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Abstract
We discuss cointegration relationships when covariance stationary observables exhibit unbalanced integration orders.
Least squares type estimates of the long run coefficient are expected to converge either to 0 or to infinity if one does
not account for the true unknown unbalance parameter. We propose a class of narrow-band weighted non-linear least
squares estimators of these two parameters and analyze its asymptotic properties. The limit distribution is shown
to be Gaussian, albeit singular, and it covers the entire stationary region in the particular case of the generalized
non-linear least squares estimator, thereby allowing for straightforward statistical inference. A Monte Carlo study
documents the good finite sample properties of our class of estimators. They are further used to provide new
perspectives on the risk-return relationship on financial stock markets. In particular, we find that the variance risk
premium estimated in an appropriately rebalanced cointegration system is a better return predictor than existing risk
premia measures.

Keywords: Unbalanced cointegration, Long memory, Stationarity, Generalized Least Squares, Nonlinear Least
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1. Introduction

Cointegration has attracted increasing attention since the seminal paper of Granger (1981) as a large

part of economic theory involves long-run equilibrium relationships between economic and/or financial

variables. Initially, most of the analyses have focused on the estimation of the long-run slope coefficient in

the I(1)/I(0) paradigm (single unit-root in observables and short memory in cointegration errors) using

OLS type regressions. There is evidence, however, that in many economic and financial applications the

variables and the residuals are fractionally integrated. In the bivariate case, if yt and xt are I(δ2), δ2 ∈ R+,

and there exists β , 0 such that

yt = βxt + ut, (1)

where ut is I(δ1) with δ2 > δ1, then yt and xt are said to be fractionally cointegrated. In particular,

if δ2 ∈ (0, 1/2), yt and xt are covariance stationary with long memory. However, the risk of spurious
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regression when estimating β is present even for such processes as long as their orders of integration

sum up to a value greater than 1/2 (see Tsay and Chung 2000). This strong result has led to a vast

literature on stationary fractional cointegration, which generally uses frequency domain analysis. Indeed,

the autocovariance function of a stationary long memory variable has a frequency domain representation

known as spectral density, fy(λ), so that

E
(

yt − E(yt)
)(

yt+h − E(yt)
)
=
∫ π

−π
eikλ fy(λ)dλ,

with λ = 2π j/n, the Fourier frequencies for j = 1, . . . , n. As in a cointegration framework interest

lies in the long-run dynamics of the process, i.e. the estimation of β, one can rely on the power law

approximation of fy(λ) in the vicinity of the origin

fy(λ) ∼ gλ−2δ2 , as λ→ 0+, (2)

where 0 < g < ∞ and “∼” means that the ratio of the left and right sides converges to 1 in the limit,

to avoid specifying the short-run dynamics explicitly. Robinson (1994a) exploits this representation to

propose a narrow-band version of the frequency domain least-squares estimator of β, also known as

NBLS. Its asymptotic properties are investigated by Robinson and Marinucci (2003) and Christensen

and Nielsen (2006). It is found that the convergence rate of β depends on the cointegration strength,

δ2 − δ1, and statistical inference based on asymptotically Gaussian distribution is valid as long as the

collective memory of xt and ut does not exceed 1/2. Otherwise, the limit distribution is non-standard and

presumably of Rosenblatt-type as shown by Robinson (1994b) for the OLS estimator. Motivated by such

observations, Robinson and Hidalgo (1997) introduce the frequency domain (full-band) weighted least

squares estimator. It is shown to encompass the frequency domain generalized least squares estimator and

to converge at conventional
√

n rate to a Gaussian limit distribution if yt is covariance stationary without

further assumptions regarding the long memory of ut. As the weight function, φ(λ), is unknown, it

can be either set to one, in which case the estimator comes down to the OLS in frequency domain,

or parametrically estimated by relying on the inverse of the spectral density of ut, fut(λ)
−1, in which

case one obtains the feasible generalized least squares estimator. Since the latter hinges on the correct

specification of fut(λ), a non-parametric estimator of the weight function was introduced by Hidalgo and

Robinson (2002). Finally, Nielsen (2005) adopts an intermediate semi-parametric approach based on the

approximation of the weight function in the neighborhood of the origin, i.e. φ(λ) = λ2δ as λ→ 0+ with δ

the weighting parameter. For δ = 0 (δ = δ̂1), the narrow-band weighted least squares (hereafter NBWLS)

of Nielsen (2005) reduces to the feasible narrow-band (generalized) least squares.

All these studies assume that yt and xt are stationary and integrated of the same order δ2. Never-
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theless, economic theory may sometimes suggest the existence of a long run equilibrium relationship

between variables, while econometric tests conclude against the equality of integration orders. Hualde

(2006) analyzes this unbalanced situation and shows that one can retrieve a nontrivial balanced hidden

cointegration by estimating an additional parameter, ξ, which characterizes the level of unbalance. He

summarizes the asymptotic behavior of the OLS and NBLS estimators of β in a nonstationary framework

by considering different balanced and unbalanced cointegrating situations. The accurate estimation of the

unbalance parameter appears to be crucial for the limit properties of the long run parameter as otherwise

the least-square-type estimates of β are not consistent. Indeed, they converge to 0 or diverge to infinity

depending on the sign of ξ (see e.g. Robinson and Marinucci 2001). In this vein, Hualde (2014) proposes a

joint nonlinear least squares (NLS) estimator of β and ξ for δ2 > 1/2 and shows that its limit distribution is

very complex and depends on a modified type II fractional Brownian motion (see Hualde 2012). Besides,

he conjectures that his time domain nonlinear estimator would be inconsistent in the stationary region

of the long memory parameters. More generally, to the best of our knowledge, no estimator specifically

designed for stationary unbalanced triangular systems exists to date.

This paper contributes to this literature by proposing a class of narrow-band weighted nonlinear least

squares (NBWNLS) estimators specifically designed for stationary unbalanced fractionally cointegrated

relationships. Note that one recovers Nielsen (2005)’s NBWLS linear estimator when the true unbalance

parameter is null. Although nonlinear, our joint estimators of β and ξ inherit the desirable asymptotic

properties of the linear weighted least squares estimator of Robinson and Hidalgo (1997). When the

weight function is set to one, the NBWNLS comes down to the the narrow-band nonlinear least squares

(NBNLS). Even if the NBNLS estimates are always feasible, they are generally asymptotically less efficient

than the NBWNLS unless the optimal weighting parameter is δ = 0. Still, one can use them to estimate

the optimal weighting parameter that further leads to the feasible narrow-band generalized nonlinear

least squares (NBGNLS) estimator. We show that, under regular assumptions, our class of estimators is

consistent and asymptotically Gaussian (over the entire stationary region for the NBGNLS). The conver-

gence rates of both β̂ and ξ̂ depend on the cointegration strength. Most importantly, that of the unbalance

estimator also depends on the true long run parameter β, while the converse does not hold. Consequently,

their joint limit distribution is singular, although both estimators are identifiable. Our class of estimators

can be seen as an extension of Robinson (1995) and Nielsen (2005) to a non-linear framework, which, in

this particular case, accounts for the possible unbalance of the system and as a complementary approach

to Hualde (2014) in the sense that it is particularly designed for stationary regions. These theoretical

findings are subsequently corroborated by Monte Carlo experiments for different levels of cointegration

strength. Our class of estimators and their main (balanced) competitors are evaluated in terms of bias,

variance and root-mean-square error criteria. The simulation results reveal the good small-sample prop-

erties of our estimators.
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To illustrate the usefulness of our approach, we revisit the risk-return relationship by drawing on

Bollerslev et al. (2013) who show that the difference between implied and realized variance measures,

i.e. the variance risk premium, is a good return predictor in the long run. As our framework accounts for

possible unbalance of integration orders of the variance measures, our approach provides more accurate

estimates of the variance risk premium, which results in better return predictability for four main stock

market indices (S&P500, Dow Jones, Russell, NASDAQ).

The rest of the paper is organized as follows. In Section 2 we introduce our narrow-band weighted

nonlinear least squares estimator, while in Section 3 we discuss its consistency and asymptotic normality.

The particular case of the feasible NBGNLS is investigated in Section 4. Section 5 presents the results of

the Monte Carlo studies. An empirical application is proposed in Section 6 and then, finally, we conclude.

All proofs are gathered in Appendix A, B and C.

2. Narrow-band weighted nonlinear least squares

Let the unbalanced version of Equation (1) be

yt = βxt(ξ) + ut (3)

where xt(ξ) = (1− L)ξ xt = ∑∞
k=0 ak(ξ)Lk, with ak(ξ) := Γ(k− ξ)(Γ(−ξ)k!)−1, xt ∼ I(δ2 + ξ), yt ∼ I(δ2),

and ut ∼ I(δ1). To allow for the presence of common stationary long-run dynamics in (3), we introduce a

regularity assumption on the memory parameters.

Assumption 1. yt, xt and yt − βxt(ξ) are covariance stationary processes integrated of orders δ2, δ2 + ξ and δ1

respectively with β , 0, and satisfying

0 ≤ δ1 < δ2 < δ2 + |ξ| < 1/2, (4)

where |ξ| < k, with k an arbitrary real number that is small compared to δ2.

Under Assumption 1, δ2 > δ1 such that β is identifiable, and β , 0 to ensure the identification of ξ.

It follows that fz(λj), the joint spectral density of zt = (ut, xt)′, exists, where λj denotes the Fourier

frequencies, λj = 2π j/n, with j = 1, . . . , m and m is the bandwidth parameter. Setting m = o(n), we avoid

a parametric treatment of fz(λ) by specifying the spectral density only locally around the zero frequency

fz(λ) ∼
(

Λ(λ)
)−1

G
(

Λ(λ)∗
)−1

, Λ(λ) = diag
(

λδ1 , λδ2+ξ
)

, as λ→ 0+ (5)

where the superscript “∗” denotes the conjugate transpose. As Nielsen (2005) we assume that G is

diagonal, thereby ruling out the possibility of any endogeneity in the vicinity of the origin but without
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imposing any further restrictions on frequencies away from the origin in contrast to Hualde (2014).

Now, let Iuu(λj) = wu(λj)wu(λj)
∗ be the periodogram of ut with wu(λj) = (2πn)−1/2 ∑n

t=1 uteitλj the

Fourier transform of ut. In view of (3), Iuu(λj) actually comes down to

Iuu(λj) = Iyy(λj)− Re
(
2βλξ Ixy(λj) + β2λ2ξ Ixx(λj)

)
.

Note that the presence of λ
ξ
j corrects for the fact that the long memory parameters of yt and xt are unbal-

anced. In this context, we identify two natural ways to estimate the long-run and unbalance parameters

and show that they are particular cases of a more general class of NBWNLS estimators. A first approach

to estimate θ = (β, ξ)′ consists in the NBNLS method,

θ̂(0) = arg min
θ∈Θ

Lm(θ), where Lm(θ) = m−1
m

∑
j=1

Iuu(λj) (6)

and Θ = Θβ ×Θξ is a compact subset of R2. However, a more efficient alternative appears naturally from

the local Whittle approximation to the likelihood associated with Equation (3),

Qm(θ, Guu) = m−1
m

∑
j=1

(
log fu(λj) +

Iuu(λj)

fu(λj)

)
, (7)

where Guu ∈ ΘGuu , the set of real positive numbers. The objective function Qm is minimized over ΘGuu by

Ĝuu(θ; δ1) = Re
(

m−1
m

∑
j=1

λ2δ1 Iuu(λj)
)

, (8)

where λ2δ1 arises as an implicit weight function. Substituting (8) in (7) and solving for θ, we obtain the

local Whittle quasi maximum likelihood estimator (QMLE) of β and ξ,

θ̂(δ1) = arg min
θ∈Θ

Rm(θ), (9)

where Rm(θ) = log Ĝuu(θ; δ1) is the concentrated likelihood function. Notice that θ̂(δ1) is implicitly a

NBGNLS estimator and in the sequel we will retain this label for the QMLE so as to maintain a clear

connection with the NBNLS estimator in (6). Finally, we relax the definition of the weighting parameter

and introduce the general class of NBWNLS estimators

θ̂(δ) = arg min
θ∈Θ

Wm(θ) with Wm(θ) = log Ĝuu(θ; δ). (10)
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Said otherwise, the NBNLS and NBGNLS estimators are particular cases of the NBWNLS estimator that

correspond to δ = 0 (i.e. no weight) and δ = δ1, respectively.

3. Limit theory

In this section we present the limit theory of the general class of infeasible NBWNLS estimators θ̂(δ)

and discuss the particularities of the NBNLS and NBGNLS estimators when necessary. As Nielsen

(2005) and Christensen and Nielsen (2006), we work under several assumptions commonly used in this

literature.

Assumption 2. The elements of the spectral density fz(λ) satisfy

| f ab
z (λ)− G0

abλ−ϑ0a−ϑ0b | = O(λα−ϑ0a−ϑ0b), a, b = {1, 2},

as λ → 0+ and for some α ∈ (0, 2] with ϑ0 = (δ01, δ02 + ξ0)
′, matrix G0 finite, real, symmetric and where

G0
ab = G0

ba = 0.

Assumption 2 imposes a smoothness condition on the spectral density matrix fz(λ) and specifies the

properties of G0, which imply a zero-coherence condition that applies in the vicinity of the origin. As

argued in Nielsen (2005), G0
ab = G0

ba = 0 is a less restrictive assumption than the traditional orthogonality

condition encountered in linear (see e.g. Robinson and Hidalgo 1997) and non-linear (see Hualde 2014)

least squares theory. In particular, it allows for the presence of correlation in the errors as we move away

from the origin, i.e. they can share a common short- and/or medium-term dynamics.

Assumption 3. The sequence zt = (ut, xt) is a linear process defined as

zt − E(zt) = A(L)εt =
∞

∑
j=0

Ajεt−j,
∞

∑
j=0
||Aj||2 < ∞,

with ||.|| the Euclidean norm, so that Aj is a causal square summable matrix filter. Moreover, εt satisfies, almost

surely, E(εt|Ft−1) = 0 and E(εtε
′
t|Ft−1) = I2 and we further impose that the matrices µ3 = E(εt ⊗ εtε

′
t|Ft−1)

and µ4 = E(εtεt ⊗ εtε
′
t|Ft−1) are non-stochastic, finite and do not depend on t, with Ft a σ-field generated by

{εs, s ≤ t}.

Assumption 4. In a neighborhood of the origin, A(λ) = ∑∞
j=0 Ajeijλ is differentiable and

∂

∂λ
Aa�(λ) = O(λ−1||Aa�(λ)||) as λ→ 0+

where Aa�(λ) is the a-th row of A(λ).
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Assumptions 3 and 4 are standard in this literature since Robinson (1995). The former imposes uniformly

square integrable martingale-difference innovations with constant conditional variance, while the latter

implies ∂Aa�(λ)/∂λ = O(λ−ϑ0a−1) by the Cauchy inequality

||Aa�(λ)|| ≤ (Aa�(λ)A∗a�(λ))
1/2 = (2π faa(λ))

1/2.

Thereby, under Assumptions 3 and 4 we have fz(λ) = (2π)−1 A(λ)A(λ)∗.

Assumption 5. As n→ ∞, the bandwidth parameter m = o(n) and α ∈ (0, 2] jointly satisfy

1
m

+
m1+2α(log m)2

n2α
→ 0.

The bandwidth expansion rate is restricted by Assumption 5 as one needs m to tend to ∞ as n → ∞

but at a slower rate so as to remain in a neighborhood of the origin where the behaviour of the spectral

density is of interest. Theoretically, the upper bound on the bandwidth parameter m is n4/5 (i.e. α = 2)

but in practice a too small bandwidth increases the variance of the estimator while a too large m generally

increases the bias.

Assumption 6. The weight function φ(λ) = λ2δ as λ→ 0+ and the weighting parameter δ satisfies

1
2
(
δ2 + δ1 − 1/2

)
< δ ≤ δ1. (11)

Assumption 6 restricts the weighting parameter as a function of the long memory parameters as discussed

in Nielsen (2005). When δ1 + δ2 < 1/2, δ = 0 is covered by our theory and consequently the NBWNLS

estimator is equivalent to the NBNLS one and should be uniformly Gaussian over the weighting param-

eter space. When δ = δ1, this assumption restricts the cointegration strength to δ2 − δ1 < 1/2, which

is consistent with Assumption 1. Under slightly weaker versions of the assumptions above, which are

generally stated in the literature, we establish the consistency of our NBWNLS class of estimators.

Theorem 1. Let Assumptions (1)-(5) be satisfied and assume 0 ≤ δ ≤ δ1. Then, as n→ ∞,

λ
δ01−δ02
m

 1

log λm

′β̂(δ) − β0

ξ̂(δ) − ξ0

 p−→

0

0


where θ̂(δ) = (β̂(δ), ξ̂(δ))′.

In addition, the central limit theorem for β̂(δ) and ξ̂(δ) is stated below.
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Theorem 2. Under Assumptions (1)-(6), as n→ ∞,

√
mλ

δ01−δ02
m

 1

log λm

′β̂(δ) − β0

ξ̂(δ) − ξ0

 d−→

 1

β−1
0

N (0, E−1FE−1).

where θ̂(δ) = (β̂(δ), ξ̂(δ))′ and

E =
2Gxx

Guu(1− 2δ02 + 2δ)
,

F =
2Gxx

Guu(1 + 4δ− 2δ01 − 2δ02)
.

Sketch of proof. The proof of Theorem 2 relies on Theorem 1 and the usual Taylor series expansion for

extremum estimators

∂Wm(θ)

∂θ

∣∣∣
θ̂
=

∂Wm(θ)

∂θ

∣∣∣
θ0
+

∂2Wm(θ)

∂θ∂θ′

∣∣∣
θ̄
(θ̂ − θ0) = 0,

where ||θ̄ − θ0|| ≤ ||θ̂ − θ0||. Since the joint limit distribution of β̂ and ξ̂ is singular, it is the same up to a

constant term β−1
0 . Focusing on β, one can show that

√
mλ

δ01−δ02
m (β̂− β0) =

(
λ

2(δ02−δ)
m

∂2Wm(θ)

∂β∂β

∣∣∣
θ̄

)−1(√
mλ

δ01+δ02−2δ
m

∂Wm(θ)

∂β

∣∣∣
θ0

)

has the stated distribution,
√

mλδ01−δ02(β̂ − β0)
d−→N (0, E−1FE−1), if by application of Cramer-Wold

theorem

√
mλ

δ01+δ02−2δ
m

∂Wm(θ)

∂β

∣∣∣
θ0

d−→N (0, F)

and

λ2δ02−2δ
m

∂2Wm(θ)

∂β∂β

∣∣∣
θ̄

p−→ E.

A similar reasoning allows one to show that
√

mλ
δ01−δ02
m log(λm)−1(ξ̂ − ξ0)

d−→ β−1
0 N (0, E−1FE−1). The

complete proofs of Theorems 1 and 2 are given in Appendix A and B respectively.

Unsurprisingly, we recover the standard convergence rate
√

mλ
δ01−δ02
m for β̂(δ) since its limit theory

does not depend on ξ0 (see e.g. Robinson and Marinucci 2003, Nielsen 2005, Christensen and Nielsen

2006). Besides, its convergence rate approaches
√

n when the cointegration strength is close to 1/2 and it

remains higher than the standard semi-parametric
√

m rate in all other cases. The limit theory of ξ̂(δ) is
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however non-standard. It always converges faster than β̂(δ) and can be superconsistent when δ02 − δ01 is

close to 1/2. This is a peculiar result for memory parameters in stationary semi-parametric frameworks

where the maximum achievable rate is
√

m and even for parametric frameworks in time and frequency

domains (where the maximum rate is
√

n). Note also that the limit distribution of ξ̂(δ) depends on β0.

Consequently, although Gaussian and hence simple to use for inference, the joint limit distribution of β̂(δ)

and ξ̂(δ) is singular. In contrast, the limit distribution of Hualde (2014)’s estimator, which is also singular,

involves a modified version of the type II fractional Brownian motion, which makes it hardly suitable for

inference.

When Assumption 6 holds, one can compare the relative asymptotic efficiency of θ̂(0) and θ̂(δ). Our

NBWNLS estimators are always asymptotically more efficient than the NBNLS ones except for the case

δ1 = 0 as their variances become identical. The maximum gain in efficiency is actually reached when

δ = δ1, i.e. for the NBGNLS estimator. In this case, the asymptotic relative efficiency of the weighted and

unweighted estimators comes down to

V(θ̂(0))

V(θ̂(δ1))
=

(1− 2δ2)
2

(1− 2δ2)2 − 4δ2
1

.

A second advantage of the NBGNLS estimator over its two competitors is that simple inference is possible

for the whole stationary parameter space (see Assumption 6).

4. Feasible narrow-band generalized nonlinear least squares

The main issue with the NBWNLS approach is that θ̂(δ) is infeasible in practice since δ is unknown.

Feasible estimates δ̂ are available without knowledge of the memory parameters, e.g. based on residuals

from (3), but they have to fulfill Assumption 6 as well as the following requirement

Assumption 7. As n→ ∞, the estimate of the weighting parameter δ satisfies

(log n)(δ̂− δ)
p−→ 0.

In particular, in view of Theorem 2, the most asymptotically efficient feasible NBWNLS estimator

is θ̂(δ̂1) provided that one can consistently estimate the weighting parameter δ1 such that Assumption

7 is fulfilled. In the balanced cointegration framework, Nielsen (2005) relies on results from Velasco

(2003) to state that δ̂1 − δ1 = O(m−1/2) for carefully chosen m and hence Assumption 7 holds. But

unlike Nielsen (2005), in order to estimate δ1 in our unbalanced cointegration framework one requires

consistent estimators not only for β but also for ξ. For this reason, we propose to use in a first step the

NBNLS estimator θ̂(0), whose consistency is proven in Appendix A as a Corollary of Theorem 1.
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Corollary 1. Let Assumptions (1)-(5) be satisfied and assume δ = 0. Then, as n→ ∞,

λδ1−δ2
m

 1

log λm

′β̂(0) − β0

ξ̂(0) − ξ0

 p−→

0

0


where θ̂(0) = (β̂(0), ξ̂(0))′.

Since ξ̂(0) converges faster than β̂(0), it is innocuous for δ̂1’s rate of convergence. Consequently, for

carefully chosen m, Assumption 7 will always be satisfied if one uses the NBNLS residuals to estimate

semi-parametrically, in a second step, δ1 in an unbalanced framework. The asymptotic distribution of the

feasible NBWNLS estimator is given in Theorem 3.

Theorem 3. Under Assumptions 1-6 and 7, as n → ∞, Theorem 2 holds when the weighting parameter δ is

replaced by δ̂1.

For a proof of Theorem 3 see Appendix C. It indicates that the error arising from the estimation of the

weighting parameter does not impact the limit distribution of the parameters of interest stated in Theorem

2.

5. Monte Carlo experiments

This section discusses the finite sample performance of the NBWNLS class of estimators by means of

Monte Carlo simulations. We generate a fractionally cointegrated system according to (3) with β = 1,

ξ = 0.1, ut ∼ N (0, 1), and analyze three levels of cointegration strength ν0 = {0.35, 0.15, 0.05} where δ2 is

fixed to 0.35. We generate 10000 replications for sample sizes n = {256, 512, 1024} and fix the bandwidth

parameter to m = {[n0.6], [n0.75]}. Besides, in the case of the long run parameter, β, we compare our

three specifications (NBNLS, NBGNLS and NBWNLS) with two misspecified competitors, i.e. the NBLS

estimator of Robinson (1994a) and the NBGLS estimator of Nielsen (2005). The NBGNLS estimator

involves a weighting parameter δ̂1 obtained in two steps. First, one gathers the residuals from the NBNLS

estimation of β and then estimates δ1 by a simple local Whittle procedure à la Robinson (1995).2 The same

bandwidth is used for the entire estimation procedure. At the same time, for the NBWNLS estimator the

weighting parameter is arbitrarily fixed to δ1/2.

Tables 1 and 2 report the bias, variance and root-mean-square error (RMSE) for all the estimators under

analysis. First, we discuss the estimates of β. Notice that in this unbalanced setup our NBWNLS class

of estimators performs better than the existing balanced estimators. The NBLS and NBGLS estimators

2Similarly, the NBGLS estimator uses NBLS residuals in its first step.
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Table 1: Simulation results for m = bn0.6c, β = 1 and ξ = 0.1

m = [n0.6] β̂LS βGLS β̂(0) ξ̂(0) β̂(δ̂1) ξ̂(δ̂1) β̂(δ) ξ̂(δ) β̂(δ̆) ξ̂(δ̆)

n = 256
ν0 = 0.35

Bias -0.207 -0.199 0.002 0.008 0.003 0.009 0.002 0.008 0.003 0.009
Variance 0.005 0.006 0.031 0.007 0.032 0.008 0.031 0.007 0.031 0.008
RMSE 0.219 0.213 0.175 0.086 0.179 0.089 0.175 0.086 0.177 0.088

ν0 = 0.15

Bias -0.207 -0.175 0.014 0.013 0.022 0.017 0.017 0.014 0.024 0.018
Variance 0.012 0.01 0.059 0.021 0.121 0.023 0.085 0.022 0.128 0.024
RMSE 0.233 0.202 0.244 0.146 0.349 0.152 0.293 0.149 0.358 0.156

ν0 = 0.05

Bias -0.205 -0.161 0.019 0.011 0.027 0.02 0.019 0.014 0.029 0.021
Variance 0.02 0.014 0.094 0.043 0.079 0.034 0.078 0.035 0.090 0.038
RMSE 0.25 0.201 0.308 0.207 0.283 0.187 0.28 0.187 0.301 0.197

n = 512
ν0 = 0.35

Bias -0.241 -0.229 -0.004 0.005 -0.003 0.006 -0.004 0.005 -0.003 0.006
Variance 0.003 0.003 0.018 0.003 0.019 0.003 0.018 0.003 0.018 0.003
RMSE 0.247 0.235 0.134 0.056 0.136 0.057 0.134 0.056 0.136 0.057

ν0 = 0.15

Bias -0.242 -0.202 0.008 0.009 0.009 0.01 0.008 0.009 0.010 0.010
Variance 0.007 0.006 0.042 0.01 0.037 0.009 0.037 0.009 0.038 0.009
RMSE 0.256 0.215 0.205 0.102 0.192 0.095 0.194 0.096 0.196 0.097

ν0 = 0.05

Bias -0.241 -0.186 0.016 0.01 0.017 0.013 0.014 0.011 0.019 0.014
Variance 0.013 0.008 0.073 0.021 0.053 0.016 0.055 0.016 0.055 0.016
RMSE 0.267 0.207 0.27 0.147 0.231 0.125 0.235 0.129 0.235 0.128

n = 1024
ν0 = 0.35

Bias -0.274 -0.254 0 0.006 0 0.006 0 0.006 0.000 0.006
Variance 0.002 0.002 0.01 0.001 0.011 0.001 0.01 0.001 0.011 0.001
RMSE 0.277 0.257 0.102 0.037 0.103 0.037 0.102 0.037 0.103 0.037

ν0 = 0.15

Bias -0.274 -0.227 0.006 0.006 0.006 0.007 0.005 0.007 0.008 0.008
Variance 0.004 0.003 0.031 0.006 0.026 0.005 0.027 0.005 0.027 0.005
RMSE 0.282 0.234 0.176 0.075 0.162 0.069 0.164 0.07 0.164 0.070

ν0 = 0.05

Bias -0.274 -0.21 0.018 0.008 0.014 0.009 0.013 0.008 0.017 0.010
Variance 0.009 0.005 0.063 0.013 0.041 0.009 0.044 0.01 0.043 0.009
RMSE 0.29 0.221 0.252 0.114 0.203 0.094 0.211 0.098 0.208 0.096

Note: The results are based on I = 10000 replications. β̂LS and β̂GLS stand for the NBLS estimator of Robinson
(1994a) and the NBGLS estimator of Nielsen (2005), respectively. The NBWNLS estimators are obtained by

fixing the weighting parameter to δ1/2. Besides, ν0 = 0.35 corresponds to δ1 = 0 and in this case the NBWNLS
estimators come down to the NBNLS ones (indicated by ‘-’).
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Table 2: Simulation results for m = bn0.75c, β = 1 and ξ = 0.1

m = [n0.6] β̂LS βGLS β̂(0) ξ̂(0) β̂(δ̂1) ξ̂(δ̂1) β̂(δ) ξ̂(δ) β̂(δ̆) ξ̂(δ̆)

n = 256
ν0 = 0.35

Bias -0.164 -0.152 -0.012 0.006 -0.012 0.006 -0.012 0.006 -0.012 0.006
Variance 0.004 0.004 0.009 0.003 0.009 0.003 0.009 0.003 0.009 0.003
RMSE 0.176 0.166 0.094 0.056 0.095 0.057 0.094 0.056 0.095 0.057

ν0 = 0.15

Bias -0.163 -0.111 -0.014 0.007 -0.013 0.007 -0.013 0.007 -0.012 0.008
Variance 0.008 0.006 0.011 0.008 0.01 0.007 0.01 0.007 0.010 0.007
RMSE 0.186 0.136 0.106 0.091 0.099 0.083 0.1 0.084 0.099 0.085

ν0 = 0.05

Bias -0.162 -0.09 -0.018 0.007 -0.013 0.009 -0.014 0.008 -0.012 0.011
Variance 0.013 0.007 0.014 0.015 0.01 0.01 0.011 0.011 0.010 0.010
RMSE 0.198 0.124 0.12 0.122 0.101 0.099 0.104 0.104 0.101 0.102

n = 512
ν0 = 0.35

Bias -0.195 -0.177 -0.009 0.006 -0.009 0.006 -0.009 0.006 -0.009 0.006
Variance 0.002 0.002 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001
RMSE 0.201 0.184 0.072 0.037 0.073 0.037 0.072 0.037 0.073 0.037

ν0 = 0.15

Bias -0.194 -0.13 -0.01 0.006 -0.01 0.006 -0.01 0.006 -0.009 0.006
Variance 0.005 0.004 0.008 0.004 0.007 0.003 0.007 0.003 0.007 0.003
RMSE 0.207 0.144 0.089 0.064 0.082 0.057 0.083 0.059 0.083 0.059

ν0 = 0.05

Bias -0.196 -0.108 -0.01 0.009 -0.009 0.008 -0.009 0.008 -0.009 0.008
Variance 0.009 0.004 0.011 0.008 0.007 0.005 0.008 0.006 0.007 0.005
RMSE 0.217 0.125 0.106 0.091 0.085 0.071 0.088 0.076 0.086 0.074

n = 1024
ν0 = 0.35

Bias -0.224 -0.197 -0.007 0.005 -0.007 0.005 -0.007 0.005 -0.007 0.005
Variance 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001
RMSE 0.228 0.201 0.055 0.025 0.056 0.025 0.055 0.025 0.056 0.025

ν0 = 0.15

Bias -0.223 -0.148 -0.007 0.006 -0.007 0.006 -0.007 0.006 -0.007 0.006
Variance 0.003 0.002 0.006 0.002 0.004 0.002 0.005 0.002 0.004 0.002
RMSE 0.231 0.154 0.075 0.048 0.066 0.041 0.067 0.043 0.067 0.043

ν0 = 0.05

Bias -0.224 -0.124 -0.008 0.007 -0.007 0.006 -0.008 0.006 -0.007 0.006
Variance 0.006 0.002 0.009 0.005 0.005 0.003 0.006 0.003 0.005 0.003
RMSE 0.237 0.133 0.096 0.072 0.071 0.053 0.075 0.058 0.072 0.055

Note: The results are based on I = 10000 replications. β̂LS and β̂GLS stand for the NBLS estimator of Robinson
(1994a) and the NBGLS estimator of Nielsen (2005), respectively. The NBWNLS estimators are obtained by

fixing the weighting parameter to δ1/2. Besides, ν0 = 0.35 corresponds to δ1 = 0 and in this case the NBWNLS
estimators come down to the NBNLS ones (indicated by ‘-’).
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assume that ξ = 0 and exhibit a strong negative bias. This follows from their limit behaviour in an

unbalanced framework, where the bias of β̂GLS is of order Op(λ
ξ0
m ) as m→ ∞ since

β̂GLS = β
∑m

j λ
2δ01+ξ0
j Ixx(λj)

∑m
j λ

2δ01
j Ixx(λj)

+ Op(λ
ν0+ξ0
m ) ∼ Op(λ

ξ0
m ) + Op(λ

ν0+ξ0
m ). (12)

By a similar reasoning and setting δ1 to zero in the previous equation one can show that the asymptotic

bias of β̂LS is of the same order. The finite-sample bias of these estimators is increasing in the sample

size and consequently so is the RMSE. By contrast, our estimators exhibit very small finite sample bias.

It diminishes with n and so does the RMSE. At the same time, as expected given our limit theory, the

variance of all estimators increases when the cointegration strength reduces and diminishes with the

sample size.

Focusing on our three estimators, one notices that for ν0 = 0.35, i.e. δ1 = 0, there is almost no

difference between them regardless of the sample size. As ν0 decreases, the NBGNLS and NBWNLS

estimators become more efficient than the NBNLS one. The performance of these two estimators also

improves relatively to that of the NBNLS when n increases. In particular, the NBGNLS estimator appears

to be slightly more efficient than the NBWNLS estimator for large sample sizes and low cointegration

strength consistently with the asymptotic theory.

We now focus on the estimates of ξ. All three estimators exhibit similar minor bias levels but the

variances of ξ̂(δ̂1) and ξ(δ) are smaller relatively to that of ξ(0). The variance of the unbalance parameter

estimates is always much lower than that of the corresponding long-run parameter estimates. As expected,

this finite-sample finding goes along the lines of the rates of convergence identified in the asymptotic

theory (see Theorem 2). All results are robust to the choice of the bandwidth parameter.

6. Empirical illustration

There is a huge literature in finance that focuses on return predictability. On one hand, multiyear

predictability patterns have been studied in association with the default spread, the P/E ratio and the

consumption-wealth ratio. But there is extensive evidence that the predictive power of such traditional

indicators has been decreasing since the 1990s (see e.g. Fama and French 1988, Campbell and Shiller 1988,

Lettau and Ludvigson 2001). On the other hand, the role of stock market volatility in return forecasting,

also known as volatility feedback effect, has been deeply investigated in the existing literature using both

conditional and realized measures to proxy risk (see Ghysels et al. 2005, and the references therein). Mer-

ton’s Intertemporal CAPM suggests that market’s conditional variance should have a positive impact on

the conditional expected excess return. Indeed, if volatility is priced, an anticipated increase in volatility

would raise the required rate of return, in turn necessitating an immediate stock-price decline to allow for
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higher future returns. Existing empirical results are however often inconclusive and sometimes conflicting

(see Nelson 1991, Campbell and Hentschel 1992, Bali and Peng 2006, among others).

In this context, recent studies have theoretically shown that the variance risk premium, i.e. the dif-

ference between the implied and realized variance series, should be a useful return predictor (see e.g.

Bollerslev et al. 2009, Drechsler and Yaron 2011, Bollerslev et al. 2012). Interestingly, the long-run risk

model developed by Bollerslev et al. (2012) accounts for the persistent nature of the unobserved inte-

grated variance, IVt. At the same time, the variance swap rate, mirroring the definition of the squared

VIX volatility index, is defined as the risk-neutralized expectation of IVt and inherits the long memory

property of volatility. A direct implication of this fractionally integrated framework is the presence of

cointegration between VIX2
t and IVt, with the variance risk premium, VRPt = VIX2

t − IVt, exhibiting less

memory than the volatility series.3 VRPt is expected to increase if uncertainty about volatility increases.

Hence, the model theoretically predicts that the cross-correlations between the variance risk premium and

future returns should be positive, reflecting the premium for bearing volatility risk. These insights are

corroborated by empirical evidence on the SP500 index mainly. Indeed, Bollerslev et al. (2013) exploit this

long-run relationship to extract the variance risk premium and show that it results in nontrivial return

predictability over within-year horizons. Further empirical evidence that variance risk premium results

in strong return predictability is documented in Bollerslev et al. (2014; 2015).

The theoretical and empirical results aforementioned hinge on model-free measures of integrated and

implied (unobserved) variances. But depending on the accuracy of these measurements, the long-run

dynamics of the two variance proxies might spuriously diverge. Indeed, empirical differences in the

integration orders of the volatility series inherent to the finite sample context may occur and pollute the

estimate of the long-run relationship. We therefore conjecture that our general unbalanced cointegration

framework is more suitable than existing ones as it implicitly avoids such biases that are likely to appear

when estimating the variance risk premium.

To estimate the risk-return relation we essentially follow Bollerslev et al. (2013) but rely on data

sampled at monthly frequency. Our data set runs from January 2014 to March 2019 and consists in

monthly realized measures of volatility for four stock market indexes, S&P500, Dow Jones 30, Russell

2000 and NASDAQ 100. For each index, the realized variance (RV), the realized kernel (RK), the median

realized variance (medRV) and the bipower variation (BV) are used as variance proxies to control for

the presence of microstructure noise or jumps that might affect the results.4 As we construct a forward-

looking measure of VRPt, we align beginning of month VIX CBOE indexes, intended to represent a

30-days target framework for expected variance, with the monthly realized measures.5

3The fast exponential decay in the autocorrelation structure of VRPt and the slow hyperbolic decay in the autocorrelations of
volatility series are consistent with the empirical findings of Bandi and Perron (2006) and Nielsen (2007) among others.

4All realized measures are based on 5-minutes intraday prices and collected from Oxford-Man Institute’s realized library website.
5All VIX data are collected from the CBOE website http://www.cboe.com/.
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More appropriate for Whittle estimation and linear regressions, the log transforms vix2
t = log(VIX2

t )

and rmt = log( ÎVt) are used in the following, with ÎV standing for any of the four realized measures of

variance. Figure 1 reports the vix2
t versus two rmt measures, RV and BV, in the S&P500 case. A visual

inspection clearly reveals that all series exhibit long term swings and similarities in their dynamics. A

local Whittle estimation of the long memory parameters confirms that all series are fractionally integrated

with estimates confined in the stationary region between 0.3 and 0.5. The bandwidth retained for the local

Whittle estimator (and all narrow-band estimations hereafter) by using the informal “ optimal” bandwidth

selection procedure in Robinson (2008b) is m = bn0.6c where n = 253 for all stock market indexes. This

intermediate bandwidth should ensure that our estimates are not contaminated by high frequencies and

that they exhibit a reasonable finite sample variance. These results suggest that a long-run relationship

may exist between the implied and the realized volatility in the form of rmt = βvix2
t (ξ) + ut. In contrast

to Bollerslev et al. (2013), our general unbalanced fractional cointegration framework allows for (possibly

small) differences between vix2
t and rmt long memory parameters. We also implement the (possibly

misspecified) NBLS and GNBLS estimators of β. The results are reported in Table 3.

All the estimates of the long-run parameter β are statistically significant apart from the cases where

Assumption 6 is violated and hence the standard errors are not available. Our NBNLS and NBGNLS es-

timates are quite similar, with values close to one, as expected from economic theory. However, the NBLS

and NBGLS estimates are systematically lower. This finding appears to be a consequence of the integra-

tion order unbalance between the two types of variance proxy. Indeed, the estimates of the unbalance

parameter ξ are always positive and significant, indicating that an unbalanced cointegration framework

is more appropriate. In line with equation (12), we can hence conjecture that even a quite small unbal-

ance (estimated to be around 0.1 here) may have a large impact on the long-run parameter β (a drop of

about 0.15). Besides, the integration order of the long-run regression errors does not seem to be statisti-

cally different from zero, supporting the fact that vrpt = βvix2
t (ξ)− rmt exhibits less persistence than the

(rebalanced) variance series.

We can now express the risk-return relationship in regression form as

rt+1 = α0 + α1vrpt + ut+1,

where rt+1 is the one-step-ahead monthly stock market log-return. As one might expect the association

between risk and return to be more of a long-run than a short-run phenomenon, we draw on Bollerslev et

al. (2013) and focus on the long-run component of each variable. Using time-domain band-pass filters, we

extract from the observed series the specific low-frequency region up to the Fourier frequency λ = 0.65,

which corresponds to the chosen bandwidth and equivalently to a periodicity of about 9 months. For this,

we set the truncation parameter to k = 12, resulting in a loss of one year of observations at both ends of
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the sample. Each filtered series is given by ylow
t =

k
∑

i=−k
aiLiyt, where

ai =


sin(iλ)

iπ −
(

λ
π + 2 ∑k

j=1
sin(jλ)

jπ − 1
)
(2k + 1)−1, i = ±1, . . . ,±k,

1−∑−1
h=−k ah −∑k

h=1 ah, i = 0.

Figure 2 displays the low-pass filter returns and variance risk premium based on the realized kernel vari-

ance proxy for S&P500. This illustration emphasizes the comovement between the series and motivates

the following low-frequency regression analysis.

The slope estimates of the regressions fitted with low-pass filter variables are reported in Table 4. The

upper panel shows that the long-run component of the variance risk premia estimated in the unbalanced

fractional cointegration (UFC) framework explains a nontrivial fraction of the low-pass returns at an

intermediate 9.5 months horizon for all realized measures. More importantly, the slope parameters are

positive and consistent with the trade-off between returns and variance risk premium as documented

in Bollerslev et al. (2012; 2013; 2014). α̂1 estimates are reported in Figure 3 for the Fourier frequency

λ ranging in [0.01, 0.9] in the spirit of a robustness analysis. The predictive power of the UFC variance

risk premia is stable and reaches its maximum when the low-pass filter is defined in terms of frequencies

between 0.6 and 0.8. This covers a horizon of 8 to 10.5 months and supports the usefulness of our approach

for return prediction at long horizons where existing literature fails to find significant predictive power.

The middle panel reports the slope parameters in the case where the variance risk premia are com-

puted following the naive approach in Bollerslev et al. (2013), i.e. imposing β = 1 and ξ = 0. Neglecting

the possible unbalance of the system, their estimates of the long run parameter are close to unity and

hence vrpt = vix2
t − rmt. The low-pass filtered naive vrpt seems, however, less informative for the returns

of the four indices in our monthly sample (α̂1 estimates are systematically lower than those estimated

with the UFC approach). In contrast, the results reported in the lower part of the table correspond to

more conventional regressors, i.e. the low-pass variance risk measures. The estimates are now negative

and rarely significant, in line with existing literature on the risk-return puzzle. All in all, the long-run

component of variance risk premia estimated in an unbalanced framework seems to carry more useful

information about future returns than competing risk proxies.

Conclusion

This paper introduces a class of narrow band weighted non-linear least squares estimators that al-

low for the joint estimation of the long run and unbalance parameters in a bivariate unbalanced frac-

tionally cointegrated equation. Our estimates are shown to be asymptotically Gaussian with singular

distributional properties. Moreover, they exhibit faster than regular
√

m rate of convergence. A partic-
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ular estimator of our class is the feasible narrow-band generalized nonlinear least squares. It offers the

same appealing limit properties over the whole stationary region, thereby allowing for straightforward

statistical inference. In contrast, existing balanced estimators are inconsistent in presence of unbalance

in the integration orders of the observables. This supports the need for a general to specific approach

to cointegration as the balanced framework is a specific case of the unbalanced one. Our contribution

meets this challenge. By means of Monte Carlo simulations we further show the good finite sample prop-

erties of the proposed estimators. Finally, they are used to provide new perspectives on the risk-return

relationship on financial stock markets. In particular, we find that the variance risk premium estimated

in an appropriately balanced cointegration system is a better return predictor than existing risk premia

measures.

Figure 1: S&P500 VIX (solid lines) and realized volatility measures (dashed lines, secondary axis)
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Figure 2: S&P500 rlow
t (solid line) and vrplow

t,RK (dotted line, secondary axis)
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Figure 3: S&P500 slope parameters for ω ranging in [0.01, 0.9]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

vrpRV
low vrpRK

low vrpmedRV
low vrpBV

low

18



Table 3: Fractional cointegration estimates with m = bn0.6c

β̂LS β̂GLS β̂(0) ξ̂(0) β̂(δ̂1) ξ̂(δ̂1) δ̂1 δ̂2

S&P 500

RV 0.875 0.890 1.061 0.099 1.053 0.095 0.051 0.362
- (0.022) (0.016) (0.037) (0.012) (0.028) (0.096) (0.096)

RK 0.888 0.899 1.065 0.093 1.061 0.091 0.031 0.363
- (0.019) (0.012) (0.028) (0.010) (0.025) (0.096) (0.096)

medRV 0.873 0.879 1.050 0.095 1.060 0.100 -0.087 0.344
- (0.014) (0.006) (0.014) (0.003) (0.007) (0.096) (0.096)

BV 0.876 0.880 1.030 0.083 1.036 0.086 -0.079 0.346
- (0.010) (0.005) (0.012) (0.002) (0.004) (0.096) (0.096)

Dow Jones

RV 0.853 0.863 0.967 0.064 0.951 0.055 0.076 0.396
- (0.027) (0.031) (0.067) (0.012) (0.026) (0.096) (0.096)

RK 0.865 0.874 0.968 0.057 0.948 0.046 0.091 0.407
- (0.027) - - (0.012) (0.026) (0.096) (0.096)

medRV 0.847 0.852 0.985 0.077 0.993 0.082 -0.043 0.358
- (0.019) (0.008) (0.017) (0.007) (0.017) (0.096) (0.096)

BV 0.850 0.854 0.960 0.062 0.965 0.065 -0.026 0.371
- (0.017) (0.007) (0.015) (0.007) (0.015) (0.096) (0.096)

Russell

RV 0.817 0.831 0.987 0.105 0.967 0.092 0.080 0.298
- (0.035) (0.026) (0.057) (0.020) (0.043) (0.096) (0.096)

RK 0.851 0.855 0.957 0.064 0.962 0.067 -0.027 0.319
(0.031) (0.024) (0.011) (0.023) (0.011) (0.023) (0.096) (0.096)

medRV 0.793 0.819 1.031 0.147 1.015 0.137 0.073 0.260
- (0.044) (0.031) (0.071) (0.026) (0.058) (0.096) (0.096)

BV 0.823 0.833 0.984 0.098 0.987 0.100 -0.013 0.285
- (0.031) (0.015) (0.033) (0.015) (0.034) (0.096) (0.096)

NASDAQ

RV 0.856 0.856 0.991 0.076 1.009 0.086 -0.123 0.299
(0.015) (0.014) (0.007) (0.015) (0.005) (0.011) (0.096) (0.096)

RK 0.871 0.872 1.002 0.073 1.015 0.080 -0.095 0.310
(0.016) (0.016) (0.007) (0.016) (0.006) (0.014) (0.096) (0.096)

medRV 0.838 0.848 1.008 0.097 1.018 0.102 -0.043 0.305
- (0.027) (0.012) (0.027) (0.012) (0.028) (0.096) (0.096)

BV 0.848 0.847 0.994 0.083 1.016 0.095 -0.137 0.290
(0.015) (0.015) (0.007) (0.016) (0.004) (0.010) (0.096) (0.096)

Note: This table reports the balanced and unbalanced fractional cointegration estimates for the long run
equation rmt = βvix2

t (ξ) + ut, where rmt stands for realized measures of variance. β̂LS and β̂GLS are the
NBLS estimator of Robinson (1994a) and the NBGLS estimator of Nielsen (2005), respectively. β̂(0) and ξ̂(0)

correspond to the NBNLS estimator, while β̂(δ̂1) and ξ̂(δ̂1) correspond to the NBGNLS estimator. Standard
errors are reported in parentheses.
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Table 4: Risk-return regressions

S&P 500 Russell Dow Jones NASDAQ

UFC approach: vrpt = βvix2
t (ξ)− rmt

vrplow
t,RV 0.315 0.302 0.324 0.347

(0.101) (0.077) (0.063) (0.122)
vrplow

t,RK 0.327 0.291 0.415 0.356
(0.108) (0.075) (0.057) (0.130)

vrplow
t,medRV 0.342 0.300 0.278 0.290

(0.101) (0.077) (0.052) (0.102)
vrplow

t,BV 0.384 0.322 0.354 0.345
(0.115) (0.081) (0.058) (0.119)

Naive approach: vrpt = vix2
t − rmt

vrplow
t,RV 0.253 0.206 0.266 0.280

(0.079) (0.067) (0.046) (0.083)
vrplow

t,RK 0.274 0.209 0.340 0.295
(0.084) (0.068) (0.042) (0.090)

vrplow
t,medRV 0.265 0.204 0.225 0.237

(0.075) (0.060) (0.040) (0.070)
vrplow

t,BV 0.289 0.220 0.278 0.274
(0.083) (0.065) (0.043) (0.079)

Realized measures

VIXlow
t -0.057 -0.060 0.005 -0.013

(0.047) (0.039) (0.034) (0.043)
RVlow

t -0.107 -0.111 -0.069 -0.070
(0.045) (0.036) (0.030) (0.048)

RKlow
t -0.106 -0.107 -0.067 -0.067

(0.045) (0.037) (0.029) (0.049)
medRVlow

t -0.112 -0.115 -0.074 -0.073
(0.044) (0.035) (0.030) (0.047)

BVlow
t -0.113 -0.115 -0.072 -0.074

(0.044) (0.035) (0.030) (0.048)
Note: This table reports the slope estimates of univariate regressions of the long run components
of the returns rt on the long run components of variance risk premia and realized measures, re-
spectively. The low-pass filtered series are obtained as in Bollerslev et al. (2013) with the long run
frequency band set to λ = 0.65 and truncation parameter k = 12. The standard errors (reported
in paranthesis) are based on the HAC covariance matrix estimator. Standard errors are reported in
parentheses.
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Appendix A : Proof of Theorem 1

Proof. Let θ be the vector of admissible parameter values and θ0 the vector of true parameter values. For

any b > 0 and e > 0, define the neighborhoods Θn
ξ (e) = {ξ : |ξ− ξ0| < e}, Θn

β(b) = {β : |β− β0| < b}, and

their complements Θc
ξ = Θξ\Θn

ξ and Θc
β = Θβ\Θn

β such that Θn(ε) = Θn
ξ (ε
−1λν0

m log(λm)−1)×Θn
β(ε
−1λν0

m ),

and Θc(ε) = Θ\Θn(ε), with ν0 = δ02 − δ01 the true cointegration strength. Since θ0 ∈ Θn(ε), it follows

that

Pr
(
θ̂ ∈ Θc(ε)

)
= Pr

(
inf

θ̂∈Θc(ε)
Wm(θ) ≤ inf

θ̂∈Θn(ε)
Wm(θ)

)
≤ Pr

(
inf

θ̂∈Θc(ε)
Wm(θ)−Wm(θ0) ≤ 0

)
,

where θ̂ stands for θ̂(δ). Accordingly, to prove Proposition 1 it suffices to show that as n→ 0,

S(θ) =
(

log Ĝuu(θ)− log Guu

)
+
(

log Guu − log Ĝuu(θ0)
)

= S1(θ) + S2(θ),

is positive and bounded away from 0 uniformly on Θc(ε) so that

Pr

(
inf

θ̂∈Θc(ε)
S(θ) ≤ 0

)
→ 0 (13)

where S(θ) = Wm(θ)−Wm(θ0) and Ĝuu(θ) replaces Ĝuu(θ; δ) to simplify notations. From the analysis of

(Robinson 1995, p. 1635) and the fact that

Pr (|S2(θ)| ≤ ε) = Pr
(
| log Ĝuu(θ0)− log Guu| ≤ ε

)
≤ Pr

(∣∣∣∣∣ Ĝuu(θ0)− Guu

Guu

∣∣∣∣∣ ≤ ε/2

)
(14)

one can immediately show that S2(θ) is op(1). It remains to study S1(θ). A similar reasoning to that in

(14), but in terms of S1(θ), shows that its treatment is equivalent to the analysis of

Ĝuu(θ)− Guu = m−1
m

∑
j=1

λ2δ
j Iuu(λj)− Guu. (15)

Accounting for the measurement errors arising from estimating β and ξ,

Iuu(λ)− I0
uu(λ) = λ2ν0

m λ
2ξ0
j β̃2 Ijxx(λ)− 2λν0

m λ
ξ0
j β̃ Re(I0

jux(λ)),
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where λν0
m λ

ξ0
j β̃ = (β0λ

ξ0
j − βλ

ξ
j ), it follows that

Ĝuu(θ)− Guu =
1
m

m

∑
j=1

λ2δ
j I0

uu(λj)− 2β̃
Gux

m

m

∑
j=1

λ2δ
j

Re(I0
ux(λj))

Guxλ−ν0
m λ

−ξ0
j

+ β̃2 Gxx

m

m

∑
j=1

λ2δ
j

Ixx(λj)

Gxxλ−2ν0
m λ

−2ξ0
j

− Guu

=
1
m

m

∑
j=1

λ2δ
j I0

uu(λj)

− λν0
m

2β̃Gux

m

m

∑
j=1

λ
−ν0+2δ−2δ01
j

Re(I0
ux(λj))

Guxλ
−δ01−δ02−ξ0
j

+ λ2ν0
m

β̃2Gxx

m

m

∑
j=1

λ
−2ν0+2δ−2δ01
j

I0
xx(λj)

Gxxλ
−2(δ02+ξ0)
j

.

By Proposition 1 of Nielsen (2005), as n→ ∞, the first term satisfies

1
m

m

∑
j=1

λ2δ
j I0

uu(λj)−
Guu

1 + 2δ− 2δ1

p−→ 0

since m−1 ∑m
j=1 λ2δ

j fuu(λj) − Guu/(1 + 2δ − 2δ1) = o
(
λ1+2δ−2δ1

m
)

is valid under our Assumptions. By

similar manipulations of the other two terms using Lemma 1 of Nielsen (2005) and the analysis of

Robinson (1995, p. 1638), one can show that under Assumption 5

Ĝuu(θ)− Guu =
Guu

1 + 2δ− 2δ01
− 2β̃Gux

1 + 2δ− δ01 − δ02
+

β̃2Gxx

1 + 2δ− 2δ02
− Guu + op(1).

By Assumptions 1, 2 and 6, the first term is positive and greater than (or equal to) Guu, the second term is

null, whereas the last term is bounded away from 0 when {θ̂ ∈ Θc} ∩ {ξ̂ ∈ Θξ} or {θ̂ ∈ Θc} ∩ {β̂ ∈ Θβ}

∀ 0 ≤ δ ≤ δ01. This completes the proof of (13) and Theorem 1. Note also that the consistency of the

NBNLS emerges in the limit case when δ = 0 and that of the NBGNLS when setting δ = δ1.

�

Appendix B : Proof of Theorem 2

As an implication of the consistency result proved in Theorem 1, θ̂δ satisfies

∂Wm(θ)

∂θ

∣∣∣
θ̂
=

∂Wm(θ)

∂θ

∣∣∣
θ0
+

∂2Wm(θ)

∂θ∂θ′

∣∣∣
θ̄
(θ̂ − θ0) = 0

where ||θ̄ − θ0|| ≤ ||θ̂ − θ0||. Then, we can show that the NBWNLS estimator converges to the stated
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distribution

√
mλδ1−δ2 diag(1, log(λm)

−1)(θ̂ − θ0)
d−→

 1

β−1
0

N (0, E−1FE−1).

if by application of the Cramer-Wold theorem

η′
√

mλδ1+δ2−2δ
m diag(1, log(λm)

−1)
dWm(θ)

dθ

∣∣∣
θ0

d−→

 1

β−1
0

N (0, η′Fη) (16)

and

λ2δ2−2δ
m diag(1, log(λm)

−2)
∂2Wm(θ)

∂θ∂θ′

∣∣∣
θ̄

p−→

 1

β−1
0

 E. (17)

B.1. Limit of the score

In this section we investigate the limit of the score in (16), while (17) will be analysed in the next

section. Note also that the subscript 0, indicating the true parameter values, will be omitted unless its

absence causes confusion.

Proof. The derivative with respect to β is

∂Wm(θ0)

∂β
= − 2

m

m

∑
j=1

λ2δ−δ1−δ2
j Re

(
Ĝuu(θ0)

−1λ
δ2+ξ+δ1
j (Ijxy − βλ

ξ
j Ijxx)

)
.

where Ĝuu(θ) is used instead of Ĝuu(θ; δ) to simplify notation. The derivative with respect to ξ is

∂Wm(θ0)

∂ξ
= − 2

m
β

m

∑
j=1

λ2δ−δ1−δ2
j log λj Re

(
Ĝuu(θ0)

−1λ
δ2+ξ+δ1
j (Ijxy − βλ

ξ
j Ijxx)

)
.

We proceed as in Robinson (2008a), albeit in a unidimensional framework, and after rearrangements

implying only negligible errors (see Lobato 1999, Appendix C) arising from the replacement of (Λj IjΛj)

by Pj IjuP∗j := Λj A(λj)Iju A(λj)
∗Λj and Ĝuu(θ0) by G as |Ĝuu(θ0)− G| = op(1), we obtain

η1
√

mλδ1+δ2−2δ
m

∂Wm(θ)

∂β

∣∣∣
θ0
= −η1λδ1+δ2−2δ

m
2√
m

m

∑
j=1

γj Re
(

G−1
uu Pj1� IjuP∗j2�

)
+ op(1). (18)

23



with γj = λ2δ−δ1−δ2
j . In (18) we decompose Iju = (2πn)−1|∑n

t εt|2 such that

η1
√

mλδ1+δ2−2δ
m

∂Wm(θ)

∂β

∣∣∣
θ0
=− η1λδ1+δ2−2δ

m
1

π
√

m

m

∑
j=1

γj Re
(

G−1
uu Pj1�P∗j2�

)
(19)

− η1λδ1+δ2−2δ
m

1
π
√

m

m

∑
j=1

γj Re
(

G−1
uu Pj1�

( 1
n

n

∑
t=1

εtε
′
t − I2

)
P∗j2�
)

(20)

− η1λδ1+δ2−2δ
m

2√
m

m

∑
j=1

γj Re
(

G−1
uu Pj1�

1
2πn

n

∑
t=1

∑
s,t

εtε
′
sei(t−s)λj P∗j2�

)
, (21)

As fz(λ) = (2π)−1 A(λ)A(λ)∗, by Assumptions 2 and 5, (19) is

O

(
1√
m

λδ1+δ2−2δ
m

m

∑
j=1

f12(λj)λ
δ1+δ2+ξ+2δ−δ1−δ2
j

)
= O

(
1√
m

λδ1+δ2−2δ
m

m

∑
j=1

λα+2δ−δ1−δ2
j

)
= O(n−αm1/2+α log m)→ 0,

(20) is

Op

(
1√
m

λδ1+δ2−2δ
m

m

∑
j=1

1√
n

f12(λj)λ
δ1+δ2+ξ+2δ−δ1−δ2
j

)
= Op

(
λ1/2+α

m log m
) p−→ 0

by the law of large numbers and the remaining term (21) can be rearranged as

−
n

∑
t=1

ε′t
t−1

∑
s=1

η1

πn
√

m
λδ1+δ2−2δ

m

m

∑
j=1

γj Re
(

G−1
uu Pj�1ei(t−s)λj P̄j2�

)
εs (22)

where P̄j denotes the conjugate of Pj.

Regarding ξ, by analogy with (18) we obtain

η2
√

m
λδ1+δ2−2δ

m
log λm

∂Wm(θ)

∂ξ

∣∣∣
θ0
= −η2

λδ1+δ2−2δ
m
log λm

β

π
√

m

m

∑
j=1

log λjγj Re
(

G−1
uu Pj1�P∗j2�

)
(23)

− η2
λδ1+δ2−2δ

m
log λm

β

π
√

m

m

∑
j=1

log λjγj Re
(

G−1
uu Pj1�

( 1
n

n

∑
t=1

εtε
′
t − I2

)
P∗j2�
)

(24)

− η2
λδ1+δ2−2δ

m
log λm

2β√
m

m

∑
j=1

log λjγj Re
(

G−1
uu Pj1�

1
2πn

n

∑
t=1

∑
s,t

εtε
′
sei(t−s)λj P∗j2�

)
.

(25)

As fz(λ) = (2π)−1 A(λ)A(λ)∗, by Assumptions (2) and (5), (23) is

O

(
1√
m

λδ1+δ2−2δ
m
log λm

m

∑
j=1

log λj f12(λj)λ
δ1+δ2+ξ+2δ−δ1−δ2
j

)
= O(n−αm1/2+α log m)→ 0,
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(24) is

Op

(
1√
m

λδ1+δ2−2δ
m
log λm

m

∑
j=1

log λj
1√

n
f12(λj)λ

δ1+δ2+ξ+2δ−δ1−δ2
j

)
= Op

(
λ1/2+α

m log m
) p−→ 0

and the remaining term (25) can be rearranged as

−
n

∑
t=1

ε′t
t−1

∑
s=1

η2

πn
√

m
λδ1+δ2−2δ

m
log λm

β
m

∑
j=1

log λjγj Re
(

G−1
uu Pj�1ei(t−s)λj P̄j2�

)
εs. (26)

Using (26), (22) and Euler formula, (16) has the same asymptotic distribution as ∑n
t=1 ε′t ∑t−1

s=1 Ξt−s,nεs

where

Ξt−s,n =
1

πn
√

m

m

∑
j=1

(θj,1 + θj,2) cos((t− s)λj),

θj,1 = −λδ1+δ2−2δ
m η1γj θ̃β,

θj,2 = −λδ1+δ2−2δ
m
log λm

η2 log λjβγj θ̃β

with θ̃β = Re
(

G−1
uu Pj�1P̄j2� + G−1

uu Pj�2P̄j1�

)
. By Assumption 2, ||θj,1|| = O((m/j)δ1+δ2−2δ) and ||θj,2|| =

O((m/j)δ1+δ2−2δ × (log j)/(log m)). It follows that

η1λδ1+δ2−2δ
m

√
m

∂Wm(θ)

∂θ1

∣∣∣
θ0
+ η2

λδ1+δ2−2δ
m
log λm

√
m

∂Wm(θ)

∂θ2

∣∣∣
θ0
=

n

∑
t=1

ζt + op(1)

where ζt = ε′t ∑t−1
s=1 Ξt−s,nεs is a martingale difference array with respect to Ft = σ({εs, s ≤ t}). By a

standard martingale central limit theorem, (16) follows if

n

∑
t=1

E(ζ2
t |Ft−1)−

2

∑
a=1

2

∑
b=1

ηaηbΩab
p−→ 0, (27)

n

∑
t=1

E(ζ2
t1(|ζt| > d))→ 0, ∀d > 0, (28)

where Ω is shown to be singular and defined as

Ω =

 1 β0

β0 β2
0

 F,
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with F = 2Gxx/(Guu(1+ 4δ− 2δ1− 2δ2)). We first show (27). For this, we use the following decomposition

n

∑
t=1

E(ζ2
t |Ft−1) =

n

∑
t=1

E
( t−1

∑
s=1

t−1

∑
r=1

ε′sΞ′t−s,nεtε
′
tΞt−r,nεr|Ft−1

)
=

n

∑
t=1

t−1

∑
s=1

ε′sΞ′t−s,nΞt−s,nεs +
n

∑
t=1

t−1

∑
s=1

s−1

∑
r=1

ε′sΞ′t−s,nΞt−r,nεr, (29)

where the second term has mean 0 and variance

O

(
n
( n

∑
s=1
||Ξs,n||2

)2
+

n

∑
t=3

t−1

∑
u=2

( u−1

∑
s=1
||Ξu−s,n||2

u−1

∑
s=1
||Ξt−s,n||2

))
(30)

as shown by Lobato (1999). Following Nielsen (2005), when s < n/m, ||Ξs,n|| = O(1/(n
√

m)∑n
j=1 ||θj,1 +

θj,2||) = O(n−1√m log m) and when s > n/m, ||Ξs,n|| = O(s−1m−1/2 log m), where for the latter we use

|∑j cos(sλj)| = O(n/s) and therefore

n

∑
s=1
||Ξs,n||2 = O

( bn/mc

∑
s=1

m(log m)2

n2 +
n

∑
s=bn/mc+1

(log m)2

s2m

)
= O((log m)2n−1)

such that the first term of (30) is O((log m)4n−1). Besides, the second term in (30) is O
(
n ∑n

s=1 ||Ξs,n||2 ∑n/2
s=1 s||Ξs,n||2),

following the analysis in Robinson (1995), where

n/2

∑
s=1

s||Ξs,n||2 = O
(

m−1(log m)2 log n
)

.

It follows immediately that (30) is O(n−1(log m)4 + m−1(log m)4 log n)→ 0.

To complete the proof of (27) we now have to show that the mean of the first term in (29) is equal to

∑2
a=1 ∑2

b=1 ηaηbΩab. Since E(εtε
′
t|Ft−1) = I2 by Assumption (3), we can rewrite

E(
n

∑
t=1

t−1

∑
s=1

ε′sΞ′t−s,nΞt−s,nεs) =
n

∑
t=1

t−1

∑
s=1

E tr (Ξ′t−s,nΞt−s,nεsε′s) =
n

∑
t=1

t−1

∑
s=1

E tr (Ξ′t−s,nΞt−s,n)
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and decompose it as

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k=1

1
π2n2m

tr
(
(θ′j,1 + θ′j,2)(θk,1 + θk,2)

)
× cos((t− s)λj) cos((t− s)λk)

=
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,1θj,1) cos((t− s)λj)

2 (31)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,2θj,2) cos((t− s)λj)

2 (32)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

2 tr
(
θ′j,1θj,2) cos((t− s)λj)

2 (33)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

tr
(
θ′j,1θk,1) cos((t− s)λj) cos((t− s)λk) (34)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

tr
(
θ′j,2θk,2) cos((t− s)λj) cos((t− s)λk) (35)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

2 tr
(
θ′j,1θk,2) cos((t− s)λj) cos((t− s)λk). (36)

For (31), after approximating a Riemann sum by an integral and using ∑n
t=1 ∑t−1

s=1 cos(sλj)
2 = (n −

1)2/4, we have that

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,1θj,1) cos((t− s)λj)

2 ∼ η2
1

2Gxx

Guu(1 + 4δ− 2δ1 − 2δ2)
.

Among the remaining terms we first analyze (32) and observe that

tr (θ′j,2θj,2)

4π2 = tr

(
η2

2
λ2δ2−2δ

m

4π2(log λm)2 β2θ̃′β θ̃βγ2
j

)

= η2
2

λ2δ2−2δ
m

(log λm)2 2β2GxxG−1
uu γ2

j ,

Then, using the same approximation as for (31),(32) is asymptotically equal to

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,2θj,2) cos((t− s)λj)

2 ∼ η2
2

2β2Gxx

Guu(1 + 4δ− 2δ1 − 2δ2)
.

As the joint limiting distribution of β and ξ is singular, when analyzing (33) we find that it is asymptoti-

cally equivalent to

η1η22β
Gxx

Guu

1
(1 + 4δ− 2δ1 − 2δ2)

.
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Equations (34) - (36), where j , k, remain to analyze. For (34) we use that ||θj,1|| = O((m/j)δ1+δ2−2δ) to

show its equivalence to

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
j

)δ1+δ2−2δ(m
k

)δ1+δ2−2δ
cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m(log m)2)

where ∑n
t=1 ∑t−1

s=1 cos((t− s)λj) cos((t− s)λk) = −n/2 for λj , λk. Similarly, using that ||θj,2|| =

O((m/j)δ1+δ2−2δ(log j)/(log m)) we show that (35) is equivalent to

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
j

)δ1+δ2−2δ(m
k

)δ1+δ2−2δ (log j)2

(log m)2 cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m(log m)2).

For the last term, we use both ||θj,1|| and ||θj,1|| and find that (36) is bounded by

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
j

)δ1+δ2−2δ(m
k

)δ1+δ2−2δ log j
log m

cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m(log m)2).

It remains to show (28) or equivalently the sufficient condition ∑n
t=1 E(ζ4) → 0. As our analysis of (27)

is similar to Lemma 4 of Nielsen (2005), this condition can be proved under Assumption (3). We then

obtain ∑n
t=1 E(ζ4) = O(n(∑n

t=1 ||Ξ2
tn||)2) = O(n−1(log m)4) as in Nielsen (2007). This completes the proof

of (16). �

B.2. Limit of the Hessian

We now derive the limit of the Hessian for any estimator θ̄ such that ||θ̄ − θ0|| ≤ ||θ̂ − θ0|| and prove

that

λ2δ2−2δ
m

 1

log(λm)−2

′∂2Wm(θ̄)/(∂β∂β)

∂2Wm(θ̄)/(∂ξ∂ξ)

 p−→

 1

β2

 E. (37)

Proof. As Nielsen (2007), we strengthen the approximation |Ĝuu(θ0) − Guu| = op(1) by showing that

|Ĝuu(θ̄)− Ĝuu(θ0)| = op(1). Using the consistency Theorem 1 and the fact that ||θ̄ − θ0|| ≤ ||θ̂ − θ0||, we

have Ĝuu(θ̄)− Ĝuu(θ0) = λ2ν0
m m−1 ∑m

j=1 λ
2δ+2ξ
j β̃Ijxx − 2λν0

m m−1 ∑m
j=1 λ

2δ+ξ
j β̃ Re(I0

jxu) with λν0
m λ

ξ
j β̃ = (β̄λξ̄ −

βλξ). Then, by Assumption 2,

Ĝuu(θ̄)− Ĝuu(θ0) = Op

(
λ2ν0

m
1
m

m

∑
j=1

λ2δ−2δ2
j − λν0

m
1
m

m

∑
j=1

λ2δ−δ1−δ2
j

)
= op(1). (38)
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Using (38) and by similar arguments to Lobato (1999) and Nielsen (2007) one can easily show that

λ2δ2−2δ
m

(∂2Wm(θ̄)

∂β∂β
− ∂2Wm(θ0)

∂β∂β

) p−→ 0 (39)

and implicitly

λ2δ2−2δ
m

(log λm)2

(∂2Wm(θ̄)

∂ξ∂ξ
− ∂2Wm(θ0)

∂ξ∂ξ

) p−→ 0. (40)

To analyze (37), we first study

λ2δ2−2δ
m

∂2Wm(θ0)

∂β∂β
= λ2δ2−2δ

m G−1
uu

2
m

m

∑
j=1

λ
2δ+2ξ
j Ijxx + op(1).

We decompose it as

λ2δ2−2δ
m G−1

uu
2
m

m

∑
j=1

λ
2δ+2ξ
j (Ijxx − A2�(λj)Iju A2�(λj)
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By similar arguments to that of Proposition 1 in Nielsen (2005), Equations (41)-(43) are op(1) and by

Assumptions 3 and 4, the last term (44) yields to
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After approximation of the Riemann sums by integrals, we obtain
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.

implying the first part of (37) in view of (39). It remains to analyze the second part of (37) and hence
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By analogy with (45), (46) is asymptotically equivalent to
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m log(λm)

−2 ∂2Wm(θ0)

∂ξ∂ξ
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2β2Gxx
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,

which completes the proof in view of (40). Besides, as the joint limiting distribution of β and ξ is singular,

we omit the superfluous covariance term. �

Appendix C : Proof of Theorem 3

Proof. Under Assumptions 1-6, we need to show that (16) and (17) remain true when the unknown weight-

ing parameter δ = δ1 is replaced by δ̂1. We first discuss the case of β. Regarding the limit of the Hessian,

we need to prove that λ2δ2−2δ1
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p−→ 0. As (38) holds with δ̂1, we replace
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j − 1| = Op(|δ̂1 − δ1| log n), as in Nielsen (2005), we

have
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Regarding the limit of the score, we need to show that
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By similar arguments to those of (47) and Assumption 2, we obtain
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.

By similar reasoning, the same bounds can be obtained for the parameter ξ, which completes the proof of

Theorem 3. �
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