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ing whether the strength of this phenomenon remains the same in the current
environment of low yields. The motivations lie in the conjecture that when yields
are low, the traditional motives of flight-to-safety (wealth protection, liquidity)
could not be sufficient, inducing weaker flight-to-safety events. Empirical applica-
tions using data for US government bonds and the S&P 500 index, show indeed
that when yields are low, the strength of flight-to-safety from stocks to bonds
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measures to what extent the strength of flight-to-safety from stocks to bonds is
related to the strength of flight-to-safety from stocks to other safe haven assets
(gold and currencies). Results show that when the strength of flight-to-safety
from stocks to bonds decreases the strength of flight-to-safety from stocks to gold
increases. This result is more pronounced in the current low-yield environment,
suggesting a shift in the historical attractiveness of bonds as safe haven.
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1 Introduction

The correlation between the returns on government bonds and stock indices has been

deeply scrutinized in the literature. The main motivation lies in the fact that these two

assets are considered not only as complementary but also as substitutes, and the level

and dynamics of their return’s correlation are important elements for asset allocation

decisions. Theoretically, uncertainties about growth and inflation are the main drivers

of this correlation via their impact on both the equity risk premium and the term

premium (Ilmanen, 2003). Indeed, when uncertainty about growth raises, the equity

risk premium increases, depressing stock market, while bond prices boom in response

to a drop in the term premium. This leads to a negative correlation between the

returns on stocks and bonds. Moreover, a positive correlation arises from increased

uncertainty about expected inflation, via the impact of the latter on the common

interest rate factor that drives stock and bond prices (Li, 2002). Of major importance

are episodes of pronounced negative correlation between these two assets, referred to

as flight-to-safety (hereafter FTS), with large decline (rise) in stock (bond) prices. A

recent literature pioneered by the seminal paper of Vayanos (2004) has analyzed FTS

episodes, both theoretically and empirically.

Economic theories of investor FTS include Vayanos (2004), Caballero and Krish-

namurthy (2008) and Brunnermeier and Pedersen (2009), to cite but a few. Vayanos

(2004) develops an equilibrium model with assets differing in their liquidity, and where

uncertainty is modelled by the stochastic volatility of asset payoffs. Investors are con-

sidered as fund managers with their managing wealth subject to withdrawals when

the fund performance falls below an exogenous threshold. The model generates FTS

associated to time of high uncertainty due to increased liquidity premia.1 Caballero

and Krishnamurthy (2008) build a model where FTS episodes arise not only from

the risk about asset payoffs, but also from (Knightian) uncertainty about the states

of the world. In their model, facing market turmoil and limited aggregate liquid-

ity, uncertainty-averse agents with max-min preferences consider the most unfavorable

scenario among all possible ones. This leads them to project liquidity shortages and

to switch from risky to safe assets. Using the relation between market liquidity and

trader’s funding liquidity, Brunnermeier and Pedersen (2009) develop a model in which
1In the literature FTS episodes refers to both flight-to-quality and flight-to-liquidity episodes. The

difference between them results from the economic motives (preference for less risky assets or preference
for liquidity) that lead investors rebalancing their portfolios in time of increased uncertainty. Beber
et al. (2009) deeply analyzes both episodes in the Euro-area bond market. In this paper we do not
focus on these motives and consider the FTS phenomenon, globally.
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deterioration of market liquidity pushes speculators to mostly provide liquidity in safer

securities (with lower margins), leading to an increase in the liquidity differential be-

tween safe and risky securities, an evidence of FTS.

On the empirical side, Baur and Lucey (2009) propose a test of FTS from stocks

to bonds, with applications to eight developed countries. Their results evidence the

existence of FTS episodes that coincide with crisis periods, and which appear to be

country-specific with a common occurrence among countries. Baele et al. (2015) pro-

vide many interesting stylized facts about FTS episodes from stock to bond markets,

using daily data for 23 countries. They found, among other things, that FTS days

comprise less than 3% of the sample, and in those days, bond returns exceed stock

returns by 2.5 to 4% on average. Moreover, a rise in the implicit volatility and the

Ted spread, liquidity shortages, and decreases in consumer sentiment indicators, seem

to be concomitant to FTS episodes.

The objective of this paper is to provide additional stylized facts about FTS. Pre-

cisely, we investigate whether bond yield regimes (low or high yield environment) can

affect the strength of FTS between stocks and bonds. This research question is impor-

tant for portfolio managers to evaluate whether the well-known diversification benefits

of FTS continue to hold in a low-yield environment, low inflation and expansionary

monetary policies, that pushes yields to historically low levels.2 In relation to the

existing literature, our approach goes beyond the traditional motives of FTS (wealth

protection, liquidity) asking if they remain sufficient in the current context of low

yields. In other words, (i) when yields are low, do investors still find it rational in

times of crisis to rebalance their equity portfolios in favor of bonds? (ii) Are there

some transfers to other more profitable safe havens, such as gold or currencies? To our

knowledge, this is the first paper that addresses these two issues about FTS.

To provide answers to the first research question, we build on Ghysels et al. (2016)

and Aslanidis and Christiansen (2017) and use an econometric model based on dynamic

quantile regression that helps measuring the strength of FTS from stocks to bonds.
2US nominal interest rates remained low since 2007-2008 as the result of low inflation and low

neutral real interest rate estimates. To support the economic recovery from the Great Recession,
the Federal Reserve held the federal funds rate near zero for over seven years and acquired large
holdings of longer-term securities. Despite these extraordinary measures, real GDP has grown at only
a modest pace during the recovery. Commentators and policymakers have described this combination
of low growth and low-interest rates as a "new normal" for the US economy. Some observers, such as
Rogoff (2015), trace these development to persistent, but ultimately transitory, debt deleveraging and
borrowing headwinds in the wake of the global financial crisis. Some others, like Summers (2014), see
these developments as more structural and symptomatic of "secular stagnation", i.e., a confluence of
structural changes persistently weakening GDP growth and lowering interest rates.

3



The model draws on the conditional autoregressive value at risk (CAViaR) specification

of Engle and Manganelli (2004) for the estimation of an extreme upper quantile of the

distribution of r(bs)
t = r

(b)
t − r

(s)
t , with r

(b)
t the returns on government bond and r

(s)
t

the returns on a representative stock index. Remark that the excess returns r(bs)
t take

extreme values for FTS events, i.e, when realized bond (stock) returns are located

in the upper (lower) tail of its conditional distribution. Hence, the upper extreme

quantile of r(bs)
t can be viewed as a measure of the strength of FTS.3 We consider

an extended version of this CAViaR model including a low-yield environment dummy

variable. The coefficient of this dummy variable when statistically different from zero

and negative (positive) is the evidence that in low-yield environment, the strength of

FTS from stocks to bonds decreases (increases).

Empirical results using data for US government bonds and the S&P 500 index

show that the strength of FTS is related to the level of yields. This result holds for all

maturities (10-year, 5-year and 2-year), but to a lesser extent for the medium (5-year)

and short (2-year) maturities. For illustration, with the 10-year maturity bond, when

yields are lower than 2%, the upper extreme quantile of r(bs)
t at the 99% (97.5%) level

decreases, suggesting less strong FTS events in low-yield environment. For the medium

5-year maturity, we observe the same result at both quantile risk levels (99%,97.5%)

when the yields are lower than 1%, but the results are less significant. Lastly, for the

short 2-year maturity, the result holds only at the highest quantile risk level 99% when

yields are lower than 0.5%.

Equipped with these results, we focus on the second research question, i.e., whether

the observed decreases in the strength of FTS from stocks to bonds, can be explained

by some transfers to other more profitable safe haven assets. We thus build on the

VAR for VaR (vector autoregressive model for value at risk) model of White et al.

(2015). Precisely, we consider a bivariate CAViaR model for the joint dynamics of the

upper extreme quantiles of r(bs)
t and r(as)

t with r(as)
t = r

(a)
t − r

(s)
t , and r(a)

t the returns

on an alternative (to bonds) safe haven assets such as gold or currencies. This model

helps measuring to what extent the strength of FTS from stocks to bonds is related

to the strength of FTS from stocks to other safe haven assets (gold, Swiss Franc and

Japanese Yen). Results show that when the strength of FTS from stocks to bonds

decreases, the strength of FTS from stocks to gold increases. This result holds only in
3Note that we focus only on measuring the strength of FTS and do not consider identifying FTS

events as in Ghysels et al. (2016) and Aslanidis and Christiansen (2017). FTS days can indeed be
identified as the days corresponding to a quantile exception, i.e., when r(bs)

t is higher than its extreme
upper conditional quantile.
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the current low-yield environment, suggesting a shift in the historical attractiveness of

bonds as safe haven asset.

The rest of the paper is organized as follows. In Section 2, we develop and estimate

(using US data) a model that relates the strength of FTS from stocks to bonds to

the state of the world as measured by the level of yields. Section 3 is devoted to the

bivariate model that relates the strength of FTS from stocks to bonds to the strength

of FTS from stocks to other safe havens. The last Section concludes the paper.

2 Strength of FTS and low yield environment

2.1 The model

Traditional econometric models to measure the strength of FTS are based on the so-

called tail-dependence coefficient. Formally, let r(s)
t and r(b)

t be the returns at time t

for a given country in its stock index and benchmark government bond, respectively.

Denote Q(j)
t (α), j ∈ {s, b}, the α-quantile at time t of r(j)

t , 0 < α < 1, conditional on

the information set Ft available at time t. The tail-dependence coefficient measures

the dependence between the lower tail of r(s)
t and the upper tail of r(b)

t , and is given

by

τ b|s = lim
α→0

Pr
(
r

(b)
t > Q

(b)
t (1− α)

∣∣∣r(s)
t < Q

(s)
t (α)

)
. (1)

The tail-dependence coefficient τ b|s lies between zero and one. It takes value zero

(one) in the case of full tail-independence (dependence), corresponding to the complete

absence (presence) of a flight-to-safety event from stocks to bonds. In the literature,

there are two different approaches to make inference on the tail-dependence coefficient

τ b|s , stemming from the multivariate extreme value theory (EVT). The first one is

linked to the theory of copulas which offers a fully parametric approach to specify the

bivariate probability distribution of any couple of asset returns. From this distribu-

tion, estimating and testing for the significance of the tail-dependence coefficient is

straightforward within the maximum likelihood framework (McNeil et al., 2005; Hua

and Joe, 2011). The second approach is semi parametric and consists in transpos-

ing some results in univariate EVT to the bivariate or multivariate case (Ledford and

Tawn, 1996; Draisma et al., 2004; Poon et al., 2004; Hartmann et al., 2004). More

recently, van Oordt and Chen (2012) introduce a linear regression model to estimate

the tail-dependence parameter τ b|s . The advantage of the regression approach arises

from its simplicity regarding the estimation, which can be achieved via the method of
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ordinary least squares (OLS), available on common econometric software.4

The above contributions have the common property that they produce an uncon-

ditional measure of the tail-dependence coefficient. Since our goal in this paper is to

investigate whether a variable measuring yield regimes (high or low) can affect the

strength of a flight-to-safety event from stocks to bonds, we need a conditional model

for the tail-dependence coefficient. Note that such a conditional framework was intro-

duced in the literature by Patton (2006) in the context of copulas theory, to test for

the asymmetry in the dependence between exchange rates. The approach of Cappiello

et al. (2014) can also be used to measure the impact of exogenous dummy variables

on the probability of flight-to-safety.

Although these two approaches are attractive, we follow Ghysels et al. (2016) and

Aslanidis and Christiansen (2017) and opt to measure the strength of FTS using simple

dynamic quantile regression with target variable being r(bs)
t = r

(b)
t − r

(s)
t , where again

r
(b)
t is the return on government bond and r(s)

t is the return on a representative stock

index. It is worth noting that the excess returns r(bs)
t take positive extreme values

with realized large negative stock returns concomitant to large positive bond returns,

an evidence of FTS. Thus, the magnitude of an extreme upper-quantile of the excess

return r(bs)
t is a natural proxy of the strength or intensity of FTS events. Obviously,

the level of this extreme quantile should be high (low) in FTS (non-FTS) days, and

can be considered as a barometer of wealth rebalancing across the two markets. Let

Q
(bs)
t (α), α ∈ {99%, 97.5%} be the extreme upper quantile of r(bs)

t at the risk level α.

We consider the following specification for Q(bs)
t (α) ≡ Q(bs)

t (α; θ)

Q
(bs)
t (α) = θ0 + θ1Q

(bs)
t−1 (α)− θ2r

(bs)
t−1I(r

(bs)
t−1 < 0) + θ3r

(bs)
t−1I(r

(bs)
t−1 ≥ 0), (2)

with I(.) the usual indicator function. This specification corresponds to the asym-

metric slope version of the CAViaR model of Engle and Manganelli (2004) that offers

a parsimonious specification to model quantiles for heteroskedastic time series. As

already stressed, the quantile Q(bs)
t (α) can be viewed as a measure of the strength

of FTS from stocks to bonds, since larger values are indicative of a more leptokurtic

conditional distribution of the excess returns r(bs)
t . The main advantage of this semi-

parametric model is that, one does not need to specify the full conditional distribution

of the excess returns, as for example in a GARCH-type methodology. The parameters

of the model are estimated by minimizing with respect to the unknown parameters the
4See also Cappiello et al. (2014) for a similar approach.

6



"tick" loss function of Koenker and Bassett (1978), i.e.,

θ̂ = arg min
θ

T−1
T∑
t=2

(α− I(u(bs)
t < 0))u(bs)

t , (3)

u
(bs)
t = r

(bs)
t −Q(bs)

t (α) , (4)

with T the sample size. Under weak regularity assumptions, Engle and Manganelli

(2004) show that
√
TA
−1/2
T DT (θ̂ − θ0) −→ N (0, 1) , (5)

where

AT = E(T−1α (1− α)
T∑
t=1
∇′Q(bs)

t (α)∇Q(bs)
t (α)), (6)

DT = E(T−1
T∑
t=1

ht (0 |Ft )∇′Q(bs)
t (α)∇Q(bs)

t (α)), (7)

with ht (0 |Ft ) the conditional density of the quantile residuals u(bs)
t , and ∇Q(bs)

t (α))

the vector of derivative of Q(bs)
t (α)) with respect to the parameter vector θ. Inference

about the parameters can thus be conducted using (5), with consistent estimates of

AT and DT .

To evaluate the impact of low-yield environment to the strength of FTS, we con-

sider an extended version of the CAViaR model in (2) corresponding to the following

specification

Q
(bs)
t (α) = θ0 + θ1Q

(bs)
t−1 (α)− θ2r

(bs)
t−1I(r

(bs)
t−1 < 0) + θ3r

(bs)
t−1I(r

(bs)
t−1 ≥ 0) + δI(it < ī), (8)

where it is the value of the bond yield at time t, and ī an exogenous threshold. As

Q
(bs)
t (α) is a measure of the strength of FTS, the parameter δ when statistically

different from zero is the evidence that there exists a relation between yield regimes

and the intensity of FTS from stocks to bonds. Moreover in the case of significance, a

negative (positive) value for the estimate δ̂ means that in low-yield environment, the

strength of FTS from stocks to bonds decreases (increases).

Let us note that correct specification of both models in (2,8) can be tested relying

on the dynamic quantile (DQ) test of Engle and Manganelli (2004). The related

null hypothesis checks for an orthogonality condition between the centered process

of quantile-exception equal to Hitt (θ0) = I(r(bs)
t > Q

(bs)
t ) − α and a set Xt(θ0) of

instruments. Under the null hypothesis of a correctly specified dynamic quantile model,
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the authors show that5

DQ = Hit(θ̂)X(θ̂)(M̂T M̂
′
T )X ′(θ̂)Hit′(θ̂)

α (1− α) , (9)

with M̂T given by the difference between X ′(θ̂) and a function of the gradient of

Q̂
(bs)
t (α) ≡ Q(bs)

t (α; θ̂).

2.2 Estimation results

In this section we estimate the extended dynamic quantile regression in (8) using

US stocks and bonds data. Our dataset includes weekly total return prices on US

government bonds and the S&P 500 index over the period ranging from January 4,

1988 to October 4, 2017, with a total of T = 1551 observations. We use weekly instead

of daily data, as there may be a delay or time-lag in the FTS phenomenon which can

be understated using daily returns. Indeed, the US treasuries market is opened almost

24 hours a day, while the time slot for the opening of the US stock market (S&P 500)

runs from 8:30AM to 4:15PM. To analyze the sensitivity of our results to the maturity

of bonds, we consider three different maturities, i.e., long (10-year), medium (5-year)

and short (2-year). Figure A.1 in Appendix displays the dynamics of prices over the

sample for these four assets. For the S&P 500 index, we observe the typical two bear

markets (2000-2003 and 2007-2009) corresponding to the dot-com crash and the global

financial crisis, respectively. We also note the short-lived crisis of the year 1998. In

these market turmoils characterized by a large drop in the stocks index prices, the

prices of bonds were rising, a symptom of a FTS event from stocks to bonds.

Table 1: Summary statistics for returns
Avg Mean Min Max Std. dev. Skewness Kurtosis

2-year bond 0.0840 −0.9872 1.2875 0.2236 0.3428 5.7407
5-year bond 0.1079 −2.4127 2.2838 0.5678 −0.0252 3.8936
10-year bond 0.1222 −3.6750 5.8112 0.9684 0.0888 4.6514
S&P 500 0.2133 −18.2911 18.0641 2.2043 −0.6372 12.5165

Notes: The table displays some main statistics for the weekly returns on the assets. The data covers the
period ranging from January 4, 1988 to October 4, 2017, with a total of T = 1551 observations. Values
in the first four columns are in percentage. Min (Max) refers to the minimum (maximum) returns, and
Std. dev. the standard deviation.

Table 1 gives some descriptive statistics for the corresponding weekly returns. The

S&P 500 index has higher average mean than that of the bonds, indicating that overall

investing in stocks is more profitable over the sample period. But this is a the cost
5See the reference for more details on the DQ test.
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of a higher risk as measured by the volatility or standard deviation. Indeed, on a

annualized basis, the volatility of the stock market is equal to 15%, with the same

statistics taking values 1.58%, 4.03%, and 7% for the 2-year, 5-year and 10-year US

government bond returns. The figure is more pronounced when risk is measured as

the probability of loss. Indeed, the kurtosis of the S&P 500 index is equal to 12.5

and much higher than that of the three bonds, suggesting a significant tail-risk for the

former asset. The minimum values of the weekly returns over the sample confirm this

result.

Figure 1: Rolling-window estimates of US stock-bond correlation

Figure 1 displays the US stock-bond correlation estimated on rolling-window sam-

ples of size n = 52 (one year of weekly data). At the beginning of the sample, in

the 1990s, the correlation fluctuated around a positive average level. Consistent with

the literature mentioned above (Li, 2002), this positive level of correlation arises from

increased uncertainty about expected inflation, following high and volatile inflation

(shocks in oil prices) in the previous decades (1970s, 1980s). The correlation rose into

negative territory since the 2000s, and fluctuated around the average value of −30%.

Uncertainties about growth and earnings can partly explain this dynamic, with bonds

appearing to be good hedges against stocks. Note that the hedging property is related

to the uncorrelatedness or the existence of negative correlation between stocks and

bonds in all states of the world, and hence differs from FTS phenomenons which cap-

ture uncorrelatedness or negative correlation only in a market crash (Baur and Lucey,

2010a). Indeed, as recently analyzed by Baele and Van Holle (2017), the negative and
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persistent level of correlation since the 2000s should not be attributed to an increase

in the frequency of FTS events, but rather to the prolonged period of accommodat-

ing monetary policy. Precisely, they show that in times of low inflation, central bank

policies that seek to stimulate economic growth by loosening money supply, lead to a

negative correlation between stocks and bonds. Indeed, in low inflation environment,

investors would be mainly concerned about deflationary risks and central banks are

constrained by the zero lower bound. In such environment, a negative inflation shock

leads to higher risk aversion and a fall of equity prices, while the accommodating mone-

tary policy, by unconventional measures such as forward guidance and asset purchases,

leads to a flattened yield curve and a rise in bond prices.

Given these elements, asking whether the strength of FTS from stocks to bonds

remains the same in the current context of low yields, is not irrelevant, even when the

correlation between stocks and bonds is empirically negative. Table 2 below gives the

estimation results of the extended CAViaR model in (8). Recall that this model relates

the strength of FTS as measured by an extreme upper-quantile of r(bs)
t to the level of

bond yields (low yield environment).6 Results are displayed for the longest maturity

(10-year government bond), with the parameter estimates followed in parentheses by

their standard deviations. The benchmark regression refers to the usual CAViaR

model, while the others correspond to an extended model that includes (as explanatory

variable) a dummy variable measuring low-yield environment, i.e., I(it < ī), with

ī ∈ {2%, 3%, 4%, 5%}. Panel A presents the results for α = 99%, and Panels B and C

for α = 97.5% and α = 95%, respectively, with α the upper-quantile level. For each

model, we also report the frequency of quantile-exceptions, the DQ test statistics for

correct specification and the corresponding p-values. For the computation of the DQ

test statistics, we use as instruments X(θ̂) (see equation 9) the 10 lagged values of the

estimated process of quantile-exceptions.

The first important result is that all models do a good job in measuring the strength

of FTS as given by the upper-quantile of the excess returns r(bs)
t . Indeed, the frequen-

cies of quantile exceptions (or Hit frequencies) are close to 1−α. Moreover the p-values

of the DQ test are higher than 5% suggesting a correct conditional calibration of the

dynamic quantile models. The second result to underline is that the autoregressive co-

efficient θ1 is always highly significant, meaning that there exists clustering in the tails,
6Figure A.2 in Appendix displays the three time series of US government bond yields over the

sample. We observe that the low-yield environment is located at the end of the sample, as there is
globally a downward trend in all series as the result of successive easing monetary policies linked to a
continuous desinflation.
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Table 2: Strength of FTS and low yields: S&P 500 & 10-year US Government bond
Benchmark i = 2% i = 3% i = 4% i = 5%

α = 99%
θ0 0.0086

(0.0025)
∗∗∗ 0.0084

(0.0023)
∗∗∗ 0.0080

(0.0016)
∗∗∗ 0.0084

(0.0027)
∗∗∗ 0.0068

(0.0017)
∗∗∗

θ1 0.7610
(0.0508)

∗∗∗ 0.7674
(0.0379)

∗∗∗ 0.7804
(0.0340)

∗∗∗ 0.7493
(0.0628)

∗∗∗ 0.7870
(0.0422)

∗∗∗

θ2 0.0295
(0.1252)

0.0359
(0.0886)

0.0525
(0.0837)

0.0164
(0.1256)

0.1511
(0.0973)

θ3 0.8558
(0.1437)

∗∗∗ 0.8478
(0.1144)

∗∗∗ 0.8289
(0.1145)

∗∗∗ 0.8547
(0.1722)

∗∗∗ 0.7945
(0.1317)

∗∗∗

δ −0.0049
(0.0011)

∗∗∗ −0.0026
(0.0009)

∗∗∗ 0.0013
(0.0025)

0.0027
(0.0016)

∗

Hit-Frequency 0.0103 0.0103 0.0103 0.0110 0.0097
DQ-Stat 10.0077 4.7106 5.2698 9.0515 5.5039

DQ-Pvalue 0.4398 0.9097 0.8724 0.5272 0.8551
α = 97.5%

θ0 0.0044
(0.0014)

∗∗∗ 0.0046
(0.0016)

∗∗∗ 0.0046
(0.0011)

∗∗∗ 0.0049
(0.0015)

∗∗∗ 0.0051
(0.0017)

∗∗∗

θ1 0.8068
(0.0619)

∗∗∗ 0.8008
(0.0611)

∗∗∗ 0.8004
(0.0453)

∗∗∗ 0.7919
(0.0720)

∗∗∗ 0.7584
(0.0787)

∗∗∗

θ2 −0.0093
(0.1255)

0.0031
(0.1220)

−0.0144
(0.1126)

−0.0030
(0.1421)

−0.0568
(0.1323)

θ3 0.6370
(0.2489)

∗∗ 0.6841
(0.2160)

∗∗∗ 0.6608
(0.1832)

∗∗∗ 0.6736
(0.2784)

∗∗ 0.7456
(0.2730)

∗∗∗

δ −0.0021
(0.0008)

∗∗ −0.0017
(0.0007)

∗∗ 0.0002
(0.0011)

0.0010
(0.0010)

Hit-Frequency 0.0258 0.0258 0.0258 0.0239 0.0264
DQ-Stat 6.8358 6.4014 5.5767 7.2692 4.0875

DQ-Pvalue 0.7408 0.7805 0.8495 0.6998 0.9433
α = 95%

θ0 0.0023
(0.0006)

∗∗∗ 0.0022
(0.0010)

∗∗ 0.0024
(0.0006)

∗∗∗ 0.0020
(0.0007)

∗∗∗ 0.0024
(0.0005)

∗∗∗

θ1 0.8601
(0.0526)

∗∗∗ 0.8791
(0.0453)

∗∗∗ 0.8733
(0.0492)

∗∗∗ 0.8701
(0.0396)

∗∗∗ 0.8618
(0.0446)

∗∗∗

θ2 −0.0100
(0.0881)

0.0227
(0.0783)

0.0172
(0.0702)

0.0197
(0.0876)

0.0248
(0.0737)

θ3 0.3426
(0.1599)

∗∗ 0.3213
(0.1636)

∗∗ 0.3206
(0.1503)

∗∗ 0.3505
(0.1314)

∗∗∗ 0.3472
(0.1369)

∗∗

δ −0.0006
(0.0004)

−0.0005
(0.0004)

0.0004
(0.0005)

0.0005
(0.0005)

Hit-Frequency 0.0503 0.0490 0.0503 0.0516 0.0496
DQ-Stat 4.4097 5.8681 5.3243 5.2166 7.0039

DQ-Pvalue 0.9270 0.8262 0.8685 0.8762 0.7251
Notes: This table displays the results (parameter estimates followed by standard errors in paren-
theses) of different CAViaR models with the dependent variable being the returns on 10-year US
Government bond in excess of the returns on S&P 500. The benchmark regression refers to the
usual CAViaR model, while the others correspond to an extended CAViaR model that includes (as
explanatory variable) a dummy variable measuring low-yield environment (it < ī). Statistics for
the test of correct specification are also displayed, including the frequencies of Hit, the dynamic
quantile (DQ) test statistics and the associated p-values. Panel A, B and C report the results for
α = 99%, α = 97.5% and α = 95%, respectively, with α the upper-quantile risk level. All estima-
tions are performed using weekly data ranging from January 15, 1988 to September 29, 2017, with
a total of T = 1551 observations. Significances at 1%, 5% and 10% are emphasized by ***, ** and
*, respectively.
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even at the weekly frequency. We also observe that while the coefficient θ3 is always

very significant, the coefficient θ2 is overall insignificant. Hence, positive returns seem

to drive the dynamics of the upper-quantile of the excess returns r(bs)
t , while negative

returns do not play any role.

Lastly, focusing on our parameter of interest δ, results in Panel A and B show that

this parameter is negative and significant for yield thresholds i equal to 2% and 3%.

For i ≥ 4% the same parameter is positive and insignificant in many cases. We deduce

from this result that the strength of FTS from stocks to bonds decreases at very low

levels of yields. So, our conjecture that when yields are low, the traditional motives of

FTS (wealth protection, liquidity) could not be sufficient, inducing weaker FTS events,

seems to hold at least on the US market and for the longest bond maturity considered

(10-year).

Figure 2: Yields Impact Curve: α = 99%

Figure 2 displays the yields impact curves computed in the same spirit as the

news impact curve of Engle and Manganelli (2004). For different values of the yield,

each curve displays the strength of FTS from stocks to bonds as measured by the dy-

namic quantiles estimated in (8), keeping each of the first three explanatory variables,

Q
(bs)
t−1 (α), r(bs)

t−1I(r
(bs)
t−1 < 0), and r(bs)

t−1I(r
(bs)
t−1 ≥ 0), at its average value over the sample.

We observe the asymmetry of both curves with jumps in the value of the strength at

the threshold value ī, which is the result of the retained specification in (8). More-

over and importantly, the asymmetry appears stronger at the lowest value of the yield

threshold ī.
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Tables A.1 and A.2 in Appendix display the results for the 5-year and the 2-year

US government bonds, respectively. The presentation is similar to that of Table 2.

As in Table 2, we cannot reject the null hypothesis of a correctly specified dynamic

quantile regression model for each of the model considered. Moreover, the autore-

gressive parameter θ1 appears always significant suggesting temporal dependence in

quantile dynamics. Regarding the parameter estimates, the results are qualitatively

similar to those in Table 2, except for our parameter of interest δ which is significant

at the nominal significance level of 10% in some cases for the 5-year government bond

(notably at the threshold ī = 1%, 2%) and significant in only one case for the 2-year

government bond at the lowest threshold (̄i = 0.5%). To conclude, the result that

the strength of FTS from stocks to bonds decreases at very low levels of yields, seems

to operate at all maturities, but to a greater extent at the highest maturity (10-year

government bond). Indeed, FTS episodes are much more pronounced on the 10-year

maturity due to its relative liquidity. As a result, the decrease of the FTS strength is

more likely to operate at this maturity. The estimated value of the parameter θ0 (the

constant) in the quantile regression (8), which gives an indication of the average value

of the strength of FTS, gives more insights on the point (see Tables 2, A.1 and A.2).

We observe that the estimated value of this parameter is higher for the 10-year largest

maturity (0.86%) than for the other maturities (0.58% and 0.55% for the 5-year and

2-year maturities).

3 Bond alternatives and flight-to-safety transfers

This section tackles the issue of FTS transfers across markets. Formally, we built a

bivariate dynamic quantile model that measures to what extent the strength of FTS

from stocks to bonds is related to the strength of FTS from stocks to another safe

haven, such as gold or currencies. By doing so, our objective is to check whether the

observed decreases in the strength of FTS from stocks to bonds when yields are low,

can be explained by some transfers to other more profitable safe havens. We describe

the econometric model in the first part of the section, and the last part presents and

analyzes the empirical results.

3.1 The model

We build on the VAR (vector autoregressive model) for VaR (value at risk) of White

et al. (2015), and consider modeling the joint dynamics of the upper-extreme quantiles
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of r(bs)
t and r

(as)
t , with r

(as)
t = r

(a)
t − r

(s)
t , and r

(a)
t the returns on an alternative (to

bonds) safe haven asset like gold or currencies. The model writes
Q

(as)
t (α) = c1 + a11

∣∣∣r(as)
t−1

∣∣∣+ a12
∣∣∣r(bs)
t−1

∣∣∣+ b11Q
(as)
t−1 (α) + b12Q

(bs)
t−1 (α) + ρQ

(bs)
t−1 (α) I

(
it−1 ≤ i

)
Q

(bs)
t (α) = c2 + a21

∣∣∣r(as)
t−1

∣∣∣+ a22
∣∣∣r(bs)
t−1

∣∣∣+ b21Q
(as)
t−1 (α) + b22Q

(bs)
t−1 (α) ,

(10)

where again Q(bs)
t (α) is the upper-quantile of r(bs)

t at the risk level α, and Q(as)
t (α) the

upper-quantile of r(as)
t at the same risk level. Recall that both Q(bs)

t (α) and Q(as)
t (α)

measure the strength of FTS, the first from stocks to bonds, and the second from

stocks to an alternative safe haven. The bivariate specification thus captures the link

between these two forms of FTS. In a matrix notation, the model is equal to

Qt (α) = c+A |rt−1|+BQt−1 (α) +DQ̃t−1 (α) , (11)

with c = (c1, c2)′, |rt| =
(∣∣∣r(as)

t

∣∣∣ , ∣∣∣r(bs)
t

∣∣∣)′, and
Qt (α) =

(
Q

(as)
t (α) , Q(bs)

t (α)
)′
, (12)

Q̃t (α) =
(
Q

(as)
t (α) , Q(bs)

t (α) I
(
it < i

))′
, (13)

where the matrices A, B, and D are given by

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, D =

(
0 ρ
0 0

)
. (14)

Apart from the last term in the first equation of (10) or equivalently the last term

in (11), this specification corresponds to the VAR for VaR model of White et al. (2015)

which has many potential applications in co-tail risk analysis. This last term is crucial

in our context, as it allows us to provide an answer to our second research question.

Indeed, if the parameter ρ is negative and statistically significant, this means that

when yields are low (it−1 ≤ i) a decrease in the strength of FTS from stocks to bonds

leads to an increase in the FTS from stocks to the alternative (to bond) safe haven

asset, and this increase is higher than what prevails (statistically significant or not) in

high yield environment. This result would be the evidence of a FTS transfer across

markets in low-yield environment.

Estimation of the system of equations in (10) can be achieved minimizing the sum

of the quantile loss functions related to the two equations, yielding

ψ̂ = arg min
ψ

T−1
T∑
t=2
{(α− I(u(bs)

t < 0))u(bs)
t + (α− I(u(as)

t < 0))u(as)
t } (15)
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where ψ = (c1, a11, a12, b11, b12, ρ, c2, a21, a22, b22, b21)′ is the vector of length p = 11

with elements the unknown parameters, u(bs)
t = r

(bs)
t − Q(bs)

t (α) and u
(as)
t = r

(as)
t −

Q
(as)
t (α) the quantile residuals. This likelihood-based objective function assumes that

the vector of quantile residuals (u(bs)
t , u

(as)
t )′ has independent components each fol-

lowing an asymmetric double exponential random variable (Komunjer, 2005), and the

estimation method can be viewed as a quasi maximum likelihood, when this assump-

tion does not hold.

Inference about the parameters is conducted using the asymptotic distribution of ψ̂

as provided by White et al. (2015). By making explicit the dependence of the quantiles

to the vector of parameters, i.e., Q(bs)
t (α) = Q

(bs)
t (α;ψ), and Q(as)

t (α) = Q
(as)
t (α;ψ),

we have

T 1/2(ψ̂ − ψ∗) −→ N
(
0,M∗−1V ∗M∗−1

)
, (16)

with

M∗ = E[f (bs)
t (0)∇Q(bs)

t (α;ψ∗)∇′Q(bs)
t (α;ψ∗)] + (17)

E[f (as)
t (0)∇Q(as)

t (α;ψ∗)∇′Q(as)
t (α;ψ∗)],

V ∗ = E(η∗t η∗′t ), (18)

η∗t = ∇Q(bs)
t (α;ψ∗)[α− I(r(bs)

t < Q
(bs)
t (α;ψ∗))] + (19)

∇Q(as)
t (α;ψ∗)[α− I(r(as)

t < Q
(as)
t (α;ψ∗))]

where ∇Q(j)
t (α;ψ∗), j ∈ {(bs), (as)}, are the p× 1 gradient vector of Q(j)

t (α;ψ∗) with

respect to ψ∗, and f (j)
t (0) the conditional density of the residuals u(j)

t .

A consistent estimator of the asymptotic covariance matrix M∗−1V ∗M∗−1 is ob-

tained using consistent estimators of M∗ and V ∗, with

V̂T = T−1
T∑
t=1

η̂tη̂
′
t (20)

η̂t = ∇Q(bs)
t (α; ψ̂)[α− I(r(bs)

t < Q
(bs)
t (α; ψ̂)] + (21)

∇Q(as)
t (α; ψ̂)[α− I(r(as)

t < Q
(as)
t (α; ψ̂)]

M̂T = T−1
T∑
t=1

{
(2ĉ(bs)

T )−1I(−ĉ(bs)
T ≤ u(bs)

t ≤ ĉ(bs)
T )∇Q(bs)

t (α; ψ̂)∇′Q(bs)
t (α; ψ̂) +(22)

(2ĉ(as)
T )−1I(−ĉ(as)

T ≤ u(as)
t ≤ ĉ(as)

T )∇Q(as)
t (α; ψ̂)∇′Q(as)

t (α; ψ̂)
}
,
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where the terms (2ĉ(bs)
T )−1I(−ĉ(bs)

T ≤ u
(bs)
t ≤ ĉ

(bs)
T ) and (2ĉ(as)

T )−1I(−ĉ(as)
T ≤ u

(as)
t ≤

ĉ
(as)
T ) are taken as the estimators of f (bs)

t (0) and f (as)
t (0), respectively, with ĉ(bs)

T and

ĉ
(as)
T two bandwidth parameters. We follow White et al. (2015) setting values to these

two parameters as

ĉ
(j)
T = κ(j)

[
Φ−1 (α+ hT )− Φ−1 (α− hT )

]
, (23)

with

hT = T−1/3
(
Φ−1 (1− 0.05/2)

)2/3
(

1.5
(
φ
(
Φ−1 (α)

))2
2 (Φ−1 (α))2 + 1

)1/3

, (24)

where φ(.) and Φ(.) are the p.d.f. and the c.d.f. of the standard normal distri-

bution, and κ(j) the median absolute deviation of the quantile residual series u(j)
t ,

j ∈ {(bs), (as)}.

Note that independence between the dynamics of both quantiles can be easily tested

by checking for the joint nullity of off-diagonal elements in the matrices A, B and D.

The corresponding null hypothesis is defined as

H0 : a12 = 0, b12 = 0, ρ = 0, a21 = 0, b21 = 0. (25)

With an appropriately chosen matrix R of dimension (5, p), the Wald test statistics is

equal to

W = (Rψ̂)′[RΩ̂R′]−1(Rψ̂), (26)

with Ω̂ = T−1M̂−1V̂ M̂−1 the estimated covariance matrix of ψ̂. Remark that when

the null hypothesis is not rejected at the usual nominal risk levels, this means that the

dynamics of both quantiles are not related, and the two equations can be estimated

separately using the univariate CAViaR specification. In our framework, this case cor-

responds to the absence of causality between both FTS phenomenons. Say differently,

when the null hypothesis holds, the FTS from stocks to bonds is not related to the

FTS from stocks to the alternative safe haven asset.

3.2 Estimation results

We provide estimates of the parameters ψ in the bivariate dynamic quantile model

using gold and two currencies, that is, the Japanese Yen (JPY) and the Switzerland

Franc (CHF), as alternative (to bonds) safe haven assets.

The safe haven nature of gold has been deeply analyzed in the academic literature.

Early contributions are Baur and Lucey (2010b) and Baur and McDermott (2010).
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Baur and Lucey (2010b) scrutinize both constant and time-varying dependencies be-

tween the returns on gold and the returns on international stock indexes (US, UK and

German). Their empirical analyzes show evidence that gold is a safe haven asset in

times of market turmoil. The same conclusion is obtained by Baur and McDermott

(2010) who stress that gold reduces the effect of highly adverse stock market move-

ments in most developed countries worldwide, and can be viewed as an asset that

helps stabilizing the financial system. Using the more sophisticated smooth transi-

tion regression tool, Beckmann et al. (2015) confirm these results which appear to be

market-specific. Note, however, that this figure is nuanced by Hood and Malik (2013).

The authors show that gold serves the function of safe haven, which seems to disappear

in periods of extreme high volatility.

The safe haven property of JPY and CHF currencies has also been covered by the

financial literature. Theoretically, there is no clear consensus on the determinants of

this phenomenon, except for a positive net foreign asset position (Habib and Stracca,

2012). As argued by Habib and Stracca (2014), this difficulty arises from the changing

motives and investor’s categories that drive currencies FTS, and the mixed results

obtained in the empirical applications can be viewed as a proof of their assertion. For

instance, de Carvalho Filho (2015) finds that CHF appreciations during market turmoil

are associated to significant capital inflows, while the results in Yesin (2016) suggest

an insignificant relation between appreciations and capital inflows. These latter results

seem to hold for the JPY currency, with exchange rate movements arising mainly from

derivative trading, without capital inflows (Botman et al., 2013). Beyond this debate,

there is nevertheless a consensus in the literature that recognizes the property of safe

haven to these two currencies.

Table 3 below displays the results of the bivariate CAViaR models. We use weekly

data over the same time period as in the last section, i.e., from January 15, 1988 to

September 29, 2017, with a total of T = 1551 observations. As our goal is to analyze

FTS transfers, we only consider the configurations corresponding to strong decreases

in the FTS from stocks to bonds as evidenced in the last section (see Tables 2, A.1 and

A.2). Precisely, we set the quantile risk level at α = 99%, and the yield threshold ī to

2%, 1% and 0.5% for the 10-year, 5-year, 2-year, respectively. The Table presents the

results only for the first equation including our parameter of interest ρ (see equation

(10)). For each parameter, we report the estimates followed in parentheses by the

standard deviations. The last column gives the Wald test statistics of the joint nullity
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Table 3: FTS transfers and low yields (US): α = 99%
10-year Government Bond (i = 2%)

Gold
c1 a11 a12 b11 b12 ρ Wald

0.0057
(0.0025)

∗∗∗ 0.7021
(0.3630)

∗∗ 0.2499
(0.3027)

0.7680
(0.0917)

∗∗∗ −0.0816
(0.0998)

−0.1598
(0.0844)

∗∗ 18.9583
[0.0020]

JPY
c1 a11 a12 b11 b12 ρ Wald

0.0152
(0.0084)

∗ −0.3959
(0.2732)

1.2379
(0.6028)

∗∗ 0.5833
(0.1763)

∗∗∗ 0.0728
(0.1901)

−0.0946
(0.0673)

76.0178
[0.0000]

CHF
c1 a11 a12 b11 b12 ρ Wald

0.0120
(0.0107)

−0.1607
(0.3157)

0.7472
(0.5708)

0.8419
(0.1476)

∗∗∗ −0.1370
(0.0791)

∗ −0.1307
(0.1181)

30.0509
[0.0000]

5-year Government Bond (i = 1%)
Gold

c1 a11 a12 b11 b12 ρ Wald
0.0053
(0.0020)

∗∗∗ 0.6843
(0.3178)

∗∗ 0.5930
(0.2522)

∗∗ 0.7303
(0.1566)

∗∗∗ −0.0954
(0.1474)

−0.2687
(0.0986)

∗∗∗ 121.6488
[0.0000]

JPY
c1 a11 a12 b11 b12 ρ Wald

0.0288
(0.0620)

−0.4686
(0.8077)

1.5574
(1.9629)

−0.1849
(0.4271)

0.8176
(1.5330)

−0.4875
(0.4668)

89.4198
[0.0000]

CHF
c1 a11 a12 b11 b12 ρ Wald

0.0235
(0.0163)

0.8413
(0.8604)

0.0000
(1.0757)

0.0712
(0.3616)

0.3988
(0.1647)

∗∗ −0.3301
(0.2588)

33.3419
[0.0000]

2-year Government Bond (i = 0.5%)
Gold

c1 a11 a12 b11 b12 ρ Wald
0.0068
(0.0033)

∗∗ 0.5461
(0.3659)

0.8010
(0.3095)

∗∗∗ 0.8021
(0.2150)

∗∗∗ −0.2220
(0.2726)

−0.1590
(0.0681)

∗∗ 56.8127
[0.0000]

JPY
c1 a11 a12 b11 b12 ρ Wald

0.0088
(0.0365)

−0.3016
(0.8853)

1.2812
(1.9823)

0.7761
(1.2754)

−0.0839
(0.8409)

−0.1434
(0.2830)

76.1848
[0.0000]

CHF
c1 a11 a12 b11 b12 ρ Wald

0.0118
(0.0140)

0.1564
(0.5007)

0.4158
(1.8313)

0.3911
(0.7778)

0.2977
(0.5515)

0.1865
(0.4529)

9.3848
[0.0947]

Notes: This table displays the results (parameter estimates followed by standard errors in parenthe-
ses) of the first equation of the bivariate dynamic quantile model in (10) assuming three different
alternative (to bonds) safe haven assets. The last column gives the Wald test statistics of the joint
nullity of off diagonal elements in the system followed in brackets by the corresponding p-values.
Results are presented for the quantile level α = 99%. The threshold ī is set to 2%, 1% and 0.5%
for the 10-year, 5-year and 2-year government bonds. All estimations are performed using weekly
data ranging from January 15, 1988 to September 29, 2017, with a total of T = 1551 observations.
Significances at 1%, 5% and 10% are emphasized by ***, ** and *, respectively.
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of off-diagonal elements in the system followed in brackets by the corresponding p-

values.

First, it appears that in all configurations except one, the Wald test rejects the

null hypothesis of the nullity of off-diagonal elements in the bivariate dynamic quantile

model at the nominal significance level of 1%. We deduce that the dynamics of both

quantiles are linked. Economically, this means that the strength of FTS from stocks to

bonds is related to the strength of FTS from stocks to the three alternative safe haven

assets, regardless of the direction of causality. Second, the parameter b12 is, in most

cases, insignificant. Recall that this parameter measures to what extent the strength of

FTS from stocks to bonds impacts the strength of FTS from stocks to the alternative

asset, in only high-yield environment. This result suggests that when yields are high,

a decrease (or an increase) in the strength of FTS from stocks to bonds does not have

any predictive content for the strength of FTS from stocks to each of the alternative

asset. The only exceptions occur with the alternative safe haven asset being CHF, for

the 10-year and 5-year government bonds.

Lastly, focusing on our parameter of interest ρ, it appears overall negative and

significant at the 5% significance level, when one considers gold as alternative safe

haven asset. For instance, with the 10-year government bond, the estimate of ρ is

equal to ρ̂ = −0.1598. As a consequence, the relation between the strength of FTS

from stocks to bonds (as shown in the last section) and the FTS from stocks to gold

is reinforced, when the 10-year government bond yield is lower than ī = 2%. This

is a clear-cut evidence of FTS transfer in a low-yield environment, as ρ is negative.

Results are qualitatively similar for the 5-year (2-year) government bonds when the

corresponding yield is lower than ī = 1% (̄i = 0.5%). Lastly, results do not support

FTS transfers when considering JPY and CHF as alternative (to bonds) safe haven

assets. Indeed, the parameter ρ is insignificant in all configurations for these two assets.

This FTS transfer on gold instead of usual "safe haven" currencies may be related to

the low level of the US dollar over the last decade. Since gold is traded in dollars, for

international investors, the gold price may have seemed relatively more attractive.

4 Conclusion

This explores the phenomenon of flight-to-safety from stocks to bonds in the US mar-

kets. The main objective is to assess the strength of this stylized fact in line of the

current environment of low yields. Indeed, non conventional monetary policies over the
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last decade have pushed US government bond yields to historically low levels, and ra-

tionalizes the question of whether the traditional motives of flight-to-safety, i.e., wealth

protection and liquidity, are still sufficient for investors to rebalance their equity port-

folios in favor of bonds in market turmoils. To explore this issue, we develop a dynamic

quantile model that models the strength of flight-to-safety from stocks to bonds. An

augmented version of this regression, with low-yield regime as additional predictor,

helps to evaluate the impact of the latter. Empirical applications using weekly data

for the S&P 500 index and three US government bonds, show that when yields are

low, the strength of flight-to-safety from stocks to bonds decreases. This result holds

at all maturities considered (10-year, 5-year, 2-year), but to a greater extent at the

highest maturity.

As an extension of these results, we check via a bivariate dynamic quantile model,

whether the observed decreases of the strength of flight-to-safety from stocks to bonds,

are related to some transfers to other more profitable safe haven assets. Using gold

and two safe haven currencies (Swiss Franc and Japanese Yen) as alternative assets,

results show that when US government bond yields are low, a decrease in the strength

of flight-to-safety from stocks to bonds leads to an increase in the flight-to-safety from

stocks to gold. This evidence of flight-to-safety transfers seems to operate at all bond

maturities. In contrast, the empirical investigations do not favor a flight-to-safety

transfer to the two safe haven currencies.
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A Appendix: Additional Tables and Figures

Figure A.1: Dynamics of asset prices

Figure A.2: Dynamics of US government bond yields
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Table A.1: Strength of FTS and low yields: S&P 500 & 5-year US Government
bond

Benchmark i = 1% i = 2% i = 3% i = 4%
α = 99%

θ0 0.0058
(0.0010)

∗∗∗ 0.0059
(0.0015)

∗∗∗ 0.0059
(0.0014)

∗∗∗ 0.0058
(0.0010)

∗∗∗ 0.0058
(0.0010)

∗∗∗

θ1 0.8101
(0.0227)

∗∗∗ 0.7928
(0.0311)

∗∗∗ 0.7943
(0.0293)

∗∗∗ 0.8086
(0.0251)

∗∗∗ 0.8111
(0.0228)

∗∗∗

θ2 0.1511
(0.0696)

∗∗ 0.0414
(0.1000)

0.0433
(0.0917)

0.1448
(0.0838)

∗ 0.1525
(0.0741)

∗∗

θ3 0.8886
(0.0838)

∗∗∗ 0.9222
(0.1116)

∗∗∗ 0.9199
(0.1059)

∗∗∗ 0.8976
(0.1033)

∗∗∗ 0.8895
(0.0927)

∗∗∗

δ −0.0020
(0.0011)

∗ −0.0020
(0.0011)

∗ −0.0001
(0.0011)

−0.0000
(0.0008)

Hit-Frequency 0.0097 0.0097 0.0097 0.0097 0.0103
DQ-Stat 5.8829 9.7949 5.8306 5.8604 9.2821

DQ-Pvalue 0.8250 0.4587 0.8293 0.8269 0.5056
α = 97.5%

θ0 0.0047
(0.0010)

∗∗∗ 0.0042
(0.0013)

∗∗∗ 0.0045
(0.0010)

∗∗∗ 0.0046
(0.0010)

∗∗∗ 0.0047
(0.0009)

∗∗∗

θ1 0.8070
(0.0599)

∗∗∗ 0.8174
(0.0785)

∗∗∗ 0.8076
(0.0593)

∗∗∗ 0.7950
(0.0618)

∗∗∗ 0.8065
(0.0599)

∗∗∗

θ2 0.0564
(0.1132)

0.0466
(0.1047)

0.0363
(0.1005)

0.0110
(0.1258)

0.0452
(0.1146)

θ3 0.6511
(0.2877)

∗∗ 0.6722
(0.4520)

0.6976
(0.3129)

∗∗ 0.7116
(0.3228)

∗∗ 0.6525
(0.2852)

∗∗

δ −0.0019
(0.0013)

−0.0017
(0.0010)

∗ −0.0003
(0.0010)

−0.0001
(0.0009)

Hit-Frequency 0.0258 0.0258 0.0258 0.0264 0.0251
DQ-Stat 7.9803 5.0806 4.6447 5.3015 3.4711

DQ-Pvalue 0.6308 0.8857 0.9136 0.8702 0.9681
α = 95%

θ0 0.0020
(0.0005)

∗∗∗ 0.0020
(0.0005)

∗∗∗ 0.0021
(0.0005)

∗∗∗ 0.0020
(0.0005)

∗∗∗ 0.0020
(0.0004)

∗∗∗

θ1 0.8706
(0.0453)

∗∗∗ 0.8706
(0.0455)

∗∗∗ 0.8860
(0.0433)

∗∗∗ 0.8725
(0.0504)

∗∗∗ 0.8741
(0.0449)

∗∗∗

θ2 0.0042
(0.1011)

0.0042
(0.0978)

0.0376
(0.0723)

0.0062
(0.1161)

0.0248
(0.0775)

θ3 0.3321
(0.1435)

∗∗ 0.3320
(0.1458)

∗∗ 0.3087
(0.1331)

∗∗ 0.3281
(0.1442)

∗∗ 0.3314
(0.1414)

∗∗

δ −0.0004
(0.0006)

−0.0005
(0.0004)

−0.0001
(0.0004)

0.0001
(0.0004)

Hit-Frequency 0.0509 0.0503 0.0516 0.0503 0.0503
DQ-Stat 4.7443 3.4235 2.3370 7.4845 5.9763

DQ-Pvalue 0.9076 0.9696 0.9930 0.6790 0.8172
Notes: This table displays the results (parameter estimates followed by standard errors in
parentheses) of different CAViaR models with the dependent variable being the returns on 5-year
US Government bond in excess of the returns on S&P 500. The benchmark regression refers
to the usual CAViaR model, while the others correspond to an extended CAViaR model that
includes (as explanatory variable) a dummy variable measuring low-yield environment (it < ī).
Statistics for the test of correct specification are also displayed, including the frequencies of Hit,
the dynamic quantile (DQ) test statistics and the associated p-values. Panel A, B and C report
the results for α = 99%, α = 97.5% and α = 95%, respectively, with α the upper-quantile
risk level. All estimations are performed using weekly data ranging from January 15, 1988 to
September 29, 2017, with a total of T = 1551 observations. Significances at 1%, 5% and 10%
are emphasized by ***, ** and *, respectively.
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Table A.2: Strength of FTS and low yields: S&P 500 & 2-year US Government
bond

Benchmark i = 0.5% i = 1% i = 2% i = 3%
α = 99%

θ0 0.0055
(0.0013)

∗∗∗ 0.0062
(0.0013)

∗∗∗ 0.0074
(0.0013)

∗∗∗ 0.0055
(0.0014)

∗∗∗ 0.0058
(0.0023)

∗∗∗

θ1 0.8134
(0.0430)

∗∗∗ 0.7642
(0.0253)

∗∗∗ 0.7594
(0.0423)

∗∗∗ 0.8137
(0.0507)

∗∗∗ 0.8030
(0.0579)

∗∗∗

θ2 0.1715
(0.0850)

∗∗ 0.0031
(0.1510)

0.0101
(0.1458)

0.1726
(0.0980)

∗ 0.0994
(0.1581)

θ3 0.8769
(0.2154)

∗∗∗ 1.0849
(0.1177)

∗∗∗ 0.9503
(0.2622)

∗∗∗ 0.8733
(0.2562)

∗∗∗ 0.8112
(0.2512)

∗∗∗

δ −0.0035
(0.0009)

∗∗∗ −0.0022
(0.0014)

0.0000
(0.0010)

0.0003
(0.0011)

Hit-Frequency 0.0103 0.0110 0.0103 0.0097 0.0103
DQ-Stat 13.4383 9.1505 5.5963 14.7503 13.2982

DQ-Pvalue 0.2002 0.5179 0.8480 0.1414 0.2075
α = 97.5%

θ0 0.0040
(0.0010)

∗∗∗ 0.0043
(0.0010)

∗∗∗ 0.0044
(0.0012)

∗∗∗ 0.0040
(0.0010)

∗∗∗ 0.0040
(0.0010)

∗∗∗

θ1 0.8448
(0.0471)

∗∗∗ 0.8342
(0.0489)

∗∗∗ 0.8237
(0.0531)

∗∗∗ 0.8464
(0.0463)

∗∗∗ 0.8443
(0.0467)

∗∗∗

θ2 0.1391
(0.0645)

∗∗ 0.1242
(0.0667)

∗ 0.0822
(0.0917)

0.1392
(0.0677)

∗∗ 0.1335
(0.0653)

∗∗

θ3 0.5624
(0.2212)

∗∗ 0.5917
(0.2607)

∗∗ 0.6087
(0.2213)

∗∗∗ 0.5536
(0.2154)

∗∗∗ 0.5477
(0.2118)

∗∗∗

δ −0.0008
(0.0008)

−0.0009
(0.0007)

−0.0002
(0.0006)

0.0001
(0.0006)

Hit-Frequency 0.0258 0.0258 0.0271 0.0251 0.0258
DQ-Stat 3.5442 3.4077 6.1886 4.8946 3.4247

DQ-Pvalue 0.9656 0.9701 0.7992 0.8981 0.9696
α = 95%

θ0 0.0024
(0.0006)

∗∗∗ 0.0024
(0.0006)

∗∗∗ 0.0023
(0.0006)

∗∗∗ 0.0023
(0.0005)

∗∗∗ 0.0023
(0.0006)

∗∗∗

θ1 0.8763
(0.0409)

∗∗∗ 0.8797
(0.0388)

∗∗∗ 0.8835
(0.0371)

∗∗∗ 0.8822
(0.0344)

∗∗∗ 0.8852
(0.0369)

∗∗∗

θ2 0.0661
(0.0499)

0.0749
(0.0461)

0.0552
(0.0498)

0.0642
(0.0499)

0.0593
(0.0477)

θ3 0.3370
(0.1273)

∗∗∗ 0.3327
(0.1201)

∗∗∗ 0.3081
(0.1092)

∗∗∗ 0.3334
(0.1103)

∗∗∗ 0.3132
(0.1090)

∗∗∗

δ 0.0001
(0.0004)

−0.0002
(0.0004)

−0.0003
(0.0003)

−0.0002
(0.0003)

Hit-Frequency 0.0503 0.0503 0.0509 0.0496 0.0503
DQ-Stat 3.9047 3.4280 4.4762 4.8623 3.6974

DQ-Pvalue 0.9515 0.9695 0.9233 0.9002 0.9600
Notes: This table displays the results (parameter estimates followed by standard errors in
parentheses) of different CAViaR models with the dependent variable being the returns on 2-year
US Government bond in excess of the returns on S&P 500. The benchmark regression refers
to the usual CAViaR model, while the others correspond to an extended CAViaR model that
includes (as explanatory variable) a dummy variable measuring low-yield environment (it < ī).
Statistics for the test of correct specification are also displayed, including the frequencies of Hit,
the dynamic quantile (DQ) test statistics and the associated p-values. Panel A, B and C report
the results for α = 99%, α = 97.5% and α = 95%, respectively, with α the upper-quantile
risk level. All estimations are performed using weekly data ranging from January 15, 1988 to
September 29, 2017, with a total of T = 1551 observations. Significances at 1%, 5% and 10%
are emphasized by ***, ** and *, respectively.
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