein (1994) and is further extended in Jackw-
erth and Rubinstein (1996) and Jackwerth (1999). Jackwerth (1997) gives a numerical illustration
of the method which is based on two steps. First of all, we take existing options nearest as well
as we compute the average of their Black-Scholes implied volatilities. Secondly, we compute the
RNDs that would be associated to the binomial tree of Cox, Ross and Rubinstein (1979) and that
would be comparable with these implied volatilities.
Formally, let’s consider that the tree has N steps. A terminal node, j, of the binomial tree has a
probability to realize of P′j. If p′ is the risk-neutral probability of an up movement on each node of
the tree 8, then

P
′

j =
N!

j!(N − j)!
p
′ j(1 − p

′

)(N− j) (51)

8p′ = r−d
u−d , where u = eσ

√
τ and d = 1

u
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In that formula, it is assumed that the nodes are denoted in such a way that a small j corresponds
to a low value of the support ST. Let’s denote these values as S j, j = 1, ...N.Given the current value
of the underlying asset, it is also possible to construct the nodal values of the underlying asset
in a risk-neutral environment. Even though by working backwards, we could use the binomial
tree to value options, this tree would not be compatible with the observed option smile. The third
possibility is to seek terminal probabilities that are close to the tree -based probabilities, yet that also
correspond to the given options. Formally, let the risk-neutral probabilities, which are compatible
with actual options, be denoted by P j. These risk -neutral probabilities may then be obtained by
solving the following optimization :

min
P j

N∑
j=1

(
P j − P

′

j

)2
(52)

subject to

N∑
j=1

P j = 1, P j ≥ 0, j = 0, ...,N (53)

St = e−rt(τ)
N∑

j=1

S jP j (54)

Cτ,i = e−rτ
N∑

j=1

P j

(
S j − Ki

)+
, i = 1, ...,N (55)

The first constraint provides conditions so that the values P j define probabilities. The second
condition corresponds to the martingale condition. Finally, the last condition states that the
probabilities P′j should be compatible with existing option prices. Various metrics can be used to
define the distance between the probabilities P j and P′j. The idea of using other metrics is expressed
in Rubinstein (1994) and tested in Jackwerth and Rubinstein (1996). We could choose the following
distances :

min
P j

N∑
j=1

P
′

j − P j, (56)

min
P j

N∑
j=1


(
P j − P′j

)2

P′j

 (57)

or

max
P j

N∑
j=1

P j log

P j

P′j

 (58)

The first measure is a metric based on absolute deviations. The second measure is based on
percentage deviations. The third measure corresponds to seeking the maximum entropy.
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2.5.2 Kernel regression

Aït-Sahalia and Lo (1998) propose to estimate the RND nonparametrically by exploiting Breeden
and Litzenberg’s (1978) insight that f ∗t (ST) = exp(rt,τ)∂2H(.)/∂K2. They suggest using market prices
to estimate an option pricing formula Ĥ(.) nonparametrically, which can then be differentiated
twice with respect to K to obtain ∂2 ˆH(.)/∂K2. They use kernel regression to construct ˆH(.) and
assume that the option-pricing formula H to be estimated is an arbitrary nonlinear function of a
vector of option characteristics y ≡

[
Ft,τ K τ rt,τ

]′
where Ft,τ is the forward price of the asset.

In practice, they propose to reduce the dimension of the kernel regression by using a semipara-
metric approach. Assume that the call pricing function is given by the parametric Black-Scholes
model except that the implied volatility parameter for that option is a nonparametric function
σ(K/Ft,τ) :

C(St,K, τ, rt,τ, δt,τ) = CBS(Ft,τ,K, τ, rt,τ, σ(K/Ft,τ)). (59)

We assume that the function C defined by the equation ( 59) satisfies all required conditions to be a
"rational" option-pricing formula in the sense of Merton (1973, 1992)9. In this model, we only need to
estimate non-parametrically the regression of σ on a subset Ỹ of the vector of explanatory variables
Y. The rest of the call pricing functions C(.) is parametric, thereby considerably reducing the sample
size n required to achieve the same degree of accuracy as the full nonparametric estimator. Aït-
Sahalia and Lo (2000) partition the vector of explanatory variables y = [Ỹ′Ft,τrt,τ] where Ỹ contains
d̃ non parametric regressors. In their empirical application, they consider Ỹ ≡ [K/Ft,ττ]

′

(d̃ = 2) and
form the Nadaraya-Watson Kernel estimator of E[σ|K/Ft,ττ] as :

σ̂
(
K/Ft,ττ

)
=

∑n
i=1 kK/F

(
K/Ft,τ−Ki/Fti ,τi

hK/F

)
kτ

(
τ−τi

hτ

)
σi∑n

i=1 kK/F

(
K/Ft,τ−Ki/Fti ,τi

hK/F

)
kτ

(
τ−τi

hτ

) (60)

where σi is the volatility implied by the option price Hi, and the univariate kernel functions kK/F
and kτ and the bandwidth parameters hK/F and hτ are chosen to optimize the asymptotic properties
of the second derivative of C̃(.), i.e., of the RND estimator. One estimates the call pricing function
as :

Ĉ(St,K, τ, rt,τ, δt,τ) = CBS(Ft,τ,K, τ, rt,τ, σ̂(K/Ft,τ)) (61)

The RND estimator follows by taking the second partial derivatives of C̃(.) with respect to K :

f̂ ∗ (ST) = eri,ττ

[
∂2Ĉ(St,K, τ, rt,τ, δt,τ)

∂K2

] ∣∣∣K=Sτ .(62)

Contrary to the RND estimation approaches previously developed and which are based on the
estimation of RND for each cross-section of options, the nonparametric kernel regression provides
an estimator that is based on both cross-sectional and time-series option prices. Consequently, this
approach is consistent over time, but may provide a poor fit for certain dates10.

9In particular , see Merton (1992). These conditions imply that σ(K/Ft,τ) cannot be an arbitrary function but must yield
an CBS(Ft,τ,K, τ, rt,τ, σ(K/Ft,τ)) that satisfies all the conditions of a rational option-pricing formula.

10For futher details, see Aït-Sahalia and Lo (1998, 2000) and Jondeau, Ser-Huang Poon and Rockinger (2007).
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3 Structural approaches of RND functions estimation

3.1 Jump diffusion model

Modeling the underlying asset with a Black & Scholes model is not consistent. Large values of
returns occur too frequently to be consistent with the normality assumption. The rare events may
cause brutal assets pricing variations. In order to model such a phenomenon, we should use
a Poisson jump process. We assume that the underlying asset price follows a log normal jump
diffusion process i.e, the addition of a geometric Brownian motion and a Poisson jump process.
This process takes into account the skewness and kurtosis effects.

The underlying asset price under the risk-neutral world follows the process :

dSt = (rt − λE(k)) Stdt + kStdWt + kStdqt (63)

where qt is the Poisson associated probability , λ is the average rate of jump occurence and k is the
size of a jump.
Bates (1991) has shown that in case of a diffusion with n jumps, the call price is :

CJMP (St, t,T,K) = e−rtτ
∞∑

i=0

P(njumps)E
[
(ST − K)+ /njumps

]
(64)

Ball and Torous (1985) and Malz (1997) proposed a simplified version of the jump-diffusion model,
where there will be at most one jump of a constant size. In this Bernoulli version of a jump diffusion
model, the equation of the call price is the following :

CJMP (St, t,T,K) = e−rtτ
1∑

i=0

P(njumps)E
[
(ST − K)+ /njumps

]
(1 − λτ)

[ St

1 + λκτ
N

(
d1 + σ

√
τ
)
− Ke−rtτN (d1)

]
+ λτ

[ St

1 + λκτ
(1 + κ)N

(
d2 + σ

√
τ
)
− Ke−rt N(d2)

]
(65)

with

d1 =
log

(
St
K

)
− log(1 + λκτ) +

(
rt −

σ2

2 τ
)

σ
√
τ

(66)

d2 =
log

(
St
K

)
− log(1 + λκτ) + log(1 + κ) +

(
rt −

σ2

2 τ
)

σ
√
τ

(67)

where (1 − λτ) is the probability that no events occur in the option life.
We can easily show that the call price is simply a combinaison of two call prices calculated by

Black (1976) model

CJMP (St, t,T,K|θ) = (1 − λτ) CB
( St

1 + λκτ
, τ,K|θ

)
+ (λτ) CB

( St

1 + λκτ
(1 + κ), τ,K|θ

)
(68)
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This technique is a particular case of a mixture of log-normal distributions. The RND is :

qJMP (ST,St, t,T,K|θ) = (1 − λτ) LN
(
ST, α, β

)
+ λτLN

(
ST, α + log(1 + κ), β

)
(69)

where :

LN (x) =
1

√
2πβ x

exp
[
−

( Ln (x) − α)2

2β2

]
(70)

α = log (St) + (µ −
1
2
σ)2(T − t) (71)

the θ = (σ, λ, κ)′ vector parameters are estimated using the following program :

min
θ

n∑
i=1

(
Ĉi − CJMP

i

)2
(72)

3.2 Heston’s stochastic volatility model

Most diffusion models of the underlying asset suppose that the volatility of the latter is a constant.
Nevertheless, if the underlying asset records strong fluctuations over a short period, it would be
necessary to model it with a stochastic volatility process . Heston (1993) proposed the following
model :

dSt = µtStdt +
√

VtStdW1
t (73)

dVt = κ (θ − Vt) dt + σ
√

VtdW2
t (74)

dW1
t dW2

t = ρ dt (75)

where {St} |t≥0 and {Vt} |t≥0 are the price and volatility process, respectively, and
{
W1

t

} ∣∣∣∣t≥0,
{
W2

t

}
|t≥0

are correlated Brownian motion processes (with correlation parameter ρ ). {Vt} |t≥0 is a square root
mean reverting process, first used by Cox, Ingersoll and Ross (1985), with long-run mean θ, and
rate of reversion κ. σ is referred to as the volatility of volatility. All the parameters µ, κ, θ, σ, ρ are
time and state homogenous.
There are several economic, empirical and mathematical reasons for choosing a model with such
a form 11.

Under the Heston model , the value of any option Θ(St,Vt, t,T) must satisfy the following
partial differential equation :

1
2

VS2 ∂
2Θ

∂S2 +ρσVS
∂2Θ

∂S∂V
+

1
2
σ2V

∂2Θ

∂V2 + rS
∂Θ
∂S

+
{
κ [θ − V] −Λ (S,V, t) σ

√

V
} ∂Θ
∂V
− rΘ+

∂Θ
∂t

= 0 (76)

where Λ(S,V, t) is called the market price of volatility risk. Heston supposes that the market
price of volatility risk is propotional to volatility, i.e.

Λ(S,V, t) = k
√

V (77)
11see Cont (2001) for a detailed statistical analysis.
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⇒ Λ(S,V, t)σ
√

V = kσVt for some constant k

= λ(S,V, t) (78)

Risk neutral valuation is pricing of a contingent claim in an equivalent martingale measure.
The price is evaluated as the expected discounted payoff of the contingent claim, under the Risk
neutral probability, the option value is

Option value = EQ
[
er(T−t)H(T)

]
(79)

where H(T) is the payoff of the option at time T and r is the risk free of interest over [t,T].
Moving from a real world measureP to a risk neutral world measureQ is achieved by Girsanov’s

theorem. In particular, we have
dW̃2

t = dW2
t + Λ(S,V, t)dt (80)

dQ
dP

= exp
{
−

1
2

∫ t

0

(
ν2

s + Λ(S,V, s)2
)
ds −

∫ t

0
υsdW1

s −

∫ t

0
Λ(S,V, s)dW2

s

}
(81)

υt =
µ − r
√

Vt
(82)

where
{
W̃1

t

}
|t≥0 and

{
W̃2

t

}
|t≥0 are Q− Brownian motions. Under measure Q, the equations ( 73),

( 74) and ( 75) become,
dSt = rtStdt +

√
VtStdW̃1

t (83)

dSt = κ∗ (θ∗ − Vt) dt + σ
√

VtdW̃2
t (84)

dW̃1
t dW̃2

t = ρ dt (85)

and the equation ( 76) becomes :

1
2

VS2 ∂
2Θ

∂S2 +ρσVS
∂2Θ

∂S∂V
+

1
2
σ2V

∂2Θ

∂V2 +rS
∂Θ
∂S

+
{
κ∗ [θ∗ − V] −Λ (S,V, t) σ

√

V
} ∂Θ
∂V
−rΘ+

∂Θ
∂t

= 0 (86)

where,
κ∗ = κ + λ (87)

θ∗ =
κθ
λ + λ

(88)

In this important result, λ has effectively been eliminated.
The closed-form solution of a European call option on a non-dividend paying asset for the

Heston model is :
C

(
St,Vt, t,T) = StP1 − Ke−rt(T−t)P2(89)

where

P j (x,Vt,K,T) =
1
2

+
1
π

∫
∞

0
Re

 e−iφ log (K) f j

(
x,Vt,T, φ

)
iφ

dφ (90)

18



f j

(
x,Vt,T, φ

)
= exp

{
C

(
T, φ

)
+ D

(
T, φ

)
Vt + iφ x

}
(91)

C
(
T − t, φ

)
= rφ iτ +

α

σ2

(b j − ρσφ i + d j

)
τ − 2 log

1 − g jed jτ

1 − g j

 (92)

D(T, φ) =
b j − ρσφ i + d

σ2

 1 − ed jτ

1 − g jed jτ

 (93)

g j =
b j − ρσφ i + d
b j − ρσφ i − d

(94)

d j =

√(
(ρσφ − b j)2 − (2u jφ i − φ2)

)
(95)

x = log (St) (96)

for j = 1, 2 where, u1 = 1
2 , u2 = − 1

2 , α = κθ, b1 = k∗ − ρσ, b2 = κ∗ 12.
The θ =

(
κ∗, θ∗, ρ,Vt, σ

)′ vector parameters are then estimated using the following algorithm :

min
θ

n∑
i=1

(
Ĉi − Ci

)2
(97)

After estimating model parameters, the risk-neutral density is obtained from the numerical calcu-
lation of the integral. A method to evaluate formulas in form of ( 92) has been proposed by Carr
and Madan (1999).

4 Application to CAC 40 index options

In this section, we estimate parametrically, semi-parametrically and nonparametrically the RND
functions of CAC 40 index options between January 1st 2007 and December 31st 2007. We compare
the goodness-of-fit of eight option-based approaches during a normal and troubled period. To our
knowledge, this is the first application on the European market dealing with European options
using structural and non-structural approaches of RND functions estimation.

4.1 Data

Our data is provided by the SBF-Paris Bourse13 and includes intraday values of the CAC 40
stock index and intraday transaction prices of CAC 40 options over the period January 1st 2007-
December 31st 2007. CAC 40 options are traded on the MONEP, the French derivatives market.
Trading covers eight open maturities : three spot months, four quarterly maturities ( March, June,
September, December) and two half-yearly maturities (March, September). The maturity date is

12It is important to note that the interpretations of κ∗ and
√
θ∗ as respectively the rate of reversion and long term volatility

are still valid.
13SBF-Paris Bourse provides a monthly CD-ROM including intraday values of the CAC 40 stock index and intraday

transaction prices of CAC 40 options traded on the MONEP.
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the last trading day of each month. Trading takes place on a continuous basis between 9:00 am
and 5:30 pm.

Figure 1: CAC 40 stock index evolution (January 1st 2007- December 31st 2007)

The future underlying asset Ft,T cannot be observed exactly at time t, where t denotes a given
day and time and T is the maturity . Aït-Sahlia and Lo (1998) suggest extracting an implied future
index price from the put-call parity. Given our intraday data, we cannot get contemporaneous
trades concerning a call and a put with similar strike price and maturity. Thus, for each maturity,
we compute :

Ft,T = St(exp(rt,T − δt,T)τ) (98)

To circumvent the unobservability of the dividend rate δt,T, we extract an implied value of the
dividend rate between the end of day t and T from the daily closing price of the index, Stend and the
setlement future index price, Ftend , observed at the end of each day. The obtained dividend rate is
the dividend rate expected by the market between tend and T 14.

δtend,T = rt,T −
1
τ

ln(
Ftend,T

Stend

) (99)

Ft,T is then computed using the dividend rate and the riskfree interest rate proxied by Euribor.
Since some CAC 40 options are not traded actively, we need to filter the data carefully. Five filters
are applied to the initial data. We omit the quotes of the first and the last 15 minutes each day and
the option quotes characterized by a price lower or equal to one tick. We only consider options
with a moneyness15 comprised between 0.85 and 1.15. This procedure eliminates far-away-from
the money observations, which are unreliable due to their low volume and low sensitivity towards

14The constant dividend hypothesis passes over the clustering of dividends paid by most firms during specific months.
However, as far as we are concerned, the bias is not relevant since we use market prices of futures to estimate an implied
dividend rate. The constant dividend hypothesis could be replaced by a more realistic actual dividend assumption, leading
to the following pricing formula for the futures : Ft,T = Stexp(rt,T(T − t)) +

∑n
l=1 Dl,tl

exp(rtl ,T(T − tl)) where tl is the payment
date of the lth dividend. Nevertheless, this formula requires the prediction of all dividends amounts and payment dates
paid by the 40 CAC 40 index shares and the prediction of the forward interest rates.

15Strike price divided by the future index level.
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volatility. Besides, options quotes violating general no-arbitrage conditions, that is put-call parity,
are eliminated as well as we replace the price of all illiquid options, that is in-the-money options,
with the price implied by put-call parity at the relevant strike prices. Specially, we replace the price
of each in-the-money call option with P(St,K, τ, rt,T, δt,T) + (Ft,T − K)e−rt,Tτ, where, by construction,
the put with price P(St,K, τ, rt,T, δt,T) is out-of-the money and therefore liquid. After this procedure,
all the information included in liquid put prices is extracted and resides in corresponding call
prices through the put-call parity. Put prices may now be splayed without any loss of reliable
information. Since our data include only call options, a single volatility function can be estimated.

We provide in Figure 2 the implied volatility observed on January 1st2007 and Figure 3 reports
the volatility smiles for four various maturities observed on July 10th 2007, when the market trend
is bear. The implied volatility is computed using the Black & Scholes formula. For a given maturity,
we compute the daily average implied volatility for each strike price. For fixed St and T, it is shown
that the implied volatility function is not constant as assumed in the Black & Scholes model but
decreases with respect to the strike price. The implied volatility observed on July 10th 2007 on the
French market is then more a "skew" than a "smile". In this case, contrary to what suggests Black-
Scholes model, out-the-money and in-the-money options represent increased risk on potentially
very large movements in the underlying compared to at-the-money. To compensate for this risk,
they tend to be priced higher.

Figure 2: Implied volatility surface on the French market on January 1st 2007
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Figure 3: Implied volatility obtained from the Black & Scholes formula on the French market on
July 10st 2007
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4.2 Methods comparison

4.2.1 Kernel approach estimation

We focus on the nonparametric Kernel approach proposed by Aït-Sahlia and Lo (2001). This
method does not require any parametric restriction on either the underlying asset price dynamics,
the family of distributions that the RND belongs to or any prior distribution for the RND. We use the
whole database in order to estimate nonparametrically the volatility function given in paragraph
(2.5.2), with two conditional variables (d=2): the moneyness and the time to maturity τ. We only
consider two regressors. We rely on the Aït-Sahlia and Lo (1998)’s procedure to select the kernel
functions and the optimal bandwidths. They are chosen to optimize the asymptotic properties
of the option pricing function, H. The selected kernels associated with the two regressors are
Gaussian :

kK/F =
1
√

2π
e−0.5.(K/F)2

kτ =
1
√

2π
e−0.5.(τ)2

(101)

For each regressor, we choose the optimal bandwidth h according to the following equations :

hK/F = cK/FσK/Fn−1/(d+2(qK/F+m)) (102)

hτ = cτστn−1/(d+2qτ) (103)

where n is the sample size, q j is the number of existing continuous partial derivatives of the
function to be estimated with respect to the jth regressor ( j = K/F, τ), m is the order of the partial
derivative with respect to the jth regressor that we want to estimate, d is the number of regressors
and σ j is the unconditional standard deviation of the jth regressor. The parameter c j depends on the
choice of the kernel and the function to be estimated. It is typically of the order of one. Aït-Sahlia
and Lo (1998) emphasize that small deviations from the exact value have no noticeable effects. We
report in Table 2 the values of the coefficients and bandwidths.

Table 2: Selected kernels and bandwidth values
Kernel n q j m d σ j h

K/F Gaussian 25868 2 2 2 0.0724 0.0262
τ Gaussian 25868 2 0 2 100.5462 18.4886

Figure 4 shows σ̂
(
K/Ft,ττ

)
, the Nadaraya-Watson estimator of the volatility parameter with two

regressors X/F and τ, for different maturities (20 days , 50 days, 80 days and 170 days i.e 1,2,3
and 6 months). We note that the estimator generates a strong volatility smile with respect to the
moneyness. Besides, in confirmity with Aït-Sahlia and Lo (1998) and Bliss and Panigirtzoglou
(2002), we observe that the reported smiles shape varies with the chosen time to maturity.

The estimated RND is shown in Figure 5 for 3-month maturity on January 10th 2007. The RND
is obtained by computing the second derivative of the call price with respect to the strike price. We
note from Figure 5 the limits of the kernel method. Density is unclear because of the low number
of observed points. This method would probably be better suited to a study of a large sample or
to estimate the returns time series.
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Figure 4: Nonparametric estimators of the volatility for different maturities

Figure 5: Nonparametric estimator of the state-price density q(ST) with 3-month maturity on
January 10th 2007
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4.2.2 Tree-based methods

The estimated RND on a discrete probability framework, as proposed by Jackwerth and Rubinstein
(1996), is shown in Figure 6 for 3 periods on January 10th 2007 (normal period), on July 10th 2007
on which the market trend is bear and on October 17th 2007 for various maturities.

Figure 6: Risk Neutral Densities of the tree based method for different dates and various maturities

We note from Figure 6 that in the troubled period, the RNDs for all the maturities have heavier
tails than just before and after the crisis periods. The CAC 40 index options exhibit heavy tail
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distribution in the troubled period; so in a risk neutral framework, the probability estimated by
the tree based method does not undervalue the probability of occurrence of extreme events.
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4.2.3 Parametric and semi-parametric RND estimation methods comparison

Several papers compare the performance of various methods to extract RND. Jondeau and Rockinger
(2000) compare the mixture of log-normals, the Edgeworth and Gram-Charlier approximation, the
single-jump and Heston’s stochastic volatility model using exchange rates. They find that up to
a certain extent, these methods provide similar RNDs. They remark that during normal periods,
a mixture of log-normals provides rather good results. However during a troubled period, the
jump diffusion model performs better. Coutant et al. (2001) compare the mixture of log-normals,
Gram-Charlier expansion and the entropy-based method regarding speed, estimation robustness
and ease of implementation using interest rates. They find that for interest rates, the method
based on Gram-Charlier expansion seems to provide rather stable results. Bliss and Panigrizoglou
(2002) compare the robustness of a model based on the mixture of two log-normal distributions
and a smoothed implied volatility smile model, in the spirit of Shimko (1993). They find that their
smoothed spline method performs better than the mixture of log-normal distributions. However,
despite its high flexibility, the smoothed spline method does not recover the tails of the RND
outside the range of available strike prices.

In addition to nonparametric estimation methods of the RND, i.e. the kernel and the tree-based
methods, we now compare six parametric and semi-parametric option-based approaches used to
extract RND from CAC 40 index options during a normal and troubled period using the same
data as in section 4.1. The first technique is the numerical approximation of the RND based on the
second derivative of option prices with respect to the strike price, as suggested by Breeden and
Litzenberger (1978). The second method is obtained using a mixture of two log-normal distribu-
tions, following Melick and Thomas (1997). The third RND technique is the Edgeworth expansion
around the log-normal distribution of Jarrow and Rudd (1982). The fourth method is Hermite
polynomials, suggested by Madan and Mline (1994). The fifth RND is based on Heston’s stochas-
tic volatility model (1993). Finally, we consider the jump diffusion model following Bates (1991).
The results of estimated parameters of different RND models are reported in Tables 3 to 8 16. The
various resulting RNDs are plotted in Figures 7 to 1217.
The mixture of log-normals and Edgeworth expansion, Hermite polynomials and jump-diffusion
models are more in line with historical data than the numerical approximation of the RND us-
ing the Breeden and Litzenberg formula. For this reason, the nonparametric approaches such as
kernel and tree-based model ,as described above, were developed. The mixture of log-normals,
Edgeworth expansion, hermite polynomials, jump diffusion and Heston models have heavier tails
than the log-normal distribution.

The existence of several RND estimation methods from option prices raises the question of
the suitable method to be chosen. To answer this question, we provide goodness-of-fit measures,
allowing ton investigate how well theoretical options prices calculated with RND estimation ap-
proaches fit observed market prices Ĉ. Synthetic measures for errors calculating are used : the
Mean Squared Error (MSE) and the Average Relative Error (ARE).

MSE =
102

m − n

m∑
i=1

(Ci − Ĉi)2 (104)

16See Appendix B.
17See Appendix A.
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ARE =
104

m − n

m∑
i=1

(
Ci − Ĉi

Ci
)2 (105)

where m is the number of observed options prices and n is the number of method parameters.
The best method is the one which has the smallest errors.

In order to compare the various RND models, not only we check the statistical properties of
the different RNDs but we also calculate the MSE and the ARE for different dates 01-10-2007,
07-10-2007 (troubled period) and 10-17-2007 and various maturities 1,2 and 3 months. All results
are displayed in Tables 9 to 13 18.
First of all, we compare the volatilities, skewness and kurtosis obtained under different RNDs.
Concerning the volatilities (Table 9), the volatility induced by the Black & Scholes model is smaller
than the one we obtain using the other methods, and this is true for all periods and all maturities,
19 which explain the bias implied by the log-normality assumption.
Regarding the implicit skewness (Table 10) and the implicit kurtosis (Table 11), the log-normal
model is less interesting because it does not allow for asymetry or fat tails. We observe a strongly
negative skewness and a larger excess of kurtosis for all methods but the Black & Scholes model.
The skewness obtained by the semi-parametric methods ( Hermite polynomial and Edgeworth
expansion models) are lower than that of the other models on the normal period (01-10-2007).
Whereas on the troubled period (07-07-2007), Hermite polynomials and the mixture of log-normals
models have the lower skewness, on the period just after the crisis, the jump-diffusion model has
the lower skewness from the two month maturities, followed by the Hermite polynomials model.
The graphs of the RND corroborate these findings.

Table 12 reports the Mean Squared Error (MSE) for the different methods. According to this
criterion, the jump diffusion model on the period just before the crisis for relatively short maturities
(1 and 2 months) provides a much better fit than the other models. However, during this same
period, the mixture of log-normal models provides the best fit of the data for the 3 month maturity.
We notice that in the troubled period (07-10-2007), the Edgeworth expansion model provides the
best fit for all maturities. Concerning the period just after the crisis, the jump diffusion model
performs well for the two month maturity while the Edgeworth expansion model provides the
best fit for the three month maturity.

The Average Relative Error (ARE) results are presented in Table 13. As for the MSE criterion,
the jump diffusion model outperforms the other models on the period just before the crisis. On
the troubled period, Hermite polynomial method and the mixture of log-normal models have the
smallest errors. The difference between the two corresponding ARE is small. Concerning the
period just after the crisis, the semi-parametric methods provide the best fit for the one and three
month maturities, while the mixture of log-normals approach provides a much better fit than the
other models.

The RNDs functions are of paramount importance. Once estimated, it is possible to extract a
lot of various information. For instance, we can perform tests and compute confidence intervals
around the expected value whose evolution offers the opportunity to investors to measure how
markets are thought to evolve through time. Besides, RNDs can provide a measure of expected
extreme variations in the underlying asset price, which is an important tool for risk management.
Moreover, since the existence of a possibly time-varying risk premium RNDs differs from real
probability distributions, the RNDs incorpate information concerning the risk aversion of investors.

18See Appendix B.
19except on 10-17-2007 for less than one month maturity, the jump diffusion model has the smallest volatility.
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5 Conclusion

In this paper, eight option-based approaches are presented and applied to the French derivatives
market. Structural and non-structural approaches are used to estimate risk-neutral probability
density functions from a high-frequency CAC 40 index options during a normal and troubled
period. We use Black & Scholes model, mixture of log-normals, Edgeworth expansions, Hermite
polynomials, tree-based methods, kernel regression, Heston’s stochastic volatility model and jump
diffusion model. We determine nonparametric, semi-parametric, parametric and stochastic implied
volatility functions and Risk-Neutral Densities (RND). In order to compare the various RND
models, not only we check the statistical properties of the different RNDs, but also we calculate
goodness of fit measures. We find that the kernel estimator generates a strong volatility smile with
respect to the moneyness, and kernel smiles shape varies with the chosen time to maturity. The
mixture of log-normals, Edgeworth expansion, hermite polynomials, jump diffusion and Heston
models are more in line with historical data and have heavier tails than the log-normal distribution.
Moreover, according to the goodness of fit criteria, the jump diffusion model provides a much better
fit than the other models on the period just-before the crisis for relatively short maturities. However,
during this same period the mixture of log-normals model performs better for more than three
month maturity. Furthermore, in the troubled period and the period just-after the crisis, we find
that semi-parametric models are the methods with the best accuracy in fitting observed option
prices for all maturities with a minimal difference towards the mixture of log-normals model.
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6 Appendix

A.Graphs
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Figure 7: The Black & Scholes Risk Neutral Densities for different dates and various maturities
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Figure 8: Hermite polynomials Risk Neutral Densities for different dates and various maturities
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Figure 9: Edgeworth expansions Risk Neutral Densities for different dates and various maturities
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Figure 10: Mixture of log-normals Risk Neutral Densities for different dates and various maturities
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Figure 11: Jump diffusion Risk Neutral Densities for different dates and various maturities
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B.Tables

Table 3 : Estimation of Black & Scholes parameters

Dates τ m s
20 8.6153 0.0211

01-10-2007 50 8.6185 0.0442
80 8.6224 0.0600
20 8.7050 0.0253

07-10-2007 50 8.7086 0.0485
80 8.7127 0.0678
13 8.6701 0.0122

10-17-2007 43 8.6739 0.0423
73 8.6839 0.0590

Table 4 : Estimation of Mixture of log-normal parameters

Dates τ m1 m2 s1 s2 α
20 8.6092 8.6152 0.0332 0.0200 0.2876

01-10-2007 50 8.5705 8.6319 0.0671 0.0325 0.2713
80 8.5361 8.6465 0.0835 0.0406 0.2729
20 8.6928 8.7079 0.0407 0.0202 0.2894

07-10-2007 50 8.6496 8.7257 0.0681 0.0328 0.2672
80 8.6487 8.7478 0.0835 0.0405 0.4042
13 8.6541 8.6741 0.0154 0.0111 0.3019

10-17-2007 43 8.6043 8.6892 0.0623 0.0311 0.2515
73 8.5620 8.7089 0.0796 0.0393 0.2729

Table 5 : Estimation of Hermite polynomials parameters

Dates τ σ b3 b4

20 0.0967 -0.4280 0.4845
01-10-2007 50 0.1298 -0.4302 0.5250

80 0.1435 -0.4283 0.4960
20 0.1113 -0.2324 0.1289

07-10-2007 50 0.1405 -0.4295 0.5314
80 0.1612 -0.4320 0.4823
13 0.0635 -0.0699 -0.0284

10-17-2007 43 0.1284 -0.3848 0.3246
73 0.1582 -0.4263 0.4633
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Table 6 : Estimation of Edgeworth expansion parameters

Dates τ σ γ1 γ1

20 0.0960 -0.4480 0.5247
01-10-2007 50 0.1288 -0.8317 0.3271

80 0.1413 -0.7991 0.0590
20 0.1092 -0.1656 0.2550

07-10-2007 50 0.1344 -0.5386 0.5747
80 0.1572 -0.6779 0.395
13 0.0634 -0.1087 -0.0683

10-17-2007 43 0.1389 -1.0724 1.9653
73 0.1505 -0.6665 -0.9913

Table 7 : Estimation of Jump-Diffusion parameters

Dates τ σ λ κ
20 0.0738 3.3166 -0.0366

01-10-2007 50 0.0858 1.4745 -0.0845
80 0.0918 0.9700 -0.1168
20 0.1032 1.0401 -0.0424

07-10-2007 50 0.1069 1.0299 -0.0921
80 0.1125 0.7551 -0.1350
13 0.0629 0.1108 -0.0010

10-17-2007 43 0.0979 0.6082 -0.1283
73 0.1073 0.4525 -0.1999

Table 8: Estimation of Heston’s Stochastic Volatility model parameters

Dates τ κ∗ θ∗ σ ρ Vt
20 45.4325 0.0296 0.1481 -0.9738 0.0003

01-10-2007 50 9.9352 0.0308 0.4431 -0.7180 0.0000
80 23.4851 0.0220 0.5867 -0.8887 0.0000
20 7.1459 0.0713 0.2017 -0.6110 0.0021

07-10-2007 50 5.4654 0.0628 0.5107 -0.6415 0.0000
80 11.1566 0.0434 0.7884 -0.7215 0.003
13 44.5449 0.0113 0.0938 -0.9564 0.0001

10-17-2007 43 53.8001 0.0191 1.0621 -0.4742 0.0029
73 21.5488 0.0382 2.1490 -0.4972 0.0000
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Table 9 : Implicit standard deviation

Dates τ B&S Hermite Edgeworth ML Jump
20 116.41 124.31 123.41 135.689 123.32

01-10-2007 50 244.92 263.06 261.03 281.65 262.55
80 334.18 367.03 361.39 394.91 367.84
20 152.70 156.50 153.54 171.0177 157.42

07-10-2007 50 294.1744 311.35 297.82 329.78 309.93
80 413.62 450.76 439.54 460.74 447.08
13 71.086 72.46 69.51 90.05 69.16

10-17-2007 43 247.71 255.24 276.14 312.04 277.18
73 349.42 408.43 388.44 470.10 444.30

Note that τ is the maturity, B&S is the Black & Scholes model, Hermite is the Hermite model,
Edgeworth is the Edgeworth model, ML is the mixture of log-normals model, and Jump is the
jump-diffusion model.

Table 10 : Implicit skewness

Dates τ B&S Hermite Edgeworth ML Jump
20 0.0633 -1.05 -0.44 -0.069 -0.367

01-10-2007 50 0.1328 -1.049 -0.83 -0.8106 -0.57
80 0.1804 -10.49 -0.79 -0.9106 -0.57
20 0.0759 -0.57 -0.16 -0.3668 -0.13

07-10-2007 50 0.1457 -1.52 -0.54 -0.9157 -0.4
80 0.2039 -1.58 -0.68 -0.66 -0.45
13 0.0366 -0.172 -0.11 -0.5126 0.0356

10-17-2007 43 0.127 -0.94 -0.07 -0.98 -1.05
73 0.177 -1.04 -0.66 -0.9653 -1.18

Note that τ is the maturity, B&S is the Black & Scholes model, Hermite is the Hermite model,
Edgeworth is the Edgeworth model, ML is the mixture of log-normals model, and Jump is the
jump-diffusion model.

Table 11 : Implicit kurtosis

Dates τ B&S Hermite Edgeworth ML Jump
20 3.007 5.37 3.52 3.8104 3.056

01-10-2007 50 3.0313 5.57 3.32 4.298 3.22
80 3.05 5.42 3.06 3.9052 3.16
20 3.01 3.63 3.25 4.4932 3.21

07-10-2007 50 3.037 5.6 3.57 4.2168 3.24
80 3.07 5.36 3.39 3.239 3.07
13 3.0024 2.86 2.97 3.3044 3

10-17-2007 43 3.0287 4.59 3.32 4.1335 4.93
73 3.056 5.26 3.46 3.5049 4.77

Note that τ is the maturity, B&S is the Black & Scholes model, Hermite is the Hermite model,
Edgeworth is the Edgeworth model, ML is the mixture of log-normals model, and Jump is the
jump-diffusion model.
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Table 12 : MSE

Dates τ B&S Hermite Edgeworth ML Jump Heston
20 167.902 44.33 47.1335 1419.4 17.32 2664.2

01-10-2007 50 2392.39 1196.2 190.317 190.65 131.2532 1342.9
80 4866.7 1143.8 445.97 352.0697 463.5055 1018.1
20 123.1794 62.724 40.252 203.95 85.52 2854.2

07-10-2007 50 1694.4 691.8055 77.47 2898.4 121.99 4641.8
80 3888.4 1953.01 205.27 276.66 327.52 5561.3
13 44.48 69.0462 70.5022 259.2161 64.2039 5362

10-17-2007 43 1869.8 1133 564.69 478.0566 273.79 2629.4
73 852.52 8199.8 151.83 2236.9 777.85 7400

Note that τ is the maturity, B&S is the Black & Scholes model, Hermite is the Hermite model,
Edgeworth is the Edgeworth model, ML is the mixture of log-normals model, Jump is the
jump-diffusion model and Heston is the Heston’s stochastic volatility model.

Table 13: ARE (104)

Dates τ B&S Hermite Edgeworth ML Jump Heston
20 0.1781 0.8607 5.5447 0.2046 7.12 54.61

01-10-2007 50 0.0452 0.0356 0.1832 0.0116 0.000138 3.09
80 0.0408 0.0406 1.9181 0.0013 0.000615 1.61
20 0.0358 0.0194 10.67 0.0227 0.1544 44.07

07-10-2007 50 0.0017 0.001 4.9 10−5 0.0043 1.3 10−4 73.1375
80 8.6 10−4 8.4 10−4 2.2 10−5 5.2 10−4 2.5 10−5 67.02
13 781.1711 31.286 46.385 2416.6 3317.2 75.52

10-17-2007 43 0.0259 0.0122 0.0219 0.0014 0.0091 162.4
73 2.05 10−4 0.0012 4.52 10−5 3.37 10−4 1.7 10−4 62.31

Note that τ is the maturity, B&S is the Black & Scholes model, Hermite is the Hermite model,
Edgeworth is the Edgeworth model, ML is the mixture of log-normals model, Jump is the
jump-diffusion model and Heston is the Heston’s stochastic volatility model.
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