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Abstract
We study the economic mechanism which sustains the substitution of

a marginal method for another when demand increases, in the presence of
scarce resources. In those Ricardian dynamics, it is shown that the outgoing
method is determined by the quantity side of the problem, the incoming
method by the value side. That discrepancy explains both the possible failure
of the dynamics and the possible occurrence of multiple equilibria. Conditions
for existence, uniqueness and the working of the dynamics are stated. A
parallel is drawn with the parametric Lemke algorithm used to solve linear
complementarity problems.
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1 The Ricardian dynamics

Ricardo (1817) examined the long-run dynamics of capitalism when land was
the main scarce resource. With the employment of more and more workers,
the production of wheat must be increased and, in a closed economy, less
fertile lands are cultivated. The extension of cultivation requires a rise in
the price of corn, which must be high enough to make the investment on
the lower quality of land as pro�table as in any other sector of the economy.
Then, the owners of the more fertile lands are in a position to demand a rent
of their farmers. The level of the rent on lands of higher qualities, the �rst to
be cultivated, uniformizes the production costs with those on the marginal
land. An alternative to the extension of cultivation is its intensi�cation,
which consists in using more expensive but more productive methods on the
same land, but that possibility does not a¤ect the economic laws.
Under the retained hypotheses, which ignore technical progress, Ricardo�s

description of the dynamical process is deemed to be well understood, correct
and general. Even if agriculture is no longer a strategic sector in many con-
temporary economies, an expansion of the analysis may consist in studying
how the marginal factors shift over time, as a consequence of a shift in the
households�demand between closely substitutable products. Our aim is more
modest, or more basic, and consists in showing that the analytical grounds
of the canonical Ricardian dynamics are not so clear, even in the simplest
cases: these di¢ culties are illustrated in Section 3 by means of a numerical
example involving a unique agricultural product and a unique land for which
the dynamics fail.
We therefore return to Ricardo�s original framework and study it with the

help of modern tools. We consider a sequence of long-run equilibria generated
by an exogeneously changing �nal demand basket. The scarce resources are
called lands. Time is not taken into account explicitly because the adjustment
of prices is presumed to be almost instantaneous. What makes the speci�city
of the analysis with regard to comparative statics is the following observation:
when a change of demand leads to a physical limit on some land, rents and
prices jump to a higher level, therefore the value side of the dynamics is
discontinuous; by contrast, the scarcity of wheat is met by operating one new
method, be it on the same or another land, and that method is introduced
at a zero activity level, so that the dynamics of activity levels are smooth.
We shall see that this condition su¢ ces to de�ne the sequence of equilibria
in a unique way.
Following Sra¤a (1960), it is assumed that the independent distribution

variable is the given rate of pro�t: this departure from Ricardo�s own hy-
pothesis, who assumed a given real wage, is inessential and leads to analytical
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simpli�cations. The retained formalization is fairly general, as it allows for
the joint use of several scarce resources and the joint production of several
commodities by each method of production (but we consider generic cases
only). The notion of long-term equilibrium for a given demand is recalled in
Section 2. Section 3 explains how the methods succeed one another when de-
mand changes and why the dynamics may fail. Section 4 states an algebraic
condition for their working as well as for local and global uniqueness. Section
5 draws a close parallel between Ricardo�s approach and a modern algorithm
used to solve linear complementarity problems. Eventually, some references
are given in Section 6.

2 Long-term equilibria

The data of a long-term equilibrium are the methods of production, the
available areas of lands and the (nonnegative and uniform) rate of pro�t; its
unknowns are the activity levels, the prices and the rents. We write down
the conditions de�ning an equilibrium corresponding to an exogenously given
�nal demand basket d.
Let there be n commodities, m methods of production, g grades of lands,

and homogenous labor. Method i (i = 1; :::;m) is represented by a input
vector ai 2 Rn+ of reproducible commodities, the areas �i 2 R

g
+ of land(s)

used and an amount li 2 R+ of labor, while the output vector is a basket
bi 2 Rn+. Production takes one period. Constant returns prevail and the unit
activity level of each method is arbitrary. Land is not explicitly considered as
a joint output of production. Matrices A, �; B are obtained by stacking these
vectors, method i being represented by the ith columns of these matrices and
scalar li. A peculiarity of the formalization here retained is that free disposal
and fallowing are listed among the methods (hence, m > n + g): the input
vector of free disposal is an amount of some commodity, that of fallowing an
amount of land, and in both cases the output is zero.
The physical side of an equilibrium states that, for an adequately cho-

sen semipositive vector y of activity levels (y 2 Rm+ ), the demand basket is
obtained as the net product of the economy

(B � A)y = d (1)

and that the scarcity constraints on lands are met. Let vector � 2 Rg+ denote
the available areas of lands. As fallowing is taken into account into explicitly,
the scarcity constraints are written as the vector equality

�y = � (2)
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The positive components of vector y correspond to the operated methods.
The value side of an equilibrium states that any operated method i yields
the ruling rate of pro�t r (r � 0) and that the non-operated methods do not
pay extra pro�ts. For the operated methods, the condition is written

bTi p = (1 + r)a
T
i p+ �

T
i �+ li (3)

where p is the price vector and � the rent vector (these vectors are nonnega-
tive). labor is chosen as numéraire and the wage w0 = 1 is paid post factum
(Sra¤a�s hypothesis). If fallowing is operated on some land, i.e. if that qual-
ity of land is not fully cultivated, equality (3) implies that the rent on that
land is zero.
As vector y must satisfy the n + g constraints (1) and (2), the number

of operated methods is at least equal to n + g, �ukes apart. But since a
price equality with n prices and g rents holds for each operated method, it is
expected that their number does not exceed n+g. On the whole, the number
of operated methods is equal to n+ g, �ukes apart. If the operated methods
are known, solving the system (1)-(2)-(3) determines the activity levels and
the price-and-rent vector. Therefore, the only di¢ culty is to identify the set
of operated methods.
Two comments are in order:
- It is more usual to de�ne an equilibrium by means of inequalities with

complementarity relationships. Since both de�nitions are equivalent, the
choice between them is a matter of convenience, and the alternative de�ni-
tion will be used in Section 5. The main advantage of the above de�nition
is the constancy of the number of operated methods (including free disposal
and fallowing) independently of the demand vector: the extension of culti-
vation is seen as a substitution of method, possibly for fallowing. With the
alternative de�nition, the number of operated methods varies with demand
and an extension of cultivation is seen as the introduction of a new method.
- We ignore degeneracies, and for instance only one land becomes fully

cultivated at a given time. Squareness, with n + g operated methods, is
a generic property, but an exception to the rule plays a major role in the
dynamics: at the point of transition between consecutive equilibria, the ac-
tivity level of some previously operated method drops to zero and, then, the
number of operated methods falls to n+ g � 1.

3 Exit and entry rules

The dynamic approach looks at the evolution of a long-term equilibrium when
demand d = d(t) changes with time and proceeds by studying the e¤ect of
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a change of demand on the set of operated methods. Starting from a given
long-term equilibrium E0, a small change in d(t) triggers the dynamics. As
long as lands of the same grade as those presently cultivated are available, the
adjustment to demand only requires that of the positive activity levels, with
no changes in the operated methods, prices and rents. The physical limit of
equilibrium E0 is reached at t = t0 when the activity level of some operated
method vanishes. (Simple as it may seem, the rule lies on the convention
that the non-cultivated part of a land is deemed to be �cultivated�by means
of the fallowing method.) Flukes apart, only one activity level vanishes at
t0. That limit de�nes an exit rule in the sense that it allows us to identify
the unique method which belongs to equilibrium E0 at t = t0� " and will be
excluded from the next equilibrium E1 at t = t0 + ".

At the breaking point t0, the price of the scarce agricultural good rises
up to the level where the use of a more costly method, either on a new type
of land (extensive cultivation) or on the same land (intensive cultivation),
becomes pro�table. A new equilibrium is found and another quiet period
with adaptations of positive activity levels opens. The identi�cation of the
incoming method relies on the value side of the problem. Beyond the rises in
the price of corn and in rents, the whole set of prices is also disrupted because
the change in the value of corn modi�es the prices of all commodities in the
production of which corn enters directly or indirectly. Let us denote the
price-and-rent vector (p; �) as �. Since we already know all but one of the
new operated methods, and therefore all but one of the price equalities (3),
the new price-and-rent vector �1 is known up to one degree of freedom. At this
stage, the hypothesis of a given rate of pro�t leads to a formal simpli�cation:
since the price-and-rent equations (3) form a set with as many a¢ ne equations
as unknowns, the solution to all but one equations is written �1(�) = �0+��0,
where vector �0 is the previous price-and-rent vector, vector �0 represents the
direction of the change in the price-and-rent vector, and � is a still unknown
scalar representing the intensity of the change.
We can go further and determine the exact value of �, and therefore the

incoming method and the new (potential) equilibrium. The property we use
is that the pro�tability of any method at prices �0 + ��0 is a monotonous
function of �. For the n+ g� 1 operated methods which are common to the
previous and the new equilibrium, that pro�tability is constant and measured
by the ruling rate of pro�t. For all other methods, it changes with �. Consider
�rst the excluded method. As it yields the normal rate of pro�t at prices
�0, i.e. for � = 0, its pro�tability at prices �0 + ��0 is either above or
below the normal level, depending on the sign of �. Since the very notion
of equilibrium requires that no method pays extra pro�ts at prices �1, the
property determines the sign of �. Without loss of generality, we assume
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that � is positive (otherwise, replace �0 by ��0 and � by ��). Consider now
the methods which were not operated in the initial equilibrium, and let the
value of � increase progressively up from zero. At � = 0, these methods
incur extra costs. Since their pro�tability varies monotonously with �, it is
expected that, for � great enough, at least one of them becomes pro�table
(the existence of such a method is dealt with in Lemma 1 below). The entry
rule is: when � increases, the new operated method is the �rst which yields
the ruling rate of pro�t. For, if � continued to increase beyond that minimum
level, that �rst method would pay extra pro�ts.
The exit and entry rules determine the evolution of the set of operated

methods and de�ne the dynamics: the exit rule relies on the physical side
of the model (some activity level vanishes), the entry rule on its value side
(some method becomes pro�table). The coexistence of rules obeying di¤erent
principles explains the di¢ culties met by the dynamics: it is not ensured
that the incoming method meets the evolution of demand at the origin of the
loss of the previous equilibrium. An illustration is given in a one-commodity
model with homogenous land.

Example.
The given rate of pro�t is r = 1. The total area of land is � = 100, with

three available methods:
(method A) 0:4 qr. corn + 1 acre land + 1 labor ! 1 qr. corn
(method B) 0:2 qr. corn + 2 acres land + 4 labor ! 1 qr. corn
(method C) 0:4 qr. corn + 0:25 acre land + 2 labor ! 1 qr. corn
Let the �nal demand d increase. For low levels of demand, land is partially

cultivated by means of method A, the cheapest method for a zero rent. In
that equilibrium E0, and for a wage 1 paid post factum, the price of corn
is p0 = 5. Land is fully cultivated at level d0 = 60. For r = 1, the
general solution to the system (here reduced to the unique price equation
attached to method A) (1 + r)0:4p1 + �1 + 1 = p1 is �1 = �0 + ��

0 with
�1 = (p1; �1); �0 = (5; 0) and �

0 = (5; 1). The pro�tabilty of both methods
B and C improves with �, and the minimum rule designates method B as
the incoming method (� = 1), hence �1 = (10; 1). But method B is less
productive per acre than A, therefore the progressive substitution of B for
A leads to a reduction of the net product, from 60 to 40 quarters after full
substitution. The combination of methods A and C, which would solve the
physical problem, is excluded because method B would pay extra pro�ts at
the associated price-and-rent vector.
Note that the combination of methods (A, B) de�nes an equilibrium E1

for any demand between 40 and 60. The phenomenon is general: when a
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change of method occurs at t = t0, either the new set of methods meets
demand d(t0 + "), and then the dynamics work locally, or the previous and
the new sets of operated methods constitute two neighboring equilibria, i.e.
which di¤er by one method only, both sustaining demand d(t0 � ").
The numerical example has an additional feature, as there exists an equi-

librium E2 which sustains the production of more than 60 quarters: it is
made of methods B and C operating jointly at the price-and-rent vector
(p2 = 60; �2 = 4). Therefore, the sequence E0, E1, E2 of consecutive equi-
libria connects low to high levels of demand. This path, however, is not
economically admissible because the intermediate equilibrium assumes a de-
crease in the level of demand, whereas a direct jump from E0 to E2 at d = 60
would imply a discontinuity in activity levels.

4 Local and global dynamics

In this Section, we state the conditions ensuring a smooth physical transition
between consecutive equilibria.
Matrix (B � A;��) has n + g rows and m columns. At equilibrium E0,

let C0 be the square matrix of dimension n + g extracted from the columns
of (B � A;��) and corresponding to the set M of the presently operated
methods, i.e. to the positive components y0 of y, and let � be the vector
obtained by stacking d and ��. The unique vector equality

C0y0 = � (4)

summarizes both conditions (1) and (2) and de�nes the physical side of an
equilibrium. On the value side, let �T0 = (p

T ; �T ) be the price-and-rent vector
at equilibrium E0 and C0(r) be the square matrix extracted from the columns
of (B� (1+ r)A;��) corresponding to the positive activity levels. The price
equations (3) are written more compactly as:

�T0C0(r) = l
T
0 (5)

When the activity level of some operated method vanishes, the reconstruction
of the next equilibrium starts from equalities (5), which remain satis�ed for
all methods but one. Let us consider the set

D =
�
d;9y > 0 d << (B � (1 + r)A)y;�Ty << �

	
(6)

(For vectors, notation x >> 0 means all its components are positive, x > 0
that its components are nonnegative and x 6= 0, x � 0 that the components
are nonnegative, which is the case for activity levels, prices and rents.)
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Lemma 1 The existence of an incoming method is guaranteed if the demand
vector belongs to D.

Proof. Since the price-and-rent vectors �0 and �1 satisfy the same equalities
(5) for all common operated methods, their di¤erence �1 � �0 = ��0 is a
solution to n + g � 1 linear equalities: �0T ci(r) = 0 for i 2 Mn fjg, where j
is the outgoing method. Vector �0 is unique up to a factor that we choose in
order that �0T cj < 0. Then the existence of a minimum positive scalar � for
which some inequality �T0 ck(r) < 0 is turned into the equality �

T
1 ck(r) = 0 is

guaranteed if inequality �0T ck(r) > 0 holds for some method k. If �0 has
a negative component, this is the case for some free disposal method or
some fallowing method. Assume that �0 is semipositive. Vector d(t0) being
produced by the methods i 2 Mn fjg and �0 being such that �0T ci(r) = 0

for i 2 Mn fjg, we have �0T �(t0) = �0T (d(t0);��) = �0T
X

i2Mnfjg

yi(t0)(bi �

ai;��i) � �0T
X

i2Mnfjg

yi(t0)(bi � (1 + r)ai;��i) =
X

i2Mnfjg

yi(t0)�
0T ci(r) = 0.

As d(t0) belongs to D, hypothesis (6) implies the existence of a semipositive
vector y such that C(r)y >> �(t0), therefore �0TC(r)y > �0T �(t0) � 0 and
there does exist a method k such that �0T ck(r) > 0.
Up from now, it will be assumed that the demand basket belongs to or

varies in D. The outgoing and the incoming methods have the following
property, which results from the notion of equilibrium: at prices �0, the
outgoing method j yields the ruling rate of pro�t, whereas the incoming
method k is too costly. At prices �1, the situation is reversed. That alternative
admits an algebraic expression:

Lemma 2 detC0(r) and detC1(r) have opposite signs.

Proof. Let �j = (1+r)pT1 aj+�
T
1�j+lj�pT bj = lj��T1 cj(r) > 0 be the extra

costs incurred by the outgoing method j at the new equilibrium prices �1 =
(p1; �1), and �k > 0 those incurred by the incoming method k at the previous
prices �0. From equalities �T1 cj(r) = lj � �j = �T0 cj(r) � �j and, similarly,
�T0 ck(r) = �

T
1 ck(r)� �k, there follows (�T1 � �T0 )(�kcj(r) + �jck(r)) = 0. As

�T1 ci(r) = �T0 ci(r) = li for the other n + g � 1 common operated methods
i 2 Mn fjg, and therefore (�T1 � �T0 )ci(r) = 0, it turns out that the matrix
with columns ci(r) and �kcj(r) + �jck(r) has a zero determinant. Therefore
�k detC0(r) + �j detC1(r) = 0 and these determinants have opposite signs.

Consider now the physical side and suppose that the dynamics work. For
� = (d(t0 + ");��), a similar alternative holds: at equilibrium E0, equation
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(4) does not admit a solution with positive activity levels, whereas it has
a solution at equilibrium E1. The algebraic expression of the productivity
condition is similar to that of Lemma 2, matrix Ci(r) being replaced by
Ci = Ci(0):

Lemma 3 The dynamics work locally if and only if detC0 and detC1 have
opposite signs.

Proof. �(t) being the vector obtained by stacking vectors d(t) and ��, the
physical constraints on activity levels are written as Cy = �(t). For t = t0�",
all activity levels yi (i 2M) are positive at equilibrium E0 but yj(t) vanishes
at t = t0 and would become negative at t = t0 + ". When that method j is
replaced by another method k, algebraic decompositions of vector �(t) lead
to the formal equalities

�(t) =
X

i2Mnfjg

yi(t)ci + yj(t)cj =
X

i2Mnfjg

y
0

i(t)ci + y
0

k(t)ck (7)

At t = t0 both decompositions coincide, with yi(t0) = y
0
i(t0) > 0 (i 2Mn fjg)

and yj(t0) = 0, therefore y
0
k(t0) = 0 (the incoming method starts at a zero

level): At t = t0 + ", y
0
i(t) remains positive by continuity (i 2 Mn fjg) and

y
0
k(t) has a small nonzero value. The new set of methods including method k
sustains the demand vector d(t0 + ") if and only if y

0
k(t) is positive whereas

yj(t) has become negative at t = t0+ ". Equality (7) shows that the n+g�1
vectors ci for i 2Mn fjg and vector yj(t)cj � y

0
k(t)ck are linearly dependent,

therefore yj(t) detC0 � y
0
k(t) detC1 = 0. yj(t) and y

0
k(t) have opposite signs

if and only if it is the case for the two determinants.
Lemmas 2 and 3 show that the dynamics work locally if and only if the

following condition (E) holds:

(E) The sign of detC0(r)= detC0 is preserved when the outgoing method
is replaced by the incoming method.

To obtain a global uniqueness result, note �rst that nothing in the formal
arguments prevents that d has negative components (but d = 0 is a degener-
acy since it is obtained by means of less than n+ g operated methods). Let
us set hypothesis (H):

(H) Every method other than free disposal and fallowing requires labor.

(For existence results, it su¢ ces to assume that labor is directly or indi-
rectly required to produce a semipositive net product.)

Lemma 4 Under assumption (H), the equilibrium is unique for any d << 0.
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Proof. Free disposal and fallowing sustain the production of d << 0, the
associated price-and-rent vector being � = 0. Conversely, the value dp of
the net product is at least equal to the wages and to the rents. For d << 0,
this implies that p = � = 0 and that the operated methods do not use labor,
therefore they are free disposal and fallowing.
If condition (E) holds everywhere, a global existence and uniqueness result

is obtained:

Theorem 1 For a given rate of pro�t, let demand change in D. The dy-
namics work locally if and only if condition (E) holds. If condition (E) holds
everywhere in D, every demand basket d in D is sustained by a unique equi-
librium.

Proof. Suppose that the sign condition holds for any pair of consecutive
sets. Given any two baskets d0 and d1 in the convex set D, let us link
them by an oriented curve d(t) in D. An equilibrium at d0 is progressively
transferred, by means of successive transforms along the curve, to another at
d1. If d0 is sustained by a unique equilibrium, could another curve joining d0
to d1 lead to a di¤erent equilibrium at d1? Along the curve, an equilibrium
is transformed into a uniquely de�ned neighboring equilibrium when some
activity level vanishes. The process is reversible in the sense that, if one starts
from the second equilibrium and moves in the opposite direction on the same
curve, its successor is the initial equilibrium (because, by construction, the
equilibrium which succeeds the second equilibrium is sustained by a price-
and-rent vector of the type �1���0, and the minimality of � implies that this
vector is �0). Imagine that demand d1 is sustained by several equilibria. By
following the reverse curve from d1 to d0, each of them is transferred to d0 and
two equilibria never merge during the successive transforms: otherwise, when
moving in the opposite direction, an equilibrium would have two successors.
As multiple equilibria at d1 would give birth to multiple equilibria at d0,
the uniqueness property at d0 ensures uniqueness for any demand basket.
To sum up, if condition (E) holds everywhere in D, uniqueness for some non
degenerate demand basket d0 implies global uniqueness. Lemma 4 concludes.

An alternative statement of Theorem 1 is that the multiplicity of equilib-
ria for a given demand d is due to a failure of the dynamics somewhere on a
curve leading from low levels of demand to d. It also follows from Theorem 1
that the dynamics always work when the rate of pro�t is zero. The property
is due to the duality between the physical and the value sides: for a zero rate
of pro�t, the pro�tability criterion and the productivity criterion coincide
(golden rule).
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5 From Ricardo to Lemke

One and a half century after Ricardo, mathematicians elaborated algorithms
to �nd a solution to a class of problems called linear complementarity prob-
lems. As it turns out that the static (i.e., for a given demand vector) long-term
equilibrium is of that type, we study the relationships between the Ricardian
dynamics and an algorithmic approach of the Lemke type.

We now refer to the alternative de�nition of an equilibrium mentioned at
the end of Section 2: an equilibrium is a nonnegative solution (p; �; y) to the
system of vector inequalities with complementarity relationships

(B � A)y � d � 0 [p] (8)

��y + � � 0 [�] (9)

((1 + r)A�B)Tp+ �T�+ lT � 0 [y] (10)

where the variables into brackets are componentwise complementary to the
associated inequalities: they are nonnegative, and zero if the corresponding
component of the inequality is strict. The gap between (8)-(9) and the previ-
ous formalization (1)-(2) of an equilibrium is only apparent: if a commodity
is in excess supply, its price is zero, the free disposal method yields the ruling
rate of pro�t and its use allows us to switch from inequality (8) to equality
(1); the same for land.
Let w be the vector obtained by stacking the left-hand sides of inequalities

(8)-(9)-(10), i.e. the excess supply, the non-cultivated areas and the extra
costs; let z be the vector of complementary unknowns obtained by stacking
the price vector p, the rent vector � and the activity levels y; let q be the
vector of data obtained by stacking �d;� and lT ; �nally, letM be the square
matrix

M =

24 0 0 B � A
0 0 ��

(1 + r)A�B �T 0

35
A long-term equilibrium is a solution (z; w) of the system

w = Mz + q (11)

w � 0; z � 0; wi = 0 or zi = 0 for any i (12)

That problem is called a linear complementarity problem and is denoted
LCP(q;M). Not all LCPs have solutions, and di¤erent techniques have been
elaborated to �nd one of them, if any. Note that, if one knows the set S of the
zero components of z, the complementary set S is made of zero components
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of w, and all other components of z and w are easily found by solving a
square system of linear equations, which is assumed to be nondegenerate.
The core of the problem is therefore to identify the distribution of zeroes
between z and w. (Similarly, if one knows the set of non-operated methods,
all characteristics of an equilibrium are easily found.)
Lemke and Howson (1964) conceived an algorithm to �nd a solution to the

bimatrix game. Interestingly enough, the formalization of a bimatrix game
as a linear complementarity problem lets appear a matrixM with two blocks
of zeroes on the diagonal, as in the long-term equilibrium problem (but the
vectors q di¤er). Lemke (1965) generalized the procedure, and many variants
were introduced later. The problem is to identify the set S. The general
principle of a Lemke algorithm is to start from an �almost solution�S which
su¤ers from some defect, then to improve it by changing one of its elements,
then another, according to a mechanically determined sequence of trials, until
the elimination of the defect. An important property of the procedure is that
it does not return to an already examined set S. Since the number of sets
is �nite, the algorithm �nds a solution or collapses at some stage (which is
the necessary outcome if no solution exists). A variant of that algorithm
is the parametric Lemke algorithm (Cottle et al. 1992): its basic idea is
to determine a solution of LCP(q1;M) by transferring a known solution of
LCP(q0;M) along a curve q(t) joining q0 to q1: The initial defect is that the
almost solution is a solution to LCP(q;M), but for a wrong value of q. A
solution at q0, more generally at q(t), is de�ned by the zero S�components
of z, the zero S�components of w and the other positive components. Slight
changes in q(t) are met by adjusting these positive components, with no
change in the set S. The adjustment stops when some positive component of
z or w, say wj(t), vanishes at some t = t0. Since wj(t) was positive at t0� ",
index j is in S. When q(t) continues to evolve, the next set S 0 is obtained by
changing the set S and transferring index j from S to S: the constraint wj = 0
is now substituted for the previous one zj = 0. In a neighborhood of t0, the
other positive components of (z(t0); w(t0)) remain positive by continuity.
It turns out that, from a formal point of view, the parametric LCP algo-

rithm is a version of the Ricardian dynamics in which vector q(t0) plays the
role of an augmented demand vector. In general, the transfer from q(t) to
q(t + ") sets no problem, with a rupture from time to time when a positive
variable drops to zero. The new set S de�ned by the algorithm is a neighbor
of the previous, as only one nonzero variable is changed. In the literature on
LCP, the search for a new positive component or a new facet is similar to
that of the incoming method as described in Section 3 and the choice is also
determined by a minimum rule (Lemma 1 simpli�es the problem as it solves
all di¢ culties linked to existence).
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There is, however, one signi�cant di¤erence. It has been noticed that the
incoming method may be less productive than the outgoing method and,
then, the Ricardian dynamics stop. A similar di¢ culty is met in the LCP
framework: if zk is the new variable which was zero and becomes nonzero,
equality w = Mz + q(t) holds at t = t0 with zk(t0) = 0, while the posi-
tive components of (w; z) satisfy complementarity conditions. At t = t0 + ",
these variables remain positive by continuity, but the algebraic decomposition
w =Mz + q(t0 + ") only ensures that the value of zk(t0 + ") is close to zero.
If that component is positive, the process leads to a transfer of the solution
from q = q(t0 � ") to q = q(t0 + "). If, on the contrary, zk(t0 + ") is nega-
tive, then zk(t0 � ") is positive and a second solution to LCP(q(t0 � ");M)
is found. By contrast with the Ricardian dynamics, the Lemke algorithm
goes on by making a U-turn on the curve. The algorithm continues for lower
and lower values of t (�antitone�move, in the terminology of the LCP lit-
erature). Eventually, however, another U-turn may occur (or must occur,
if some condition ensuring the working of the parametric algorithm is met)
and new solutions sustaining increasing levels t are obtained. A third solution
sustaining q(t0 � ") is �rst reached and, �nally, a solution for level q1.
The point is illustrated by the discussion of the example in Section 3: for

low levels of demand, method A is the cheapest (equilibrium E0). At level
d0 = 60, the land is fully cultivated and the dynamics stop because the next
cheapest method is less productive. On the contrary, the parametric Lemke
algorithm goes on by switching to equilibrium E1, allowing for a temporary
decrease in the net product. Method B is progressively substituted for A, and
the net product drops from 60 to 40. At this stage, method C is introduced
and the �nal equilibrium E2 sustains high levels of demand. As far as one
looks at the existence of long-term equilibria in a static framework, not at the
dynamics, the following result illustrates the powerfulness of the algorithm:

Theorem 2 For any d in D, and �ukes apart, the number of equilibria is
odd, with one more equilibrium for which the signs of detC(r) and detC are
the same.

Proof. Let us draw a curve d(t) inD, without self-intersection, from d0 << 0
to a given vector d1 2 D. The unique solution at d0 is transferred along that
curve, and the sequence of equilibria is mechanically de�ned by the entry and
exit rules, with a reversibility property. If, for some demand vector, the same
equilibrium were found twice, once for increasing values of t and next for
a decreasing value, reversibility implies that the same property would hold
for the successor of that equilibrium when t increases, and a contradiction
is obtained by considering the �rst equilibrium which is found twice. As the
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number of equilibria for a given demand basket is �nite, the algorithm must
reach d1, in spite of possible U-turns. The conclusion is that the equilibrium
at d0 is ultimately transformed into some equilibrium at d1.
Let us now draw a curve, without self-intersection, from d0 << 0 to d1

and coming back to d2 << 0. Consider an equilibrium at d1. If the transfer
of that equilibrium along the curve leads ultimately to either d0 or d2, that
equilibrium is met somewhere in the unique sequence of equilibria (such a
sequence is called a path, to distinguish it from the curve d(t)) which, starting
from d0, goes to d2. That path sustains an equilibrium at d1 an odd number of
times, s+1 times for increasing values of t (therefore, with detC(r) and detC
of the same sign) and s times in the other direction. The alternative is that
the path starting from d1 never reaches d0 or d2. Since there are �nitely many
combinations of n + g operated methods, the path admits a loop. Suppose
that the path itself is not a loop. Then, the �rst combination of methods
which is found twice on the path has two predecessors. By the reversibility
property, an equilibrium on the reverse path would have two successors, a
contradiction. Therefore the path itself is a �nite loop. Everytime it reaches
d1 it de�nes a new equilibrium at that point, with as many equilibria with
increasing values of t as with decreasing values. These additional equilibria
do not change the balance between the two types of equilibria.
A part of the LCP literature deals with conditions ensuring the absence

of antitone move: in the long-term equilibrium framework, these conditions
amount to ensuring the working of the dynamics.

6 References to the literature

Ricardo showed that, in normal times, the evolution of demand is met by an
adjustment of activity levels with no changes in prices and rents, but prices
and rents jump abruptly when a land is fully cultivated, the rise being suf-
�cient to let some non-operated method yield the ruling rate of pro�t. The
adjustment to demand is met by introducing a new method of cultivation
on the same (intensive cultivation) or another (extensive cultivation) land.
Ricardo failed to notice a third possibility, which consists in introducing a
corn-saving method in industry, and was mistaken in assuming that it is
always possible to get rid of rent by considering the set of marginal meth-
ods (Bidard 2012). Sra¤a�s (1960) formalization of prices and rents was later
completed to take explicitly into account a demand vector and the scarcity
constraints. The discovery of the possible multiplicity of equilibria for a
given demand (D�Agata 1982), Freni (1991) was a surprise, but the reason
of these complications remained obscure because the dynamic approach had
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been abandoned and replaced by the search of a solution of a given system
of inequalities with complementarity relationships. Salvadori (1986) trans-
ferred a result from the literature on linear complementarity (Dantzig and
Manne 1974) to state existence for any demand basket in the set D de�ned
by (6), but the algorithm he referred to has no clear economic interpretation.
Starting from geometrical considerations, Erreygers (1990, 1995) stated the
criterion (E) for local uniqueness and argued that global uniqueness might
also be obtained under additional assumptions on the structure of equilib-
ria. Theorem 2 generalizes Bidard and Erreygers�s (1998) oddity result for
economies without lands. The relative sign of the determinants plays a role
similar to the index in the di¤erentiable version of general equilibrium theory
(Mas-Colell 1985).

7 Conclusion

When the direct or indirect demand for a resource increases and meets a
scarcity limit, the prices rise and the price system adapts itself in such a
way that demand is met by means of a new method. That method may
either make use of an alternative resource (as exempli�ed by the notion of
extensive cultivation), or may make a more e¢ cient use of the same scarce
resource (intensive cultivation), or may save the resource. Ricardo was the
�rst economist to give a rather precise description of the dynamical aspects
of the substitution process in the productive system, but a detailed analysis
shows that the working of that process is not so clear. The ultimate reason
of the di¢ culty is that prices are not a perfect scarcity index, so that the
pro�tability of a method may be disconnected from its ability to meet the
requirements for use. The present study has greatly simpli�ed the dynamics
themselves by assuming an instantaneous adjustment and has let aside the
analysis of substitutability on the demand side, a phenomenon which plays
an important role in actual economies. Increasing substitutabilty either on
the supply side by assuming di¤erentiability or on the demand side may
favour the working of the dynamics, but the di¢ culties pointed at in a simple
framework should not disappear by complexifying the problem.
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