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Abstract

This paper examines the growth effects of ENSO events through their interactions with local weather

conditions using the Standardized Precipitation and Evapotranspiration Index (SPEI) from 1975

to 2014 and over a sample of 74 countries. The inclusion of SPEI in panel estimation makes it

possible to control for time-varying country-specific effects of ENSO events, therefore outlining

their heterogeneous effects on growth and eliminating a potential source of omitted variable bias.

By better identifying the persistence of ENSO effects on local weather conditions, we evidence that

ENSO events generate heterogeneous and local effects depending not only on countries’ climate

regime but also on their weather patterns. Our results suggest that examining the growth effects of

ENSO events should thus explicitly account for their interaction with weather patterns to capture

more precisely the heterogeneity across countries.
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1. Introduction

The pressure for new research on climate change issues has never looked stronger. Recent re-

search by Hsiang and Kopp (2018) put forward the central role that economists might play in the

quest for tackling climate warming and helping climate science advance. In this context, a recent

climate-macroeconomy literature focuses on the challenges that global climate cycles are posing for

economic activities. Such cycles are characterized by simultaneous physical variations in climate

over distant parts of the globe and are commonly referred to as teleconnections in the meteorolog-

ical literature. Among these teleconnection patterns, El Niño Southern Oscillation (ENSO) is the

most important coupled ocean-atmosphere phenomena. The warm phase of ENSO, called El Niño,

is associated with a band of warm ocean water that develops in the central and east-central equato-

rial Pacific while the cool phase of ENSO, known as La Niña, is characterized by below-average Sea

Surface Temperatures (SST) in the eastern Pacific. The ENSO cycle, including both El Niño and

La Niña, causes global changes in temperature and rainfall on average every two to seven years.

Despite ENSO events have been identified as having profound impacts on almost every aspect of hu-

man life, the literature focusing on their economic impacts is still developing. Some studies examine

whether ENSO influences economies around the world,1 with the evidence generally suggesting that

it does.2 Estimating several vector autoregressive (VAR) models, Brunner (2002) found evidence of

ENSO effects on growth and inflation in the G7 countries. Since this seminal paper, only two stud-

ies have explored the relationship between ENSO and economic performances from a multi-country

perspective (Cashin et al., 2017; Smith and Ubilava, 2017). Cashin et al. (2017) estimate a Global

VAR covering 21 countries/regions over the period 1979Q2 to 2013Q1 and show that El Niño events

have a direct effect on economic activity for those countries that are at the epicenter of an El Niño

event (Australia, Chile, Indonesia, New Zealand, and Peru). The study also highlights important

indirect effects on economic growth, inflation and price commodities channeled through trade for

countries that are geographically more distant from the phenomenon. Smith and Ubilava (2017)

analyze the effect of this atmospheric phenomenon in 69 developing countries on growth rate and

agricultural value-added using both linear and threshold panel regressions. They show that El Niño

events have negative impacts on economic growth while the effect of La Niña events is much less

apparent. Their results also indicate that important regional heterogeneities exist in the impact of

ENSO shocks with stronger evidence of El Niño growth effect in tropical countries.

Yet, this literature has identified several transmission channels through which ENSO can influence

economic growth, such as real prices of primary commodities (Brunner, 2002), trade (Cashin et al.,

1Most research has been conducted using data from a single country. See for example Berry and Okulicz-Kozaryn
(2008) who analyze the relationships between ENSO, U.S. inflation and economic growth over a long time span and
studies focusing on ENSO effects on the domestic agricultural sector (Dilley, 1997; Naylor et al., 2001).

2By contrast, Laosuthi and Selover (2007) find weak evidence that ENSO has an important effect on the business
cycles of most of the countries that they study.
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2017), or agriculture share in total output (Smith and Ubilava, 2017). However, while the climate

literature has put forward that ENSO events have large scale and regional impacts on weather

patterns and seasonal climate averages (Poveda and Mesa, 1997; Vicente-Serrano et al., 2011), no

study has so far considered the ENSO impact on economic performances through its effects on

countries’ weather conditions. There are, however, a number of potential reasons why weather

variables should be considered in order to identify the true causal relationship between ENSO and

economic performances. First, ENSO influences climate variability at a global scale with large dif-

ferences in spatial patterns while countries’ weather conditions have important effects on economic

performances (Dell et al., 2014). It is then likely that the most vulnerable countries to climate haz-

ards will also be more affected by an ENSO event. Second, ENSO signals may have too localized

impacts that cannot be reflected in economic growth without explicitly taking into account their

impacts on countries’ weather conditions. A third issue is that each ENSO event is different and

occurs in conjunction with other climatic events (Davey et al., 2014). The corollary is that distinct

ENSO episodes recording identical SST anomalies may be different in intensity at the regional or

country level. Such temporal asymmetries may then mask macroeconomic implications of ENSO

shocks (Smith and Ubilava, 2017).

In the light of these developments, we assess in this paper the effects of ENSO on economic growth

taking into account its heterogeneous and delayed effects on countries’ climatic conditions. More-

over, given that ENSO shocks are only slowly absorbed by the economy, we supplement our analysis

by considering their role in affecting Total Factor Productivity (TFP).

For our investigation, we use the usual ENSO regime categorization that defines El Niño and La

Niña regimes by respectively positive and negative values of SST anomalies together with a finer

classification that differentiates three states of ENSO according to the duration of SST anomalies

(El Niño, La Niña, neutral). To assess weather conditions, we use the Standardized Precipitation

and Evapotranspiration Index (SPEI) developed by Vicente-Serrano et al. (2010). This indica-

tor incorporates both precipitation and temperature data of current weather conditions, plus their

cumulative patterns of previous months. This multi-scalar feature allows us to consider the in-

tensification process of climate effects addressed by Dell et al. (2014) and therefore the economic

impacts of ENSO through the present and past weather conditions of each country.

As the weather response, and thus economic growth, to ENSO events typically depends on coun-

tries’ climatic zones, we estimate our different empirical models by allowing for a differential effect

of ENSO shocks according to the type of climate regime that prevails in each country of our sample.

To deal with the issue of spatial correlation inherent to climatic phenomena (Auffhammer et al.,

2013), we use panel-corrected standard error (PCSE) estimates for panel models (Beck and Katz,

1995). As an alternative to mitigate cross-sectional correlation problems, we also use the Driscoll-

Kraay estimator (DK), developed by Driscoll and Kraay (1998).

Using an unbalanced panel of annual data on 74 countries spanning the 1975-2014 period, we find
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that ENSO events have a differentiated impact on economic activity depending on the type of

climate. We also highlight important delayed effects on economic growth, through local weather

conditions. In particular, El Niño phases have a persistent negative effect through drier conditions

in already dry areas located in the tropical sphere. In contrast, arid and temperate countries with

already wet conditions are negatively affected by La Niña events through increased pluvial periods.

These findings are highly robust to the use of an alternative categorization of ENSO regimes and

across estimation methodologies.

Our paper contributes to the existing literature in several respects. First, existing studies assess the

relationship between economic growth and ENSO events, by focusing on the global effect of ENSO

events as common shocks, paying less attention to their specific effects channeled through modifi-

cations in countries’ weather conditions. By contrast, we systematically analyze the role of weather

patterns in influencing the transmission of global climate cycles to economic growth. This allows

us to identify the growth effect of an ENSO event given the great cross-country heterogeneity in

weather patterns and to evidence a significant effect exerted by La Niña (at least in temperate/arid

areas), contrary to what is usually found in the climate-economy literature. Second, in addition to

the usual two-way ENSO regime categorization, we consider a finer classification that allows us to

assess the growth effect differential of El Niño and La Niña relative to neutral episodes. The results

suggest that not only humid/tropical countries but also arid/temperate countries are negatively,

albeit differently, impacted by an El Niño event. Third, in addition to output growth, our analysis

focuses on TFP growth, which helps to shed light on the long-lasting effects of ENSO events. Our

findings evidence that the sensitivity of economic growth to global climate shocks through local

weather conditions is associated with a similar sensitivity in TFP growth, suggesting long-lasting

adverse effect of ENSO on economic growth.

The rest of the paper is organized as follows. To set the stage, section 2 begins by describing the

data set and presenting some stylized facts. Section 3 lays out the empirical methodology and

benchmark results. Section 4 conducts a sensitivity analysis of our central results by using another

measure of ENSO events. Finally, section 5 concludes.

2. Data and summary statistics

Our sample comprises the 74 countries listed in Appendix Table A1 and is an unbalanced panel

with data spanning from 19753 to 2014. The sample includes low-income, lower-middle-income and

upper-middle-income economies as classified by the World Bank.

3The year 1975 is used as the starting date since the ENSO properties and dynamics have changed over time
(Aiken et al., 2013) with a lower frequency and stronger amplitude since the late 1970s (An and Wang, 2000).
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2.1. ENSO phases and weather conditions

One of our main variables of interest, the measure of ENSO events, is taken from the National

Oceanic and Atmospheric Administration (NOAA) of the United States dataset, which provides

monthly data on the Oceanic Niño Index (ONI) from 1950 to 2018.4 The underlying methodology

used to derive these series consists essentially of three steps. The average SST is calculated for each

month in the Niño 3.4 region, spanning from 170◦W - 120◦W longitude and 5◦N - 5◦S latitude, and

then averaged with values from the previous and following months. This running 3-month average

is compared to a 30-year average of the three most recent complete decades, updated in each new

decade. The observed difference from the average SST in that region corresponds to the ONI value

for that 3-month season. Following Hsiang et al. (2011) and Sarachik and Cane (2010), ENSO

phases are identified by averaging ONI values between the month of May of a given year and the

month of February of the following year, i.e. between the months in which the El Niño and La Niña

events are typically most active. Positive (negative) values of the ONI reflects warming (cooling)

SSTs prevailing during El Niño (La Niña) phases (Figure 1).5

Figure 1: Evolution of the Oceanic Niño Index (1975-2014)
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The other variable of interest, the measure of weather conditions, is taken from the Global SPEI

database6 which provides monthly values of the Standardised Precipitation-Evapotranspiration In-

dex (SPEI) at the global scale, with a 0.5 degrees spatial resolution and for the period between

4We use this index, instead of other ones because it has a stronger correlation with the surface atmospheric
pressure-based Southern Oscillation Index (SOI) (Bamston et al., 1997), which explains its widespread use in the
literature.

5ONI series are taken from the R ’rsoi’ package : https://github.com/boshek/rsoi
6We use the version 2.5 of the Global SPEI database : http://spei.csic.es/database.html
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January 1901 and December 2015. The main advantage of this index is that it combines the sensi-

tivity of the Palmer Drought Severity Index (PDSI) to changes in evaporation demand (caused by

temperature fluctuations and trends) with the multi-scalar nature of the Standardized Precipita-

tion Index (SPI). By capturing the joint impact of precipitation and temperatures variability and

extremes on water demand, the SPEI is, therefore, particularly suited to detecting dry and wet

conditions in the context of global warming (Begueŕıa et al., 2014).

Another advantage of the SPEI is that it can be calculated at various time scales (between 1 and

48 months) over which water deficits/surplus accumulate reflecting times of response to weather

conditions of multiple natural and economic systems.7 This multi-scalar feature allows us to address

the intensification process of climate effects by taking into account the time structure of weather

shocks in the economic response to ENSO signals (Dell et al., 2014). As shown by Penalba and

Rivera (2016), El Niño and La Niña phases exert differing impacts depending on the hydrological

cycle. Thus, the economic impact of an ENSO shock could be reinforced by the climatic conditions

prevailing in previous months. We use as a benchmark indicator the 6-month SPEI given its ability

to capture seasonal to medium-term trends in weather conditions that mainly affect agricultural

systems.

A key challenge of using weather indicators is to aggregate gridded weather observations in order

to obtain indexes consistent with economic data and which must adequately reflect the climate

variability experienced by each country. The procedure consisting of averaging weather data at the

country scale could make SPEIs losing their relevance for two main reasons. First, as changes in

temperature, precipitation, and other climate parameters usually vary within countries, resulting

in differential exposure and uneven consequences, ignoring this scale-dependency issue can be prob-

lematic in terms of understanding and addressing weather conditions, particularly if conclusions are

derived from coarse-scale assessments. Indeed, in this case, extreme conditions at the local level are

likely to be obscured, and a biased assessment of weather conditions at the country level will result.

Secondly, this approach could fail to identify climate shocks affecting human activities especially if

large areas where little economic activity and sparse populations dominate, such as deserts or rain

forests (Dell et al., 2014). To deal with this problem and to derive consistent country-level series,

we assign individual gridded SPEI values over cropland areas to individual countries to arrive at

country-wide time series. As the main channel linking weather shocks and economic growth oper-

ates through shocks to agricultural incomes, restricting weather conditions to cropland areas allows

us to isolate the component of climate variability which is relevant for agriculture. Another advan-

tage of this measure is that it provides a consistent measure of climate variability within a country

as land areas within a country broadly share the same weather conditions. To retrieve the climate

variability in cropland areas we rely on the Global Land Cover SHARE (GLC-SHARE) prepared by

7For further details on this indicator, see Vicente-Serrano et al. (2010).
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FAO’s Land and Water Division (NRL). This database provides information on main land use and

land cover shares, on each 1 by 1-kilometer plot of land covering the entire globe.8 We construct

monthly SPEI values at country level by overlaying grid cells of SPEI over cropland distribution in

each country and averaging the SPEI values over each country’s arable and permanent crop land.

2.2. Identifying climatic groups

To capture the variability across countries in the magnitude of ENSO impacts, with some regions

considered more “teleconnected” to ENSO (continental tropics) than others (mid-latitudes regions),

we partition the globe into two groups –tropical/humid and temperate/arid countries– based on

how coupled their climates are to ENSO, according to the Köppen-Geiger Climate Classification

updated by Kottek et al. (2006). However, in order to have country groups consistent with SPEI

values calculated at the country level, we identify climatic conditions which only prevail in cropland

areas within each country. Specifically, we define tropical/humid countries as those characterized

by 50% or more of their total cropland areas that fall into the four subtypes of tropical climates:

tropical rain forest, tropical monsoon, tropical savannah with dry summer, tropical savannah with

dry winter. Countries having a temperate/arid climate refer to those with 50% or more of their

total cropland area characterized by one type of arid or mild temperate climates. Classes of arid

climates refer to desert, steppe-hot arid and steppe-cold arid while subtypes of mild temperate

climates include mild temperate with dry summer, mild temperate with dry winter, mild temperate

fully humid warm summer, mild temperate fully humid cool summer. The list of countries included

in each group is provided in Appendix A (Table A.1).9

The widespread influence of ENSO events on local weather patterns is provided by Figure 2 which

reports SPEI anomalies, defined as the difference between the SPEI values prevailing during normal

conditions and those prevailing during an ENSO episode (illustration on the left). To illustrate the

persistent impact of El Niño and La Niña on weather patterns, we also report SPEI anomalies

during the year following an ENSO episode (illustration on the right).

This figure shows that globally most countries receive less precipitation during an El Niño episode.

In Central America, El Niño is associated with serious drought in Mexico, Guatemala, Honduras,

and El Salvador. Some Caribbean countries seem also suffer drought. El Niño effect is also present

in Africa, as countries such Mali, Soudan, Nigeria tend to see drier SPEI during an El Niño event

while droughts occur in the south of the continent already very dry (Mozambique, Botswana). In

addition, dryness is seen throughout Indonesia, South and South-East Asia, and Australia.

8The 11 aggregated land cover classes identified by this database are: artificial surfaces (01), cropland (02),
grassland (03), tree-covered areas (04), shrubs covered areas (05), herbaceous vegetation, aquatic or regularly flooded
(06), mangroves (07), sparse vegetation (08), bare soil (09), snow and glaciers (10), and water bodies (11).

9The classification is close to the one used in the literature except for large countries like India, Mexico.
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Figure 2: Difference between the SPEI average during El Niño (La Niña) years and neutral years
(1975 - 2014)

(a) Immediate effect (b) Persistent effect

Note: Map (a) shows the difference between the average of countries SPEIs during the El Niño (La Niña)
years and the average of the countries SPEIs during years characterized by a neutral ENSO regime. The
persistent effect (map b) is calculated as the average difference between the SPEIs the year following an El
Niño (La Niña) shock and the years characterized by a neutral regime.

La Niña effects on weather patterns are the opposite of those induced by El Niño resulting in

wetter-than-normal conditions in Southern Africa and in the central Andes. Very heavy rains and

flooding reported in the Philippines, Malaysia, Indonesia, and Australia are also largely determined

by the La Niña events. In contrast, many droughts are reported in Argentina, Chile and over East

Africa following La Niña events.

Finally, the surface extent and duration of the SPEI anomalies show that large areas of the world

have SPEI anomalies lasting several months, confirming that the effects of El Niño and La Niña

events on weather patterns can last over many seasons (Vicente-Serrano et al., 2011). One year after

the occurrence of ENSO events, El Niño still affects most of Indonesia, the Indochina Peninsula,

parts of Africa and Australia whereas La Niña causes significant positive SPEI anomalies in Africa

and South East Asia.
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2.3. Real income

As the main purpose of this paper is to link ENSO events to growth of real incomes through trends

in weather conditions, we use real GDP (in 2011 constant US$) per capita as a measure of real

income in a country, and for this, we take data directly from the recent version of the Penn World

Table (PWT 9.0, 2018).

In Table 1, we report the final data set, with means, standard deviations, and ranges for the 6-month

SPEI and the real GDP per capita growth by climate areas (tropical/humid and temperate/arid).10.

According to the mean value of SPEI and real GDP per capita growth, few differences are apparent

between the two climatic areas.

Table 1: Summary statistics by geographical and climate areas

Countries
SPEI - 6 month Growth rate

n mean min max sd. mean min max sd.

All 74 -0.0307 -1.772 2.348 0.5248 0.0166 -0.5226 0.2833 0.0521

Tropical & Humid 39 -0.0110 -1.772 2.348 0.5197 0.0165 -0.2983 0.2833 0.0165

Temperate & Arid 35 -0.0537 -1.559 1.957 0.5299 0.0167 -0.5226 0.2571 0.0583

To take a closer look at the ENSO growth effects through weather conditions, Figure 3 plots the

logarithm of real GDP growth against the values of the SPEI for any ENSO cycle and during the

year following an El Niño and a La Niña events for both tropical/humid and temperate/arid coun-

tries.

10Table A.2 in Appendix A provides a detailed overview of the variables included in our data set. For the panel
unit root tests for annual GDP growth and SPEI, see Appendix B
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Figure 3: Real GDP per capita growth and the SPEI
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(a) Tropical & Humid countries
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(b) Arid & Temperate countries

Note: Figures (All Cycles) show the association between the SPEI and the growth rate for any ENSO cycle.
Figures (El Niño) and (La Niña) represent the values of the SPEI and the growth rate the year following El
Niño and La Niña events respectively. Positive (negative) SPEI values mean wet (dry) conditions. Normal
weather conditions are defined when the SPEI reaches a value between “−0.5” and “+0.5”.

Figure 3 exhibits two remarkable features. The picture that first emerges is one that is well known in

the climatology literature: local weather conditions exert non-linear impacts on economic outcomes

(Schlenker and Roberts, 2009; Burke et al., 2015). Indeed, Figure 3 shows that, for any ENSO

cycle, country-level real GDP per capita growth is smooth, non-linear, and concave in weather
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conditions: economic growth initially increases as weather conditions become wetter but after

reaching its maximum it subsequently falls at higher wetter conditions. The other key feature is

that the nonlinear effects are less pronounced during El Niño and La Niña episodes. As can be

seen, El Niño phases are characterized, on average, by a lower growth in tropical/humid countries

with dry conditions while La Niña episodes generate opposed weather patterns compared to any

ENSO cycle in arid/temperate countries: economic growth initially decreases as weather conditions

become wetter but after reaching its minimum it subsequently increases at higher wetter conditions.

Overall, these patterns reveal an important cross-country dispersion, showing a great heterogeneity

in countries’ responses to ENSO shocks due to their weather conditions. The assessment of ENSO

growth impacts implies, therefore, to control for country-specific weather conditions.

3. Benchmark specifications and outcomes

3.1. Methodology and estimation strategy

Since ENSO impacts can extend beyond a calendar year and may also be temporally displaced, we

estimate the contemporaneous as well as the lagged growth effects of ENSO events. Moreover, in

order to obtain unbiased estimates of the effects of ENSO events, which are correlated with weather

patterns, we include both variables in the regression equation. Finally, as our central hypothesis is

that ENSO events are associated with varying impacts on economic growth through their delayed

incidence on local weather conditions, we also assess how ENSO growth effects interact with weather

conditions, following this basic specification:

∆yi,t =α0 + α1ONIt + β1SPEIi,t + β2SPEI
2
i,t︸ ︷︷ ︸

contemporaneous effect

+ α2ONIt−1 + γ1ONIt−1 × SPEIi,t + γ2ONIt−1 × SPEI2
i,t︸ ︷︷ ︸

lagged effect

+µi + εi,t

(1)

Where i represents each country and t represents each time period. The dependent variable, ∆yi,t,

is the first difference of the real GDP per capita in constant 2011 US dollars (in logarithm) for

country i between years t and t− 1. ONIt (ONIt−1) is a vector of variables depicting the effects of

ENSO events captured by annualized ONI values in year t (t− 1). SPEIi,t is a vector of weather

conditions for country i during period t measured by the 6-month SPEI. Following Burke et al.

(2015), the estimated regression has a quadratic specification in the weather variable to allow for

the expected non-linear effect of weather conditions on economic growth. Country-specific fixed

effect, µi, are included to control for time-invariant omitted-variable bias and εi,t is the error term.

To assess the delayed impacts of ENSO events through local weather conditions, we interact the
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variable ONIt−1 with the country-specific weather variable, the latter being either the value of the

6-month SPEI or its squared value. If the coefficients on the interaction terms between the SPEI

value and ENSO events are significant (and possibly, the coefficient on ENSO insignificant), this

will imply that ENSO events act as common shocks with country-specific incidence on economic

growth through local weather conditions.

Equation (1) imposes a monotonic relationship between ENSO events and economic growth by

assuming that climate anomalies related with La Niña events can be regarded as a mirror image of

those associated to El Niño events. However, the climatology literature has produced considerable

evidence on the asymmetry between El Niño and La Niña events (Burgers and Stephenson, 1999;

Jin et al., 2003b; An and Jin, 2004; An et al., 2005; Zhang et al., 2015) mainly due to nonlinear

responses in the atmosphere to the underlying SST anomalies (Hoerling et al., 1997; Jin et al.,

2003a). Thus, La Niña events may not necessarily lead to opposite effects to those associated with

El Niño events. To address this asymmetry issue, we follow Smith and Ubilava (2017) and interact

the variable ONI with a Heaviside indicator that partitions the variable ONI into positive and

negative values. Then equation (1) becomes:

∆yi,t = α0 + αNiño
1 ONItI(ONIt ≥ 0) + αNiña

1 ONItI(ONIt < 0) + β1SPEIi,t + β2SPEI
2
i,t

+ αNiño
2 ONIt−1I(ONIt ≥ 0) + αNiña

2 ONIt−1I(ONIt < 0)

+ γNiño
1 ONIt−1I(ONIt−1 ≥ 0) × SPEIi,t + γNiña

1 ONIt−1I(ONIt−1 < 0) × SPEIi,t

+ γNiño
2 ONIt−1I(ONIt−1 ≥ 0) × SPEI2

i,t + γNiña
2 ONIt−1I(ONIt−1 < 0) × SPEI2

i,t

+ µi + εi,t

(2)

Where the Heaviside indicator I is such that I(·) = 1 if the condition inside the parentheses is

satisfied and 0 otherwise.

The standard methods of estimating ENSO events with panel data rely usually on fixed-effects mod-

els. The major drawback of these models is that they not directly address the important question of

the spatial and temporal correlation of climate and weather conditions across countries. As noted

by Beck and Katz (1995), coefficient estimates from standard panel estimators can be severely bi-

ased if cross-section dependence is present alongside heteroskedasticity and serial correlation (Beck

and Katz, 1995). A preliminary analysis of the data using OLS reveals evidence of serial correlation

and heteroscedasticity among the residuals.11 This finding is not surprising given that economic

activity may spill over into contiguous or economically related countries. This scenario is especially

pertinent in the case of climate events, such as ENSO, which cross countries’ borders (Auffhammer

et al., 2013).

11Results of this preliminary analysis are reported in Appendix B.
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To address these problems, we use Prais-Winsten estimates with panel-corrected standard errors

(PCSE) developed by Beck and Katz (1995) and fixed effects (within) regression models with

Driscoll and Kraay (DK) standard errors (Driscoll and Kraay, 1998). Both methodologies are ro-

bust to very general forms of cross-sectional as well as temporal dependence and perform better

than the Parks-Kmenta Feasible Generalized Least Squares estimator (Parks, 1967) that tends to

produce unacceptably small standard error estimates (Beck and Katz, 1995).12

3.2. Results

Tables 2 and 3 present the results of the regression analyses for respectively tropical/humid and

arid/temperate countries. Each table includes two sets of results from PCSE and DK estimations.

We first estimate equation (2) without any weather variable or interaction term between ONI and

SPEI, as shown in columns (1) and (4) of Tables 2 and 3. We find that increasing positive values

of the ONI - reflecting El Niño conditions - has a negative contemporaneous effect on growth in

countries located in both areas, indicating that El Niño regime leads on average to lower growth

rates, whereas the coefficient on La Niña regimes is insignificant. This result is consistent with

the literature evidencing that the overall effect of a La Niña regime is the result of more localized

tropical convection anomalies than those observed during El Niño phases (Mason and Goddard,

2001).

When including weather variables, the negative growth effect of El Niño phases becomes not or

less significant while the coefficient attached to the main effect of SPEI is positive and significant

in both climate areas (the opposite result is observed with DK estimates). In order to determine

whether the lack of significance of the ONI variable may be due to contemporaneous opposing effects

between global climate cycles and weather variables, we include a lagged effect of ENSO events and

an interaction term of the ONI variable and the SPEI variables. Columns (3) and (6) depict the

results of this general specification that includes both contemporaneous and lagged effects of ENSO

events.

As can be seen, in tropical/humid areas, the contemporaneous negative effect of El Niño becomes

significant while the coefficient on La Niña remains no significant. Moreover, one finds a significant

coefficient on the interaction term between the positive lagged value of ONI and the SPEI. This

lagged impact through weather conditions can be explained by the role played by El Niño events

on the occurrence of tropical droughts. Unlike other natural hazards, droughts tend to develop

very slowly over time and preferentially during El Niño events in this part of the world with a

linear relationship to the strength of El Niño (Vicente-Serrano et al., 2011; Lyon, 2004; Mason

12The Parks-Kmenta Feasible Generalized Least Squares estimator (FGLS) cannot be estimated when the time
period (T ) is less than the number of cross-sectional units (N) since the associated Error Variance Covariance
Matrix cannot be inverted. Even when T ≥ N , the FGLS approach of Parks produces standard errors that lead to
overconfidence rendering hypothesis testing useless.
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and Goddard, 2001). The delayed effect of El Niño events on economic growth in tropical/humid

countries is thus channeled through a higher probability of drier than normal weather conditions.

Table 2: Contemporaneous and lagged impacts of ENSO events
Tropical & Humid Countries

PCSE estimates DK estimates

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0132** -0.0113* -0.0152** -0.0222** -0.0206** -0.0224***

(0.00594) (0.00586) (0.00609) (0.00875) (0.00812) (0.00800)

ONIt < 0 -0.00228 -0.00221 -0.00456 -0.00719 -0.00706 -0.00773

(0.00605) (0.00592) (0.00590) (0.00645) (0.00688) (0.00653)

ONIt−1 ≥ 0 -0.00858 -0.0137*

(0.00620) (0.00701)

ONIt−1 < 0 -0.00630 -0.00726

(0.00590) (0.00811)

SPEIt 0.00479** -0.00274 0.00392 -0.00369

(0.00215) (0.00379) (0.00241) (0.00487)

SPEI2
t -0.00369 -0.00222 -0.00299 -0.00116

(0.00241) (0.00381) (0.00201) (0.00291)

ONIt−1 ≥ 0 ×SPEIt 0.0188*** 0.0167***

(0.00698) (0.00595)

ONIt−1 < 0 ×SPEIt 0.00892 0.0122*

(0.00751) (0.00671)

ONIt−1 ≥ 0 ×SPEI2
t -0.00421 -0.00302

(0.00723) (0.00498)

ONIt−1 < 0 ×SPEI2
t 0.00230 -0.000171

(0.00931) (0.00689)

Constant 0.0163 0.0161 0.0213* 0.0233*** 0.0238*** 0.0292***

(0.0126) (0.0125) (0.0129) (0.00433) (0.00339) (0.00632)

N 1521 1521 1521 1521 1521 1521

Groups 39 39 39 39 39 39

R2[within] 0.0778 0.0814 0.0904 [0.0200] [0.0226] [0.0335]

Country FE Yes Yes Yes Yes Yes Yes

PSAR(1) Yes Yes Yes No No No

MA(3) No No No Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates and fixed effects (within) regression models with Driscoll
and Kraay (DK) standard errors. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and
La Niña conditions. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%,
5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.
MA(3) denotes autocorrelation of the moving average type with automatic lag length.
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Table 3: Contemporaneous and lagged impacts of ENSO events
Arid & Temperate Countries

PCSE estimates DK estimates

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0152** -0.0121 -0.0135* -0.0222** -0.0206** -0.0214*

(0.00772) (0.00773) (0.00737) (0.00875) (0.00812) (0.0120)

ONIt < 0 0.00100 0.00308 0.000700 -0.00719 -0.00706 0.000930

(0.00867) (0.00852) (0.00774) (0.00645) (0.00688) (0.00818)

ONIt−1 ≥ 0 -0.00805 -0.0145

(0.00772) (0.0124)

ONIt−1 < 0 -0.0120 -0.00895

(0.00767) (0.0145)

SPEIt 0.0121*** 0.0147*** 0.00392 0.0155***

(0.00322) (0.00569) (0.00241) (0.00530)

SPEI2
t -0.00565 -0.00798 -0.00299 -0.0104

(0.00411) (0.00892) (0.00201) (0.00789)

ONIt−1 ≥ 0 ×SPEIt 0.00971 0.00926

(0.00962) (0.00629)

ONIt−1 < 0 ×SPEIt -0.0198** -0.0221**

(0.00851) (0.00941)

ONIt−1 ≥ 0 ×SPEI2
t -0.00290 0.00101

(0.0132) (0.0165)

ONIt−1 < 0 ×SPEI2
t 0.0135 0.00917

(0.0110) (0.0132)

Constant 0.0203*** 0.0236*** 0.0289*** 0.0233*** 0.0238*** 0.0297***

(0.00541) (0.00529) (0.00633) (0.00433) (0.00339) (0.00984)

N 1260 1260 1260 1260 1260 1260

Groups 35 35 35 35 35 35

R2[within] 0.0656 0.0846 0.0960 [0.0193] [0.0361] [0.0510]

Country FE Yes Yes Yes Yes Yes Yes

PSAR(1) Yes Yes Yes No No No

MA(3) No No No Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates and fixed effects (within) regression models with Driscoll
and Kraay (DK) standard errors. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and
La Niña conditions. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%,
5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.
MA(3) denotes autocorrelation of the moving average type with automatic lag length.

Accordingly, taking account of contemporaneous ENSO effects and their lagged effects through

weather conditions suggests that El Niño regimes have a negative growth effect in tropical/humid
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countries and that this effect is likely to be persistent by increasing the sensibility of those countries

to wet conditions. As shown in the sixth column of Table 2, these results for tropical/humid

countries – a significant contemporaneous of El Niño regimes and a lagged effect through weather

conditions but no growth effect of La Niña events – are robust to DK estimates.

El Niño events have only a significant and contemporaneous impact in tropical/humid countries.

Indeed, as shown in column (6) of Table 3, estimates for arid/temperate countries leads to a not

significant coefficient on contemporaneous El Niño events. However, the effect of SPEI remains

positive and significant, indicating a high vulnerability of these countries to droughts. Only La

Niña events have a lagged effect on weather patterns which is essentially the reverse of the El

Niño effect in tropical/humid countries. Indeed, by bringing higher than average precipitation,

La Niña causes wet areas in arid/temperate countries to become wetter and rainfall to become

more intense, which adversely affect economic growth. Again, this result is robust to the choice

of estimator confirming that ENSO events also affect in a significant way the economic growth of

arid/temperate areas through their weather conditions.

3.3. Additional results

How much of the ENSO growth effects are associated with impacts on growth in total factor

productivity (TFP)? This paragraph aims to investigate this question. As ENSO events have per-

sistent effects through weather patterns, ENSO shocks are only slowly absorbed by the economy

and should, therefore, have long-lasting effects. We thus examine whether the previous results on

economic growth are driven through TFP growth.

In order to accomplish this aim, we repeat a similar process from the previous paragraph, except

that we replace in equation (2) the GDP per capita growth with TFP per capita growth, calcu-

lated from data provided by the PWT database.13 We estimate the contemporaneous effects of

ENSO events, then augment this basic specification with weather variables, and then incorporate

the lagged effects of ENSO events.

The results in Table 4 indicate strong evidence that the ENSO events affect TFP per capita growth

through their interaction with weather patterns. The predominance of TFP growth for explaining

the delayed ENSO effects on output growth is in line with other panel studies that find strong

evidence of weather effects on TFP growth (Letta and Tol, 2018).

13for the definition of TFP see Table A.2 in Appendix A and for the panel unit root tests for annual TFP growth,
see Table B.1 in Appendix B.
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Table 4: Contemporaneous and lagged impacts of ENSO events
TFP growth

Tropical & Humid Countries Arid & Temperate Countries

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0178*** -0.0154*** -0.0194* -0.00941 -0.00759 -0.00796

(0.00594) (0.00578) (0.0106) (0.00741) (0.00723) (0.00708)

ONIt < 0 -0.00963 -0.00979* -0.0128 -0.00260 -0.00148 -0.00349

(0.00590) (0.00576) (0.0103) (0.00806) (0.00781) (0.00735)

ONIt−1 ≥ 0 -0.0171 -0.00678

(0.0111) (0.00774)

ONIt−1 < 0 -0.00189 -0.00910

(0.0108) (0.00748)

SPEIt 0.00705*** -0.00458 0.0104*** 0.0148**

(0.00224) (0.00675) (0.00336) (0.00581)

SPEI2
t -0.00390* -0.00643 -0.000796 -0.00208

(0.00219) (0.00564) (0.00467) (0.00953)

ONIt−1 ≥ 0 ×SPEIt 0.0289** 0.00626

(0.0122) (0.00951)

ONIt−1 < 0 ×SPEIt 0.0210 -0.0227**

(0.0138) (0.0115)

ONIt−1 ≥ 0 ×SPEI2
t 0.00418 -0.00795

(0.0107) (0.0143)

ONIt−1 < 0 ×SPEI2
t 0.00181 0.0134

(0.0158) (0.0128)

Constant 0.0133 0.0129 0.0226 0.00594 0.00813 0.0123*

(0.0122) (0.0119) (0.0178) (0.00595) (0.00598) (0.00681)

N 1135 1135 1135 1019 1019 1019

Groups 39 39 39 35 35 35

R2 0.0464 0.0556 0.0459 0.0250 0.0369 0.0529

Country FE Yes Yes Yes Yes Yes Yes

PSAR(1) Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and
La Niña conditions. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%,
5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.

Columns (1) and (4) show a still pronounced immediate impact of El Niño on TFP growth in

tropical/humid countries while being not significant in arid/temperate countries. Moreover, adding

lagged effects of ENSO yields very similar effects as the interaction terms with SPEI are still signif-

icant in both areas (columns (3) and (6)). As for economic growth, the analysis by climate regions
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reveals different ENSO effects through weather conditions, with a predominance of negative lagged

effects of El Niño events in tropical/humid countries and of La Niña episodes in arid/temperate

countries.

This main finding yields an important conclusion. Indeed, as productivity growth is reduced due to

the delayed effects of ENSO on weather patterns, this fall is likely to have a persistent negative im-

pact on output growth in subsequent periods and possibly alter income trajectories in a permanent

way.

4. Sensitivity analysis

This section tests the robustness of our results, in particular, the significance of the interaction

term between ENSO events and weather conditions.

4.1. Variables’ measures

First, we examine how variable measures affect results. We reestimate Equation (2) for different

measures of income and ENSO. For example, as an alternative measure of income, we use GDP per

capita series from the World Bank’s World Development Indicators. As another measure of ENSO,

we use the Southern Oscillation Index (SOI), calculated by the difference between the atmospheric

pressure at sea level at Tahiti and at Darwin. Results14 show that no matter which measure is

utilized, the interaction term between ENSO events and weather conditions remains significant and

has the same sign with the same order of magnitude for both climate areas.15

4.2. Accounting for extreme events

In addition to variables measures, another concern with this paper is that definitions of extreme

events such as El Niño and El Niña events could affect results. In particular, it is not clear whether

the analysis of the asymmetric effects of the ENSO phases through the introduction of an Heaviside

indicator fully captures the occurrence of extreme events. Recent studies have shown that the

duration of the ENSO events is crucial to its teleconnection patterns.16 As El Niño and El Niña

events are defined according to the duration during which they are significantly different from the

neutral regime, they thus can not be detected adequately through SST anomalies captured by

positive and negative values of the ONI variable.

We then defined a categorical variable reflecting each state of ENSO following the standard decision

process in determining moderate to strong ENSO events as proposed by the Climate Prediction

14The results of these robustness checks are not reported for the sake of brevity but are available from the authors
upon request.

15This finding is not surprising as GDP per capita growth rates from the two sources as well as the SOI and ONI
are highly correlated.

16See Trenberth (1997) for a detailed discussion of the different definitions of ENSO.
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Center (CPC). El Niño episodes are defined by an Oceanic Niño Index 1◦C warmer than normal

for at least five consecutive overlapping 3-month seasons. La Niña episodes arise when the Oceanic

Niño Index is 1◦C cooler than normal for at least five consecutive overlapping 3-month seasons.

Episodes that not fall in these two categories are considered as neutral. Neutral, El Niño and

La Niña episodes identified by these definitions are reported back to 1975 in Figure 4 and Table

5. For example, years 1988 and 2010 show average values of ONI equal to -0.56◦C and -0.19◦C,

respectively. Despite these low average negative values, these years are nevertheless characterized

by the occurrence of La Niña events since during these two years ONI values lower than -1◦C were

observed during at least five consecutive months. By contrast, other years may exhibit larger but

negative anomalies of ONI but due the short duration of these anomalies, they are characterized

by neutral ENSO conditions.

Figure 4: Evolution of the Oceanic Niño Index since 1975 (◦C) and ENSO episodes
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Note: the red (blue) line indicates the threshold SST of +1◦C (−1◦C) that categorizes the
ENSO phase as El Niño (La Niña).

Table 5: Years characterized by moderate and strong ENSO events

El Niño La Niña

Moderate Strong Moderate Strong

1994a 1982-1983 1995a 1975

2002a-2003a 1987 1988

2009 1991 1998-1999

1992 2007

1997 2010-2011

Note: a Years characterized by events of lower amplitude but reported
by NOAA as having significant repercussions.
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Therefore to account more adequately for the different phases associated with ENSO (El Niño, La

Niña or neutral phases) we run a specification which includes categorical variables, as depicted by

Equation (3):17

∆yi,t =α0 + α1ENSOt + β1SPEIi,t + β2SPEI
2
i,t

+ α2ENSOt−1 + γ1ENSOt−1 × SPEIi,t + γ2ENSOt−1 × SPEI2
i,t + µi + εi,t

(3)

Where ENSOt is a categorical variable defined by annualized ONI values in year t and scoring 1

for an La Niña event in year t, 2 for a El Niño event in year t and 0 otherwise. Neutral episodes

are then the excluded episodes, so that the coefficients on La Niña and El Niño events must be

interpreted differently than those in Equation (2). Indeed, the coefficients now measure the growth

effect differential of La Niña and/or El Niño relative to neutral episodes, instead of analyzing dif-

ferences in growth according to the positive or the negative values taken by the variable ONI. In

Equation (3), if La Niña and/or El Niño events are associated with a lower growth rate compared

to neutral episodes, then their respective coefficient (α1 and α2) should be negative and statistically

significant.

The estimation results of Equation (3) are reported in Table 6.

We first notice that taking account of the duration and magnitude in the definition of ENSO events

does significantly change the estimated contemporaneous impact of El Niño events. Of particular

importance is strong evidence of a less pronounced impact in tropical/humid countries while growth

in arid/temperate countries seems more impacted. Thus, compared to normal episodes, El Niño

events seem to be now associated with lower growth rates in temperate/arid areas. In contrast,

and consistent with our previous results, La Niña events are not significantly different from normal

ones for both climatic areas.

As can be seen, adding the delayed effects of ENSO does not significantly change the coefficient of

the interaction term in tropical and humid countries (column (3)). Indeed estimates for this climate

area show similar results to previous ones. El Niño events are growth-limiting by bringing unusual

warmth in tropical/humid countries already experiencing dry conditions.

17We have calculated the polychoric correlation coefficient between the ONI variable and dummy variables taking
the value 1 in case of El Niño/La Niña events and 0 otherwise (ρnino and ρnina). The correlation between ONI and
the dummy variable that captures El Niño is high (ρnino = 0.91) while the correlation with La Niña events is smaller
as ρnina = −0.76.
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Table 6: Contemporaneous and lagged impacts of ENSO events
Dummy variables

Tropical & Humid Countries Arid & Temperate Countries

(1) (2) (3) (4) (5) (6)

El Niñot -0.00678* -0.00582 -0.00757* -0.0122** -0.0141** -0.0127***

(0.00386) (0.00377) (0.00395) (0.00524) (0.00578) (0.00469)

La Niñat 0.00186 0.00177 0.00180 0.00560 0.00374 0.00694

(0.00428) (0.00415) (0.00415) (0.00557) (0.00633) (0.00502)

El Niñot−1 -0.00271 -0.00947*

(0.00423) (0.00567)

La Niñat−1 -0.00277 -0.0128**

(0.00417) (0.00524)

SPEIt 0.00499** 0.000240 0.0126*** 0.0123**

(0.00215) (0.00300) (0.00371) (0.00483)

SPEI2
t -0.00429* -0.000716 -0.00806* -0.0161***

(0.00240) (0.00352) (0.00454) (0.00580)

El Niñot−1 ×SPEIt 0.0118** 0.00974

(0.00491) (0.00740)

La Niñat−1 ×SPEIt 0.00438 -0.0146**

(0.00526) (0.00693)

El Niñot−1 ×SPEI2
t -0.00549 0.0108

(0.00571) (0.00942)

La Niñat−1 ×SPEI2
t -0.00552 0.0254***

(0.00517) (0.00706)

Constant 0.0141 0.0144 0.0163 0.0188*** 0.0245*** 0.0293***

(0.0131) (0.0129) (0.0130) (0.00465) (0.00596) (0.00512)

N 1521 1521 1521 1260 1260 1260

Groups 39 39 39 35 35 35

R2 0.0717 0.0766 0.0839 0.0753 0.0864 0.116

Country FE Yes Yes Yes Yes Yes Yes

PSAR(1) Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗

indicate respectively 1%, 5%, and 10% significance levels. PSAR(1) stands for panel specific
AR(1)-type autocorrelation.

In contrast, the growth effects of ENSO in arid/temperate countries are more sensitive to the

definition of these climate events. Globally the use of dummy variables makes patterns of weather

extremes more significant in those countries. Indeed, the coefficient estimates in column (6) indicate

a more pronounced nonlinear effect of weather conditions on growth: economic growth increases as
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weather conditions become wetter, and then declines when wet conditions reach a critical threshold.

However, these effects are completely reversed after the occurrence of a La Niña event. La Niña by

causing increased rainfall has a negative growth effect in arid/temperate countries with already wet

conditions while its effect instead becomes positive in areas with already dry conditions. This last

result indicates a lower exposure to dry conditions during La Niña years. By bringing more water

in some economies characterized by an arid climate, La Niña could bring relief to areas impacted

by droughts and enhance the restoration of pasture and crop production. Overall, those findings

support our main hypothesis related to the importance of local weather conditions when assessing

the growth effects of ENSO cycles.

4.3. Illustration: marginal effects

In order to better explain the significance of the coefficients on the interaction terms between ENSO

cycles and weather variables (e.g. coefficients γ1 and γ2), we finally estimate the marginal effects of

these climate events at different levels of SPEI and for each measure of ENSO events. Figures 5 and

6 depict the estimated marginal effect of ENSO phases at time t− 1 on GDP growth as estimated

from respectively regressions (2) and (3) and at different levels of weather conditions.

As can be seen, in tropical and humid countries, the derivative of El Niño variables is clearly

different from zero at all negative SPEI (dry conditions) while for positive SPEI (wet conditions),

the derivative is close to zero. When wet conditions prevail, El Niño has no effect on growth, while

at dryer temperatures, by inducing, with some delay, deficits in rainfalls, it leads to significantly

lower growth rates. In contrast, the derivative of La Niña is clearly not significant for all SPEI

values. These findings hold for both specifications using the Heaviside indicator or the dummy

variable.

For arid and temperate countries, as it is apparent, the marginal growth effect of El Niño is no

significant. The marginal effect of La Niña on economic growth is instead significant: it is positive

when dry conditions prevail (for negative values of the SPEI) and decreases as SPEIs increase. This

last finding confirms that La Niña, by bringing heavier precipitation in arid/temperate countries,

leads to significantly lower growth when wet weather conditions prevail and higher growth in areas

with already dry conditions.
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Figure 5: Marginal effect of ONI according to SPEI values

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

−2 −1 0 1 2

SPEI

∂ y

∂ ONI ≥ 0

El Niño

−0.06

−0.02

0.02

0.06

−2 −1 0 1 2

SPEI

∂ y

∂ ONI < 0

La Niña

(a) Tropical & Humid countries

−0.10

−0.05

0.00

0.05

0.10

−2 −1 0 1 2

SPEI

∂ y

∂ ONI ≥ 0

El Niño

−0.02

0.02

0.06

0.10

0.14

−2 −1 0 1 2

SPEI

∂ y

∂ ONI < 0

La Niña

(b) Arid & Temperate countries

Note: Solid lines report derivatives of the growth response with respect to changes in ONIt−1I(ONIt−1 ≥ 0)
(El Niño phases) and ONIt−1I(ONIt−1 < 0) (La Niña phases). Shaded areas represent 95% confidence
intervals.

23



Figure 6: Marginal effect of ENSO shocks according to SPEI values
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Note: Solid lines report derivatives of the growth response with respect to discrete change from neutral
regime to El Niño (La Niña) regime. Shaded areas represent 95% confidence intervals.
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5. Conclusion

In this paper, we conduct an analysis of the effects exerted by ENSO events on a sample of 74

countries over the period 1975-2014. Compared to the existing literature, we exploit time-varying

and country-specific weather variables, to detect the heterogeneous effects of ENSO events through

their interactions with local weather conditions.

We find that ENSO events have sizeable and persistent economic effect in both tropical/humid and

arid/temperate countries. In particular, El Niño regimes impact the economic growth of tropical /

humid countries with some delay by increasing the sensibility of those countries to wet conditions

through a higher probability of drier than normal weather conditions. This lagged impact of El

Niño on economic growth can be explained by its role in the occurrence of tropical droughts. On the

contrary, arid and temperate countries are particularly vulnerable to La Niña events. Teleconnection

patterns between La Niña phases of ENSO and arid/temperate countries favors higher than average

precipitation that adversely affect economic growth in wet parts of this climate area.

This finding is independent of the way in which the asymmetric effects of ENSO are taken into

account. Indeed, this result holds if we consider two phases of the ENSO cycle measured by positive

(El Niño) or negative (La Niña) SSTs anomalies or if we consider a neutral regime and two extreme

regimes (El Niño or La Niña) characterized by both their magnitude and their duration. We also

bring strong evidence that ENSO events affect TFP per capita growth through their interaction with

weather patterns. This last finding has important implications. As productivity growth is reduced

due to the delayed effects of ENSO on weather patterns, this fall is likely to have a persistent

negative impact on output growth in subsequent periods and possibly alter income trajectories in

a permanent way.

Overall, our results indicate that caution should be exerted when interpreting results of studies

analyzing the growth effect of such climate events and which do not control for the observed

heterogeneity in countries’ sensitivity to climate shocks. Not only the type of climate seems to

explain the relationship between ENSO events and economic growth, but local weather variables

do also matter.

In this respect, this paper, by analyzing the weather channel through which ENSO events impact

economic growth, can contribute to a better understanding of ENSO effects. By showing the

consequences over time of El Niño and La Niña episodes on weather patterns, it can also improve

management risks in countries most exposed to those global climate cycles.
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Appendix

Appendix A: Data and statistical information

Table A.1: ENSO country assignment

Country ISO3 Region Climate
% of croplands

Trop. Arid Temp.

Albania ALB Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Argentina ARG Latin America & Caribbean Arid & Temperate 0.00 0.02 0.98

Armenia ARM Europe & Central Asia Arid & Temperate 0.00 0.33 0.67

Australia AUS East Asia & Pacific Arid & Temperate 0.00 0.57 0.43

Burundi BDI Sub-Saharan Africa Tropical & Humid 0.80 0.00 0.20

Benin BEN Sub-Saharan Africa Tropical & Humid 0.75 0.25 0.00

Burkina Faso BFA Sub-Saharan Africa Arid & Temperate 0.25 0.75 0.00

Bangladesh BGD South Asia Tropical & Humid 0.87 0.00 0.13

Bulgaria BGR Europe & Central Asia Tropical & Humid 0.00 0.00 1.00

Belarus BLR Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Belize BLZ Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Bolivia BOL Latin America & Caribbean Tropical & Humid 0.82 0.12 0.05

Brazil BRA Latin America & Caribbean Tropical & Humid 0.75 0.10 0.16

Botswana BWA Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00

Chile CHL Latin America & Caribbean Arid & Temperate 0.00 0.01 0.99

China CHN East Asia & Pacific Arid & Temperate 0.00 0.32 0.68

Cameroon CMR Sub-Saharan Africa Tropical & Humid 0.67 0.33 0.00

Congo, Democratic Republic COD Sub-Saharan Africa Tropical & Humid 0.95 0.00 0.05

Congo COG Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Colombia COL Latin America & Caribbean Tropical & Humid 0.85 0.00 0.15

Costa Rica CRI Latin America & Caribbean Tropical & Humid 0.99 0.00 0.01

Cyprus CYP Europe & Central Asia Arid & Temperate 0.00 0.52 0.48

Dominican Republic DOM Latin America & Caribbean Tropical & Humid 0.97 0.00 0.03

Algeria DZA Middle East & North Africa Arid & Temperate 0.00 0.31 0.69

Ecuador ECU Latin America & Caribbean Tropical & Humid 0.73 0.07 0.20

Egypt EGY Middle East & North Africa Arid & Temperate 0.00 1.00 0.00

Gabon GAB Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Gambia GMB Sub-Saharan Africa Arid & Temperate 0.10 0.90 0.00

Greece GRC Europe & Central Asia Arid & Temperate 0.00 0.11 0.89

Guatemala GTM Latin America & Caribbean Tropical & Humid 0.85 0.00 0.15

Honduras HND Latin America & Caribbean Tropical & Humid 0.90 0.00 0.10

Indonesia IDN East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

India IND South Asia Tropical & Humid 0.36 0.36 0.28

Iran IRN Middle East & North Africa Arid & Temperate 0.00 0.61 0.39

Kenya KEN Sub-Saharan Africa Tropical & Humid 0.57 0.20 0.23

Cambodia KHM East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Lao People’s Democratic Republic LAO East Asia & Pacific Tropical & Humid 0.87 0.00 0.13
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Sri Lanka LKA South Asia Tropical & Humid 1.00 0.00 0.00

Lesotho LSO Sub-Saharan Africa Arid & Temperate 0.00 0.00 1.00

Morocco MAR Middle East & North Africa Arid & Temperate 0.00 0.33 0.67

Moldova, Republic of MDA Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Madagascar MDG Sub-Saharan Africa Tropical & Humid 0.82 0.00 0.18

Mexico MEX Latin America & Caribbean Tropical & Humid 0.70 0.10 0.20

Mali MLI Sub-Saharan Africa Arid & Temperate 0.20 0.80 0.00

Mozambique MOZ Sub-Saharan Africa Arid & Temperate 0.33 0.57 0.10

Mauritania MRT Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00

Mauritius MUS Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Malaysia MYS East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Namibia NAM Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00

Nigeria NGA Sub-Saharan Africa Tropical & Humid 0.72 0.28 0.00

New Zealand NZL East Asia & Pacific Arid & Temperate 0.00 0.00 1.00

Pakistan PAK South Asia Arid & Temperate 0.00 0.83 0.17

Peru PER Latin America & Caribbean Tropical & Humid 0.48 0.24 0.28

Philippines PHL East Asia & Pacific Tropical & Humid 0.99 0.00 0.01

Paraguay PRY Latin America & Caribbean Arid & Temperate 0.34 0.07 0.59

Romania ROU Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Russian Federation RUS Europe & Central Asia Arid & Temperate 0.00 0.19 0.81

Sudan SDN Sub-Saharan Africa Arid & Temperate 0.07 0.93 0.00

Senegal SEN Sub-Saharan Africa Arid & Temperate 0.02 0.98 0.00

Sierra Leone SLE Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

El Salvador SLV Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Serbia SRB Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Swaziland SWZ Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Togo TGO Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Thailand THA East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Tajikistan TJK Europe & Central Asia Arid & Temperate 0.00 0.68 0.32

Tunisia TUN Middle East & North Africa Arid & Temperate 0.00 0.04 0.96

Tanzania TZA Sub-Saharan Africa Tropical & Humid 0.72 0.20 0.08

Uganda UGA Sub-Saharan Africa Tropical & Humid 0.94 0.04 0.02

Ukraine UKR Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Uruguay URY Latin America & Caribbean Arid & Temperate 0.00 0.00 1.00

Venezuela, Bolivarian Republic of VEN Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Viet Nam VNM East Asia & Pacific Tropical & Humid 0.67 0.00 0.33

South Africa ZAF Sub-Saharan Africa Arid & Temperate 0.02 0.58 0.40
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Table A.2: Variables and data sources

Mnemonic Source Variable description

ONI NOAA database Oceanic Niño Index

SPEI Global SPEI database Standardised Precipitation-Evapotranspiration Index

y Penn World Table database (PWT 9.0) Real GDP per capita at Constant National Prices (in 2011 US dollars)

TFP Penn World Table database (PWT 9.0) Real Total Factor Productivity per capita (Index 2011=1, Annual)
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Appendix B: Analysis of the data

Table B.1: Cross-sectionally augmented Im, Pesaran and Shin (IPS) test for unit roots

Without Trend With Trend
Z̄t Z̄t

Variable lags Level 1st Diff Level 1st Diff

y 0 -1.303∗ -22.172∗∗∗ 1.582 -20.611∗∗∗

1 -4.597∗∗∗ -16.116∗∗∗ -1.006∗ -13.775∗∗∗

2 -1.862∗ -9.484∗∗∗ 0.029 -6.503∗∗∗

3 -0.043 -7.642∗∗∗ 1.193 -4.647∗∗∗

TFP 0 0.551 -25.898∗∗∗ -0.616 -23.710∗∗∗

1 -1.117 -18.277∗∗∗ -3.622∗∗∗ -15.081∗∗∗

2 0.319 -11.668∗∗∗ -1.342 -7.921∗∗∗

3 0.596 -8.316∗∗∗ -0.457 -4.695∗∗∗

SPEI 0 -27.432∗∗∗ . -25.218∗∗∗ .
1 -19.007∗∗∗ . -16.925∗∗∗ .
2 -12.899∗∗∗ . -10.686∗∗∗ .
3 -8.541∗∗∗ . -6.387∗∗∗ .

Note: ∗∗∗, ∗∗, and ∗ denote the rejection of the null hypothesis at the
10%, 5% and 1% level. The null hypothesis is the presence of unit root in
panel data with cross-sectional dependence in the form of common factor
dependence.

Table B.2: Pesaran CD test for cross-section independence

Variable CD-test Correlation abs(correlation)

∆y 32.52∗∗∗ 0.100 0.189
∆TFP 18.84∗∗∗ 0.074 0.176
SPEI 16.91∗∗∗ 0.049 0.190

Note: The CD test of Pesaran (2004) is defined under the
null hypothesis of no cross-sectional dependence. ∗∗∗, ∗∗, and
∗ indicate 1%, 5%, and 10% significance levels.
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