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Abstract
We develop an equilibrium model of emissions permit trad-
ing in the presence of fixed and proportional trading costs
in which the permit price and firms’ participation in and ex-
tent of trading are endogenously determined. We analyze
the sensitivity of the equilibrium to changes in the trad-
ing costs and firms’ allocations, and characterize situations
where the trading costs alternatively depress or raise per-
mit prices relative to frictionless market conditions. We cal-
ibrate our model to annual transaction and compliance data
in Phase II of the EU ETS (2008-2012) which we consolidate
at the firm level. We find that trading costs in the order of
10 ke per annum plus 1 e per permit traded substantially
reduce discrepancies between observations and theoretical
predictions for firms’ behavior (e.g. autarkic compliance).
Our simulations suggest that ignoring trading costs leads to
an underestimation of the price impacts of supply-curbing
policies, this difference varying with the incidence on firms.
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«Failure to account explicitly for bounded rationality, uncertainty, and informational, con-
tractual and policing costs inherent in all air pollution problems weakens the applicability of
[the] conclusions about the allocative efficiency properties of alternative control instruments.»

— Thomas D. Crocker (1972)

«Since standard economic theory assumes transaction costs to be zero, the Coase Theorem
demonstrates that the Pigovian solutions are unnecessary in these circumstances. Of course,
it does not imply, when transaction costs are positive, that [...] regulation or taxation [...]
could not produce a better result than relying on negotiations between individuals in the mar-
ket. [...] My conclusion: let us study the world of positive transaction costs.»

— Nobel Memorial Prize Lecture, Ronald H. Coase (1992)

1 Introduction

Stemming from the seminal works of Coase (1960), Crocker (1966) and Dales (1968) and later
formalized by Montgomery (1972), emissions trading has become pivotal in the environmental
and climate change mitigation regulatory toolbox.1 Purportedly, comparative advantages of
this instrument include cost effectiveness, modest information requirements for the regulator
and a political-economy lever by means of the initial distribution of emissions permits. The
collective optimum can in principle be decentralized via the market price: given a total supply
of permits, the same price level obtains in equilibrium and abatement efforts are rerouted to
firms with lowest marginal abatement costs irrespective of their initial allocation as a result
of market participants’ endeavor to ferret out least-expensive abatement sources.

As two of the concept’s founding fathers recognize in the opening quotes, however, a variety of
barriers to trading – usually grouped under the term of transaction costs – can drive a wedge
between theoretical and practical market outcomes. In practice, indeed, frictions of various
types are acknowledged to be pervasive as the empirical literature on permit markets attests
(e.g. Carlson et al., 2000; Gangadharan, 2000; Hahn & Stavins, 2011; Jaraitė-Kažukauskė &
Kažukauskas, 2015; Venmans, 2016; Karpf et al., 2018; Naegele, 2018; Cludius & Betz, 2020)
and, more generally, there are costs associated with trading in financial markets (e.g. Gârleanu
& Pedersen, 2013; Dávila & Parlatore, 2020, and references therein). We corroborate these
findings with a descriptive analysis of trading and compliance patterns in the second phase of

1Medema (2020) offers an excellent overview of the historical context and impacts of the Coase theorem.
See also Deryugina et al. (2020) for a recent review of its applications to environmental problems.
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the EU Emissions Trading System (2008-12) which also suggests the existence of transaction
costs. This echoes one conclusion of Hintermann et al. (2016) who review the literature on
price and market behaviors in Phase II of the EU ETS: they highlight that transaction costs
are a key factor that impinge on price formation, notably its level, and can explain persisting
differentials in marginal abatement costs across firms.

Yet, surprisingly, the prevalence of transaction costs and their implications for market out-
comes as well as for policy design, evaluation and implementation are largely ignored in the
theoretical literature on permit markets, with only a few exceptions discussed below.2 In this
paper, we seek to remedy this gap. Specifically, we incorporate trading costs in an otherwise
archetypal emissions trading model to formally analyze how they impact the market equilib-
rium. We further calibrate the model to observed transactions in Phase II of the EU ETS to
offer an illustration based on a relevant real-world example. As we shall see, not only is such
a framework better equipped to conduct finer-grained ex-post analyses of firms’ trading and
compliance behaviors, but it also constitutes a more realistic basis for ex-ante assessments of
supply-side management policies, a regular feature in the hybrid ETSs of today.

We articulate three contributions to the literature. To motivate our analysis further, we begin
by exploring the universe of annual transactions in EU ETS Phase II, our policy environment
in this paper. Data is available at the account (installation) level but we consider the firm as
the relevant decision-making unit for our analysis and we concentrate on inter-firm trading.3

To aggregate the data at the firm level and remove intra-firm permit reallocations, we develop
a consolidation methodology matching each installation to a parent company building on an
iterative search procedure for duplicates in the accounts’ information fields. We then utilize
the consolidated dataset to scrutinize firms’ annual trading and compliance behaviors. The
consolidation methodology and the description of observed firms’ market behavior constitute
our first contribution to the empirical literature on the EU ETS.

We find evidence of autarkic compliance and signs of impaired trading, i.e. some gains from
trade go unrealized at both the extensive and intensive margins, see Ellerman et al. (2010),
Martin et al. (2015) and Schleich et al. (2020) for similar descriptive results.4 At the extensive

2In a related context, see Dixit & Olson (2000) and Anderlini & Felli (2006) for formal analyses of Coasean
bargaining in the presence of transaction costs.

3A firm typically owns several regulated polluting sites and can redistribute allocated permits across sites
based on their realized emissions, i.e. it can potentially achieve compliance without effectively trading on the
market. Here, we implicitly assume that the costs of intra-firm transfers are negligible compared to those of
inter-firm trading. In our dataset, intra-firm transfers represent 27% of all cross-account flows in Phase II.

4Other studies have provided indirect evidence of transaction costs relying on surveys and interviews with
firms’ managers (e.g. Venmans, 2016; Heindl, 2017) or analyzing transactions with network theory tools (e.g.
Borghesi & Flori, 2018; Hintermann & Ludwig, 2018; Karpf et al., 2018). See Section 2.1 for more details.
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margin, about a third of firms did not trade at all on a yearly basis. Autarkic firms are mostly
small (in terms of size of emissions or number of installations) representing 9% of regulated
emissions and often hold excess permits w.r.t. realized emissions. At the intensive margin,
active firms engaged in trading infrequently (typically a few times per annum) and only for
sufficiently high volumes, suggesting that marginal abatement costs are not equalized across
firms in equilibrium. Stifled trade at both margins points us to the prevalence of both fixed
and variable transaction costs (see also Stavins, 1995; Singh & Weninger, 2017).5

Our second contribution to the literature is theoretical in nature. We enrich a standard static
and deterministic permit trading model by introducing both fixed and proportional trading
costs.6 The fixed cost impacts firms’ decisions to take part in the market (extensive margin)
while the proportional cost further affects firms’ trading choices by driving a wedge between
their marginal abatement costs (intensive margin). In our equilibrium framework, the permit
price and firms’ participation in and extent of trading are determined endogenously, and they
depend on the given trading costs and firms’ characteristics (i.e. abatement costs and permit
allocations, where we let some firms be initially overallocated).7 Importantly, this framework
enables us to study when a market equilibrium exists and if so, how it is achieved.

Tracking trading cost impacts through buyer-seller interactions and resulting market prices,
we can analyze the sensitivity of the market equilibrium to changes in the trading costs and
firms’ initial allocations. While an increase in trading costs always reduces cost effectiveness
and the volume of trade, its price effects are ambiguous and non-monotonic in general as they
depend on its relative impacts on the supply and demand sides of the market (i.e. ultimately
the distributions of firms’ characteristics). As a rule, we find that trading costs are generally
conducive to higher price levels when the (theoretical) frictionless market price is ‘low’, and
vice versa. Similarly, the price increase following a reduction in the total number of permits
can be amplified or dampened by the presence of trading costs. This hinges on a distribution
effect (the overall impact on net permit demand, holding the price constant) and a price effect
(the relative price elasticity of net permit demand with vs. without trading costs) which are

5In the words of Stavins (1995) «transaction costs can take one of two forms, inputs of resources–including
time–by a buyer and/or seller or a margin between the buying and selling price», i.e. fixed and variable costs.
More concretely, fixed entry costs can compound exchange membership fees with other resources invested in
operating a trading desk, monitoring the market and defining a trading strategy. Variable costs can comprise
search, information, brokerage, intermediation and consultancy costs inter alia.

6We solely focus on those transaction costs entailed by (or conditional on) permit trading, hence termed
trading costs for short. See Section 2.1 for a brief overview of other types of transaction costs.

7Following the related literature (e.g. Stavins, 1995; Singh & Weninger, 2017) we take the trading costs as
exogenously given, but we discuss in Section 2 how they may emerge in practice. As a notable exception, see
Liski (2001) for microfoundations, i.e. a formal treatment of trading costs endogenously arising and evolving
over time as a function of the market size and the initial distribution of permits among firms.
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generally countervailing. To gain additional insight into the market impacts of trading costs,
we then illustrate our theoretical results with analytical and numerical examples for different
distributions of firms’ characteristics. These show that both the price level and increase (due
to a lowered amount of permits) are more often higher with trading costs than without.

The benchmark framework to analyze the impacts of transaction costs in markets permit has
been developed by Stavins (1995) and extended by Montero (1998).8 Crucially, however, this
is not an equilibrium framework and the market price is taken as exogenously fixed. That is,
Stavins and Montero study the impacts of trading costs on an individual firm’s emission and
trading choices at the margin but do not formally characterize the market price impacts nor
how firms self-select into costly trading in the first place as we do in this paper. As a result,
our framework sometimes leads to different results, e.g. market outcomes are sensitive to the
initial allocation of permits even with constant marginal trading costs. More recently, Singh
& Weninger (2017) have developed a similar equilibrium framework in the presence of fixed
or proportional trading costs, alternatively.9 But in their model, firms are ex-ante identical
and differ only in idiosyncratic productivity shocks, the main motive for permit trade.10 Our
analysis is hence different in nature as we choose to focus on what we believe to be the more
practically relevant case of ex-ante heterogeneous firms (see Bernard et al. (2012) and Melitz
& Redding (2014) in the more general context of international trade in goods).

This brings us to our third contribution to the literature, which exploits firms’ heterogeneity
in abatement costs and allocations allowed by the model. Specifically, we utilize the universe
of yearly allocations, emissions, transactions and prices in EU ETS Phase II to discipline the
calibration of model parameters and the selection of practically relevant trading costs values.
We propose a selection criterion minimizing the total number of sorting errors (i.e. discrepan-
cies between firms’ market participation and net market positions in the model vs. the data)
and their dispersion across error types (measured by Shannon’s entropy).11 Respectively, we

8Specifically, Montero (1998) offered an extension of Stavins’ analysis in the form of uncertainty on trade
approval and provided further insights with numerical simulations. Moreover, Cason & Gangadharan (2003)
used a laboratory experiment to test (and confirm) the main results implied by Stavins’ theory.

9Similarly, in a permit trading model with transaction costs, Constantatos et al. (2014) show how permit
allocation can be used as a strategic trade instrument on the product market even without market power.

10Singh & Weninger invoke an argument in the spirit of Samuelson’s Factor Price Equalization theorem
whereby in mature ETSs productivity shocks should be the main drivers for trade. While this simplifies their
analysis, which accounts for the interaction with the product market, it is our contention that existing ETSs
are still far from mature in this respect, and therefore that heterogeneity in abatement costs and allocations
remains the main motive for trade (a fortiori in EU ETS Phase II, our policy environment in this paper).

11Our calibration methodology also replicates observed annual prices but this cannot be the key selection
criterion as it is not robust enough in itself for our purposes (e.g. Carlson et al., 2000) and price depends on
a variety of other factors our model does not explicitly account for (but which we control for). Additionally,
we focus more on the extensive margin than on the intensive margin impacts of trading costs, as the latter
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find fixed and proportional trading costs in the order of 5-20 ke per annum and 0.5-1.5 e per
permit traded (or 3-11% of the permit price) across years. Relative to zero trading costs, the
selected trading costs reduce the total number of sorting errors by 40%, their dispersion by
160%, and can rationalize 70% of autarkic compliance cases. Our model calibration exercise
thus shows how accounting for trading costs can be important for ex-post policy evaluation.
It also provides first-pass estimates of trading costs in the EU ETS where related empirical
studies have gathered anecdotal or indirect evidence (e.g. Venmans, 2016; Karpf et al., 2018)
or used econometric estimation techniques (e.g. Medina et al., 2014; Jaraitė-Kažukauskė &
Kažukauskas, 2015; Naegele, 2018). Interestingly, or perhaps reassuringly for our approach,
we obtain similar orders of magnitude as the latter studies.

Finally, we leverage our calibrated model to compare the quantitative results that a modeler
or regulator would obtain in assessing the total costs the ETS imposes on firms or the market
price impacts of additional supply-curbing policies, depending on whether or not transaction
costs are accounted for. In our setting, extra compliance costs resulting from incurred trading
costs and foregone efficiency gains are in the order of 7% of the compliance costs in a scenario
where transaction costs are ignored. In a similar vein, we find that the price increase following
a reduction in the total number of permits would be underestimated if one does not account
for transaction costs. This is because in our setting some firms holding excess permits do not
offer them for sale due to the transaction costs, implying that the price increase is inefficiently
large. Specifically, we find an underestimation factor of two for a one-sixth reduction in the
total cap, with variations in size of up to 30-40% depending on its incidence on firms.

The remainder of the paper is organized as follows. We close this section with a brief literature
review to contextualize our results and some limitations of our analysis. Section 2 provides
further background on transaction costs and trading patterns in EU ETS Phase II. Section 3
develops the emissions trading model in the presence of fixed and proportional trading costs,
and provides analytical and numerical illustrations. Section 4.1 describes the calibration of
the model to EU ETS Phase II data and the selection of trading costs. Section 4.2 utilizes the
calibrated model to evaluate and compare supply-tightening policy impacts in the presence
vs. absence of trading costs. Section 5 concludes. An Appendix collects analytical derivations
(A) as well as details on the consolidation methodology (B) and calibration results (C).

are hard to quantify meaningfully without precise abatement cost data.
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1.1 Contextualization

Before proceeding further, we wish to acknowledge some limitations of our approach in order
to put into perspective our modeling choices and results. These relate to temporal, behavioral
and institutional factors which may impinge on firms’ participation in and extent of inter-firm
trading but are not formally treated in the present framework.

Because these interrelated factors can distort and impair inter-firm trading incentives relative
to an idealized market environment without frictions, our approach, by exclusively focusing on
(pecuniary) transaction costs, may overstate the latter’s impacts. That said, the literature on
permit markets generally ignores these factors or, more exceptionally, treats them individually
as we discuss below. Against this background, we believe that our formal equilibrium analysis
of the impacts of transaction costs and underlying mechanisms at play constitutes a welcome
addition to the literature, as a fist step towards a more comprehensive framework. Relatedly,
our model calibration in Section 4.1 can be thought of as capturing the aggregate impact of
these various factors, rather than the exclusive impacts of transaction costs.

Banking and borrowing. Firms generally have some leeway in banking issued permits for
future use or borrowing future permits for present use. While this flexibility margin reduces
trading incentives, it is not sufficient to rationalize autarkic compliance and one should still
expect some potential profits from inter-firm trading. For instance, some firms may still find
it too costly to solely abate internally (e.g. when borrowing is restricted) while others may not
want to bear the opportunity cost of not selling at least some of their excess permits. Again,
this points us towards the prevalence of transaction costs, or other biases discussed below. In
this context, intertemporal trading can even serve as a substitute to costly spatial trading. As
a case in point, in the US Acid Rain Program (ARP), Toyama (2019) numerically estimates
significant trading costs, in a range of 15-35% of the market price per permit traded, which in
turn imply excess banking and less dispersed emissions as a result of lower inter-firm trades
relative to an idealized counterfactual scenario without trading costs.12

Except in Toyama (2019), however, the interplay between trading and banking decisions with
transaction costs is seldom accounted for.13 And more generally, to investigate specific policy

12Specifically, buyers (resp. sellers) face a lower (resp. higher) banking incentive as transaction costs drive
a wedge between firms’ marginal abatement costs – and ultimately a shadow value higher (resp. lower) than
the permit price. Thus, aggregate banking could in principle be higher or lower than in the first best.

13Rubin (1996) already noted that in the absence of quadratic transaction costs or bounds on firms’ trading,
a dynamic model suffers from indeterminacy as firms’ objective functions are linear in traded volumes – thus,
optimal banking and trading decisions cannot be identified. For instance, Kollenberg & Taschini (2016, 2019)
introduce quadratic transaction costs to have a well-defined optimization problem and simplify the derivation
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impacts, the temporal dimension of permit markets is often set aside in both numerical and
analytical approaches. For instance, Fowlie et al. (2016) develop a dynamic oligopoly model
to numerically compare firms’ entry/exit decisions and capacity investments on the product
market under different permit allocation regimes, but do not consider banking provisions to
isolate the allocation impacts. Similarly, to assess cost savings and health impacts under the
ARP, Chan et al. (2018) use a static model of compliance choices (fuel switch, permit pur-
chase, scrubber installation) to sidestep the complexities associated with modeling banking
and permit purchase as an option to install a scrubber or fuel switch at a later date.14 Both
approaches are therefore likely to overemphasize the spatial trading dimension.

As in Singh & Weninger (2017), we develop a static permit trading model in order to be able
to derive and exploit novel analytical results on the equilibrium impacts of transaction costs.
Since the temporal dimension is not formally treated, our calibration exercise should in turn
be seen as providing upper bounds for the transaction costs and their impacts.15 However,
we take firms’ observed banking dynamics as a given to adjust their allocations and mitigate
this limitation. Additionally, we wish to underline that the temporal dimension is also likely
to be subject to other specific costs and limitations, which relate to the other biases discussed
below. It is indeed difficult to elicit firms’ degree of intertemporal optimization (e.g. Ellerman
et al., 2016; Hintermann et al., 2016) and there is evidence of limited farsightedness or biased
beliefs (e.g. Chen, 2018; Fuss et al., 2018; Quemin & Trotignon, 2019).16

Behavioral biases. Autarkic compliance and stifled trading may also result from behavioral
biases. For instance, autarkic firms can be thought of as trading off profits from entering the
market with higher associated organizational and decision-making complexity. As heuristics
or rules of thumb, autarkic banking and borrowing may thus constitute viable, if not rational,
strategies when deemed to perform satisfactorily well relative to more complex and thus costly
procedures (e.g. Baumol & Quandt, 1964; Simon, 1979; Radner, 1996; Gigerenzer & Selten,
2003).17 That is, firms may have to make compromises as they juggle with other objectives,

of the equilibrium in closed form (relative to fixed costs, as they do not affect firms’ participation in trading).
14Similarly, Carlson et al. (2000) compute long-run gains from trade in a steady state of the ARP, bypassing

the issue of modeling intertemporal decisions by taking firms’ banking behavior as given.
15Similarly, Jaraitė-Kažukauskė & Kažukauskas (2015) and Naegele (2018) employ static frameworks for

their econometric estimations of transaction costs and their impacts on firms in the EU ETS.
16In the ARP, Chen (2018) shows that it took time for firms to form and adapt their beliefs about future

price levels, leading to biased banking strategies especially in the early stages of the program. In the EU ETS,
Quemin & Trotignon (2019) show how rolling finite planning horizons help reconcile the observed aggregate
banking dynamics with discount rates implied from futures’ yield curves.

17In the EU ETS for instance, Cludius & Betz (2020) observe that small firms are more likely to pursue a
single, simple trading strategy compared to larger, more professionalized firms that are more likely to interact
with different partners on different exchanges. Relatedly, Hortaçsu & Puller (2008) explain that large power
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perhaps perceived as more essential. For instance, based on interviews with plant managers,
Venmans (2016) notes that some perceive the ETS as a command-and-control type of policy,
especially when commodity trading is not part of their firms’ core business – in this case, the
carbon liability is typically dealt with by the accounting department.18 In other words, firms
may rather seek to attain compliance with the least additional complexity and disruption to
their routine operations than maximize profits from permit trading.

More generally, an insight from behavioral economics is that firms are likely to be subject to
endowment effects w.r.t. their permit holdings, which can also frustrate trading. Indeed, «en-
dowment effects are predicted for property rights [...] such as transferable pollution permits»
(Kahneman et al., 1990) because «losses are weighted substantially more than objectively
commensurate gains in the evaluation of prospects and trades» (Tversky & Kahneman, 1991).
This is confirmed by Murphy & Stranlund (2007) and Venmans (2016) with laboratory exper-
iments and interviews, respectively. As a result, firms’ willingness to pay for extra permits is
larger than their willingness to sell excess permits, implying that differences in firms’ marginal
abatement costs can persist post trading independently of transaction costs.19 Relatedly, we
note that other institutional factors may also affect firms’ compliance decisions, e.g. the level
of trust in institutions as uncovered by Jo (2019).

Intermediaries and trading venues. We further wish to acknowledge that our framework
restrains the compliance choice space for firms to a blunt ‘autarky vs. trading’ and that it does
not account for the involvement of non-regulated entities, typically banks and intermediaries.
That is, it does not formally distinguish between the different available trading platforms (e.g.
auctions, exchanges, over the counter), products, partners or combination thereof that firms
may possibly select.20 Relatedly, it only represents trading as a way of minimizing compliance
costs, but it ignores other motives to trade such as hedging or generating additional revenues
(e.g. Schleich et al., 2020).21 Yet, we note that these aspects structure the trading network,

producing firms in Texas perform closer to profit maximization than smaller ones as a result of fixed costs of
establishing and maintaining sophisticated auction bidding strategies, with clear economies of scale.

18Similarly, Martin et al. (2015), Liu et al. (2017) and Schleich et al. (2020) note that some firms perceive
the EU ETS as a pure compliance instrument rather than as a compliance market. Relatedly, Jaraitė et al.
(2010) highlight that small firms’ reluctance to sell excess permits may be explained by a cautious inclination
to keep and use permits for future compliance only rather than by transaction costs per se.

19Importantly, Kahneman et al. (1990) show and underline that, in a trade setting, transaction costs alone
are not sufficient to explain undertrading – endowment effects also play a role.

20As a possible way of accounting for these aspects in an ETS, see Dugast et al. (2019) for a model where
banks optimally choose to participate in over-the-counter or centralized markets, or both.

21We note that compliance-only trading leads to lower effectiveness and market liquidity relative to more
active trading strategies that are more likely to enable learning and thus to reduce information and search
costs, an aspect our framework does not capture.
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leading to hubs and concentration in trade (e.g. Borghesi & Flori, 2018; Karpf et al., 2018).22

Cludius & Betz (2020) also document the increasing engagement of banks in the EU ETS and
their liquidity-enhancing and trade-facilitating roles (e.g. account manager, hedging partner).
This highlights the need to understand how market microstructure shapes transaction costs,
which may decrease over time as markets become more mature (e.g. Joskow et al., 1998).

Finally, there exists evidence from bid-ask spreads and anomalies in cost-of-carry relationships
that price informativeness might be hampered in the EU ETS, see e.g. Friedrich et al. (2019)
for a review. However, in our deterministic framework, we cannot analyze how informational
efficiency is affected by the costs of trading and refer the reader to Dávila & Parlatore (2020)
for a formal analysis in financial markets. In fact, we underline that even without transaction
costs, informational efficiency is likely to break down as dispersed information cannot be fully
aggregated by the market in equilibrium (e.g. Grossman & Stiglitz, 1980). For instance, in
a frictionless ETS, Cantillon & Slechten (2018) demonstrate that the permit price is already
not a sufficient statistic when individual abatement costs are private information.23

2 Background

In this section, we first review the related empirical literature on transaction costs in permit
markets. We then analyze transaction and compliance data in Phase II of the EU ETS and
uncover stylized patterns in firms’ market behavior that point us towards the prevalence of
costs associated with inter-firm trading.

2.1 Transaction costs and empirical literature

In practice, firms regulated under an ETS face all sorts of non abatement-related costs.24 On
the one hand, implementation, regulatory and other administrative costs associated with the
monitoring, reporting and verification process account for a large share of collateral regulatory
costs (e.g. Jaraitė et al., 2010; Heindl, 2017). Since they are one-shot, sunk and faced by all

22Relatedly, in EU ETS Phase I, Balietti (2016) describes how trading activity by different types of traders
is influenced by permit price volatility and vice versa.

23For instance, Montagnoli & de Vries (2010) and Crossland et al. (2013) find that the EU ETS’s informa-
tional efficiency was limited in Phases I and II as a result of thin trading and the existence of both momentum
and overreaction in prices, leading to profitable trading strategies even in the presence of transaction costs.

24A more comprehensive taxonomy of transaction costs and an analysis of their determinants in the context
of environmental policy can be found in Coggan et al. (2010). See also Krutilla & Krause (2011) and McCann
(2013) for a discussion on how to shape policy to lower transaction costs and alleviate their impacts.
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firms, they do not affect compliance costs and choices at the margin and have no bearing on
market outcomes. On the other hand, firms incur transaction costs that are associated with
their trading activity, the focus of this paper. These include explicit monetary costs such as
brokerage and exchange membership fees as well as implicit costs such as search, information,
bargaining and internal decision-making costs (e.g. Hahn & Stavins, 2011).25

The vast majority of existing empirical analyses of transaction costs is based on the pioneering
US cap-and-trade programs or the EU ETS. For instance, they are found to have decreased
trading activity in the Wisconsin’s Fox River program (Hahn & Hester, 1989) and lowered cost
effectiveness by 10-20% in the US lead phasedown program (Kerr & Maré, 1998). Similarly, in
the Los Angeles basin (RECLAIM), Foster & Hahn (1995) analyze trading activity and find
that large transaction costs altered market behavior. Gangadharan (2000) econometrically
tests the existence and magnitude of transaction costs, finding that they were most influential
in the early years of the program, with a decrease in the probability of trading of 32%. This
notwithstanding, Fowlie & Perloff (2013) cannot reject the Coasean hypothesis that market
outcomes were independent of the initial endowments. These observations are corroborated
by similar evidence in the ARP where transaction costs were sizable (e.g. Toyama, 2019) but
diminished over time as the market developed and firms learned and gained experience (e.g.
Joskow et al., 1998; Carlson et al., 2000; Schmalensee & Stavins, 2013; Chen, 2018).

In the EU ETS, we separate how the literature has approached the issue of transaction costs
into three strands. The first one describes observed trading and compliance behavior through
surveys of managers’ practices or network-based analyses of transactions. Targeting subparts
of the ETS, viz. Belgian (Venmans, 2016), German (Heindl, 2012a, 2017), Irish (Jaraitė et al.,
2010), Swedish (Sandoff & Schaad, 2009) and manufacturing (Martin et al., 2015) firms, these
surveys reveal that permit trading is sparse, used mostly for compliance rather than revenue
purposes, and often a subsidiary objective in firms’ business operations. Analyses of patterns
in realized transactions concur to underline the influential role of non-compliance participants
in shaping the trading network. For instance, Karpf et al. (2018) bring to light a hierarchical
and assortative network structure in which most firms have to resort to local connections or
costly intermediaries, the implications of which are then discussed for price discovery, market
inefficiency and informational asymmetries.26 Similarly, Borghesi & Flori (2018) show that
some national registries are more central than others in the network, which is corroborated

25For instance, EEX, a major organized exchange platform for the EU ETS, charges 2,500 e for an annual
trading license plus ∼3 e per bundle of 1,000 permits (permits are only traded in such bundles on exchanges).

26In this context, Hintermann et al. (2016) note that the strong presence of intermediaries suggests that
transaction costs may be important.
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by a home-country bias in permit trades in Hintermann & Ludwig (2018).27

Further showing that permit trades are not exclusively driven by complementarity in marginal
abatement costs, the second strand consists of financial analyses of permit pricing properties.
For instance, Palao & Pardo (2012) find evidence of price clustering in permit futures which
they attribute to trading costs. Frino et al. (2010) and Medina et al. (2014) similarly interpret
the existence of positive bid-ask spreads. Relatedly, Charles et al. (2013), Schultz & Swieringa
(2014) and Friedrich et al. (2019) stress that such frictions could partly explain the observed
deviations from cost-of-carry arbitrage between spot and futures prices as predicted by theory.
This also suggests that some trading cost pass-through in permit prices may exist.

The third strand gathers three econometric analyses specifically focused on transaction costs.
Using transactions data for Phase I (2005-2007) and a set of constructed firm-level proxies for
(search and information) transaction costs, Jaraitė-Kažukauskė & Kažukauskas (2015) show
that transaction costs have significant impacts on firms’ decisions to participate in the market
and trade directly vs. indirectly via third parties.28 They make two important observations.
First, there are economies of scale as transaction costs constitute more of an impediment for
smaller firms. Second, their proxies also negatively affect firms’ extent of trading, suggesting
that transaction costs have both a fixed and a variable component. Similarly, Schleich et al.
(2020) carry out multivariate analyses of firms’ trading behavior (e.g. volume and frequency of
transactions, use of intermediaries and derivatives) based on their characteristics (e.g. sector,
number of employees and installations, net position) over 2005-2015 (see e.g. their Table 13).
For instance, Schleich et al. find that firms having a higher net position prior to trading (|βi|
in this paper), facing a higher competitive pressure or belonging to the energy sector make
a more active and efficient use of the EU ETS.

Finally, to our knowledge, Naegele (2018) is the only analysis to estimate the magnitude of
trading costs, specifically fixed entry costs for both the permit and offset certificate markets.
Using transactions data for Phase II (2008-2012), she measures these costs at the firm level as
the foregone profits (or opportunity costs) from choosing not to trade.29 She employs binary
quantile regressions, showing that cost distributions are skewed: the median and mean entry

27With a cluster-based analysis of transactions in Phase I, Betz & Schmidt (2016) also show that the bulk
of market participants are rather passive traders, with some of these hardly trading at all, and that the most
active accounts are to a large extent non-compliance ones (see also Cludius & Betz, 2020).

28Transaction costs have a greater impact on firms with a smaller number of installations, less experience
with trading (e.g. no in-house trading desk), or no specialized units dealing with emissions abatement. These
firms are more likely to trade less frequently or lower volumes, or to trade indirectly, or not to trade at all.

29As in our model calibration exercise in Section 4.1, Naegele’s estimates of fixed trading costs capture all
the frictions, i.e. monetary costs as well as the other factors discussed in Section 1.1.
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costs on the permit market are 7 and 21 ke respectively (many firms face rather small costs
but a few have very high costs). Interestingly, she also finds that firms holding excess permits
are relatively more reluctant to trade, highlighting a key asymmetry between short and long
firms: the former are under no compulsion to sell while the latter need to be proactive in one
way or another (e.g. purchasing permits) in order to achieve compliance.30

2.2 Anecdotal evidence in EU ETS Phase II (2008-2012)

EU ETS. Every year the EU issues emissions allowances (EUA) through free allocations and
auctions, whose total number makes up the cap on emissions. On 30 April of year t, regulated
entities are required to remit the equivalent number of EUAs to cover their verified emissions
in calendar year t− 1, one EUA accounting for one metric ton of carbon dioxide equivalent.
Options to demonstrate compliance include abatement of emissions (e.g. production curtail-
ment, input substitution, technological upgrade, end-of-pipe measure), purchasing EUAs on
the market, and tapping into one’s bank of EUAs or next-year’s free allocation.31

Firms can purchase EUAs on primary markets (i.e. auctions) or trade on secondary markets
(i.e. organized exchanges such as ICE and EEX, or over the counter). They may have recourse
to registered brokers (i.e. intermediaries) to trade on their behalf. Over Phase II (2008-2012),
our period of interest, the yearly averaged total trading volume amounted to 5.6 billion EUAs,
about three times the size of the annual emissions caps. Out of these, about 40% were traded
over the counter and 60% on exchanges (European Commission, 2015).32

Data. Trading activity is recorded in an electronic registry, the EU Transaction Log (EUTL),
whose aim is to track the EUA ownership structure across accounts and over time to guarantee
an accurate accounting of all issued EUAs. That is, the EUTL records the activity of account
holders by keeping track of any EUA transfer, allocation and reconciliation. Unfortunately,
it only gathers physical movements on secondary markets so we lack direct information about
derivative (i.e. forwards, futures or options) and primary (i.e. auctions) trading.33 In Phase

30Analyzing firms’ trading performances, Liu et al. (2017) obtain a similar result: short firms are relatively
more inclined to trade efficiently than long firms, among which that inclination is more heterogeneous.

31Unrestricted banking of issued EUAs is allowed since 2008 while borrowing is de facto permitted by the
overlap between the compliance and allocation cycles, but limited. Specifically, free (t+ 1)-vintage allocation
starts before year-t compliance is due, entailing that some (t+1)-vintage EUAs can be frontloaded to achieve
compliance in year t (except across trading phases).

32The EUTL data does not specify whether transfers took place on an exchange or over the counter.
33Derivative trading represents the biggest share of all transactions but associated data requirements are

prohibitive (private data for all operating exchanges would be needed and then linked to EUTL accounts). Be-
cause we aggregate EUTL data at the year level we capture the physical settlements of end-of-year derivative
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Figure 1: Firms’ annual market participation in Phase II

Note: Grey = participation, black = autarky. Slight year-on-year changes in the number of observations are
due to plant closures and new entrants. Percentages indicate the proportions of autarkic firms in volume as
a share of the total number of distributed permits each year.

II Member States only marginally exercised their right to auction up to 10% of all allowances
with a hefty 96% realized share of free allocations (European Commission, 2015).34

Compliance and transactions are recorded at the polluting site level (one account per instal-
lation). As the relevant unit of analysis is the firm (where trading, abatement and compliance
decisions can be centralized and coordinated between subsidiary installations) we consolidate
the EUTL database from the account to the firm level. Our consolidation methodology and
results are described in Appendix B. Our consolidated dataset contains 5,145 firms, binned in
six sectors, and transactions between them. The consolidation eliminates intra-firm transfers,
which can used by firms as a primary tool to achieve compliance before having to trade on the
market. Namely, a firm can pool the EUAs allocated to its installations in a central account
and redistribute them back in accordance with installations’ realized emissions. Despite that
EUAs changed accounts, they have not explicitly been traded. Such intra-firm redistribution
represents 27% of the total volume of transfers in Phase II.

Observed firms’ behavior. We utilize the consolidated dataset to scrutinize firms’ market
behavior over Phase II. Figure 1 reports individual annual market participation, showing that
around a third of firms did not register any trading activity, if not for annual allocation and

contracts but not those trades that clear in later calendar years.
34Accounting for auctioned EUAs would also be data intensive as it would require obtaining auctions data

from all Member States and then link it to EUTL accounts.
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Figure 2: Distribution of participating firms’ trading log10 volumes in 2009

Note: The two vertical dotted lines demarcate the 5th percentiles, departing from zero, for the distributions
of firm-level log10 volumes of cumulative annual purchases (on the right) and sales (on the left).

reconciliation.35 Note that autarkic firms are relatively small in size (representing only 9% of
overall yearly emissions caps on average) and average number of installations (see Table B.1)
compared to active firms, whatever their sector. This was to be expected due to economies
of scale and could point to the existence of fixed entry costs which can preclude some firms
from participating to the market.

We find that about 80% of autarkic firms received more permits than their verified emissions.
They held on to their surplus, de facto banking the entirety of their excess permits.36 Their
private bank at the end of Phase II amounted to 140% of their 2012 endowment on average.
The remaining 20% of autarkic firms emitted in excess of their annual allocations and engaged
in borrowing. On average, these firms frontloaded 30% of their future allocation on a year-on-
year rolling basis.37 Martin et al. (2015) find similar evidence of autarkic banking in Phase II
and unveil a threshold effect: some firms start selling excess permits only when their surplus
is large enough. As they argue, this behavior could be rationalized by a fixed cost of trading,
controlling for other hedging and precautionary saving motives.

35Martin et al. (2015) find a similar share of autarkic firms in Phase II based on interviews for a subset of
compliance entities. Martino & Trotignon (2013) also find evidence of autarkic behavior for 25% of regulated
installations based on a similar analysis of transaction and compliance data in Phase I.

36Because we do not observe firms’ abatement and cannot rule out the implementation of some abatement
measures a priori, we cannot distinguish between firms’ allocated surplus (i.e. possibly passive banking) and
resulting surplus (possibly associated with a proactive abatement and banking strategy).

37Ellerman & Trotignon (2009) and Martino & Trotignon (2013) also evidence borrowing in Phase I.
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Figure 2 depicts the distributions of the volumes of EUA purchases and sales at the firm level
in log base 10 for active firms in 2009 (notice that a firm can both buy and sell at different
points during the year). We find that active firms rarely engage in trades below some volume
cut-off and that they trade infrequently (we record only 4 to 16 transactions per firm per year
on average across sectors, see Table B.1).38 This suggests that a wedge between sellers’ and
buyers’ marginal abatement costs may persist in equilibrium and could point to the existence
of variable costs that are proportional to the extent (and frequency) of trading.

To summarize, the fact that gains from trade go unrealized at the extensive margin (autarkic
firms, Figure 1) as well as at the intensive margin (stifled trading, Figure 2) is suggestive of
the existence of fixed and proportional trading costs.39 As we will see in the next section in
more detail, fixed costs only impact firms’ participation in trading (extensive margin) while
proportional costs also affect firms’ extent of trading (intensive margin).

3 Model

We consider a unitary-mass continuum I of cost-minimizing firms indexed by i ∈ I regulated
under a market for emission permits. The model is static and assumes away firms’ production
decisions, i.e. we rule out any incidence or indirect effect of the permit market on the goods
markets that the firms serve. In the absence of the permit market, firm i releases ui units of
emission, its unregulated emission level, which can be abated at a cost of Ci(ui − ei), where
ei are firm i’s final emissions after end-of-pipe abatement. As is standard, we assume that
C ′i, C

′′
i > 0 and let Ci : ai 7→ αia

2
i /2 with ai = ui − ei ≥ 0, where we omit the linear term for

analytical convenience and without loss of generality up to an innocuous translation of the
results. The characteristics αi and ui are thus heterogeneous across firms.

Initial permit allocation is also firm-specific and denoted qi for firm i. We assume that the
overall cap on emissions Q is binding relative to overall unregulated emissions U , that is

Q =
∫
I
qidi < U =

∫
I
uidi,

but we allow for overallocation at the firm level, i.e. there exist some firms such that ui < qi,
and we let βi = ui−qi ≷ 0 denote firm i’s initial permit deficit. In this setting, the two firms’

38These observations are in line with the surveys’ results of Sandoff & Schaad (2009) and Heindl (2012b).
For instance, Heindl finds that about half of regulated German firms traded in 2009 and 2010, and two thirds
of those that traded did so only once per year, usually as the compliance deadline drew near.

39Other behavioral, perceptual and temporal aspects may also hinder trade, as discussed in Section 1.1.
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characteristics of interest are thus the αi’s and βi’s which we assume to be distributed over the
bounded supports [α; ᾱ] and [β; β̄] where 0 < α < ᾱ <∞ and

¯
β < 0 < β̄ <∞. When firms

cannot trade permits with one another, i.e. under autarky, firm i abates a0
i = max{0; βi}

with p0
i = αia

0
i the associated autarkic compliance shadow price. In other words, autarkic

compliance implies that short firms abate just as much as to cover their permit deficits βi > 0
while long firms do not use their surplus permits −βi > 0. We next set forth the frictionless
benchmark case before introducing fixed and proportional trading costs.

3.1 Benchmark: Frictionless equilibrium

Under frictionless conditions (i.e. unrestricted inter-firm permit trading, no trading costs), all
firms equate their marginal abatement costs to the prevailing market price p, i.e. αi(ui−ei) =
p for any firm i. Note that a feasible market price must be positive as the cap is binding and
it can be no larger than maxi p0

i = ᾱβ̄ for otherwise no firm would be willing to buy permits.
Proposition 1 computes firms’ net market positions and efficiency gains from permit trading
relative to autarky for any given feasible permit price on the market.

Proposition 1. Given a feasible market price for permits p ∈ (0; ᾱβ̄), the sets of buying and
selling firms are D(p) = {i |αiβi > p} and S(p) = {i |αiβi < p}, and individual efficiency
gains from permit trading on the market (w.r.t. autarky) write, for any firm i ∈ I

Gi(p) = (p0
i − p)2/(2αi) + pmax{0;−βi} ≥ 0, (1)

where p0
i = αi max{0; βi} is firm i’s shadow price of autarkic compliance.

Proof. See Appendix A.1.

Individual efficiency gains from permit trading in (1) consist of two non-negative components.
The first is common to all firms and proportional to the squared distance in autarky-market
prices. Specifically, selling (resp. buying) firms with p0

i < p (resp. p0
i > p) find it profitable to

abate more (resp. less) than under autarky and sell surplus (resp. purchase missing) permits
on the market. This goes on until all trading opportunities are exhausted, i.e. when marginal
abatement costs are equalized between all firms (to the market price). The second component
only accrues to those firms that are initially overallocated as they sell the entirety of their
initial surplus of permits at the market price at no cost.40

40This component complements the characterization of the effort-sharing gains in Doda et al. (2019).
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Imposing market closure, i.e.
∫
I
(ui−ei)di = U−Q, on top of firm-level optimality conditions

defines the frictionless market equilibrium, characterized by the equilibrium price

p? = (U −Q)
/∫
I
di/αi > 0. (2)

As is well known, p? is independent of how the ui’s and qi’s (and thus the βi’s) are distributed
among firms. This is the so-called Coasean independence property, i.e. frictionless equilibrium
outcomes does not hinge on the initial permit allocation and individual abatement efforts are
efficiently reallocated by the market. Note, however, that p? depends on the distribution of
the αi’s, {αi}i. Specifically, p? is proportional to the stringency of the overall constraint on
emissions set by the cap, i.e. U − Q, and the harmonic mean of {αi}i. Therefore, the more
skewed {αi}i towards lower values, the lower p? and vice versa.

The individual efficiency gains defined in (1) with p = p? stem from the cost-effective dis-
tribution of the total abatement effort U − Q among all firms. Specifically, firm i abates in
inverse proportion to αi, i.e. a?i = ui − e?i = p?/αi > 0, and all firms abate in equilibrium,
even initially overallocated ones. We say that the frictionless equilibrium is cost-effective in
the sense that (1) all firms are weakly better off participating to the market and (2) marginal
abatement costs are equalized between them. As described below, this is no longer the case
in the presence of pecuniary costs associated with permit trading.

3.2 Equilibrium with trading costs: Characterization

We consider that both permit buyers and sellers incur a market participation cost F and a
proportional trading cost T . Following Singh & Weninger (2017), trading costs are assumed
to be common to all firms and exogenously given.41 That is, firms have to pay a fixed fee F
to enter the market and trade permits and T is a mark-up on the permit price p, i.e. buying
firms pay p+ T per permit purchased, selling firms receive p− T per permit sold.42

In the presence of positive trading costs, i.e. F > 0 and/or T > 0, some firms can be better off
under autarky: buying (resp. selling) firms in the frictionless equilibrium can remain buyers

41This assumption enables both analytical tractability and model calibration. In practice, trading costs can
be firm specific and have non-zero curvature, e.g. convexity is generally considered in finance (e.g. Gârleanu
& Pedersen, 2013; Dávila & Parlatore, 2020). To simplify, we assume that variable costs are linear in traded
volume and we do not attempt to model how trading costs may arise endogenously (see e.g. Liski, 2001).

42In practice, the equilibrium price may also depend on how trading costs are distributed among buyers and
sellers. Exogenously fixing how trading costs are shared between firms simplifies analytical computations in
our multilateral trading framework, see Quemin & de Perthuis (2019) for a formal treatment of endogenously
determined transaction prices in an analogous setting with regulatory restrictions on bilateral permit trading.
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(resp. sellers) or prefer not to enter the market altogether (autarkic compliance). We consider
that firms make and adjust decisions pertaining to their participation in and extent of trading
to minimize individual compliance costs. That is, the only barrier to cost-effectiveness occurs
in the form of trading costs (see Section 1.1 for a discussion of other barriers). Additionally,
we assume that all firms fully acquit their compliance obligations (Stranlund, 2017).

Specifically, when F > 0 and T = 0, the market outcome is not cost-effective at the extensive
margin (some firms do not participate in the market so that some trades that would otherwise
be mutually beneficial go unrealized) but it remains cost-effective at the intensive margin (all
mutually beneficial trades materialize between participating firms as their marginal abate-
ment costs are equalized). When T > 0 and F = 0, cost-effectiveness at the intensive margin
further drops as participating firms abate in proportion to the actual permit price that they
face, i.e. inclusive of the proportional trading cost, which drives a wedge between buyers’ and
sellers’ marginal abatement costs in equilibrium. Specifically, the marginal abatement cost
experienced by a buyer exceeds that experienced by a seller by 2T .

Hence, given a market permit price p and a proportional trading cost T < p, firm i will find it
profitable to buy (resp. sell) permits on the market provided that p0

i > p+T (resp. p0
i < p−T ).

Additionally, given a market participation cost F ≥ 0, a buying (resp. selling) firm i will trade
permits on the market when its efficiency gains from permit trading net of both trading costs
Gi(p+T )−F (resp. Gi(p−T )−F ) are positive. Lemma 1 below defines market participation
price thresholds for prospective buying and selling firms.

Lemma 1. Given trading costs F and T and a market permit price p > T , it is profitable
for firm i to buy permits on the market when p < p̄i = αiβi − T −

√
2αiF . Symmetrically,

it is profitable for firm i to sell permits on the market when p >
¯
pi = αiβi + T +

√
2αiF if

βi > 0 or when p >
¯
pi = αiβi + T +

√
α2
iβ

2
i + 2αiF if βi ≤ 0.

Proof. See Appendix A.2.

Intuitively, firm i will purchase permits only if the market price is below its autarkic shadow
price p0

i = αiβi adjusted for the fixed and proportional trading costs (note p̄i is decreasing
with F and T ). Symmetrically, firm i will sell permits only if the market price is above its
cost-adjusted autarkic shadow price

¯
pi (which is increasing with F and T ). To gain further

insight, Proposition 2 relates firms’ market participation decisions to their characteristics.
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Proposition 2. Given a market participation cost F , a proportional trading cost T and a
market permit price p > T , the sets of buying and selling firms are defined by

D(p, F, T ) = {i |αi > α+(p, F, T ; βi) ∧ βi > 0}, and

S(p, F, T ) =
{
{i |αi < α−(p, F, T ; βi) ∧ βi > 0}

∪ {i |αi < α0(p, F, T ; βi) ∧ −F/(p− T ) < βi ≤ 0} ∪ {i | βi ≤ −F/(p− T )}
}
,

and A(p, F, T ) = I \ {D(p, F, T ) ∪ S(p, F, T )} denotes the set of autarkic firms, where

α±(p, F, T ; β) =
(
F + (p± T )β ±

√
F (F + 2(p± T )β)

)/
β2 > 0,

and α0(p, F, T ; β) = (p− T )2
/

(2(F + (p− T )β)) > 0.

In particular, D and S are of decreasing measure as F or T increases and D (resp. S) is
of decreasing (resp. increasing) measure as p increases, ceteris paribus. Individual efficiency
gains are Gi(p+ T )− F ≥ 0 (resp. Gi(p− T )− F ≥ 0) for firm i in D (resp. S).

Proof. See Appendix A.3.

Proposition 2 extends Proposition 1 in the presence of fixed and proportional trading costs.
Specifically, for p large (resp. low) enough one has D = ∅ (resp. S = ∅); for F = T = 0
one has A = ∅, D = {i|αiβi > p} and S = {i|αiβi < p}; for F and T large enough one has
D = S = ∅ and A = I. For intermediate admissible values of F and T and a feasible price
p, Figure 3 maps the zones where buying (red), selling (green) and autarkic (grey) firms are
located in the (α, β)-space. The notions of admissible costs and feasible price are formalized
in Lemma 2 below. Moreover, the blue (resp. yellow) arrows indicate how the participation
frontiers move in response to an increase in F and T (resp. p).43

It is worthwhile describing each zone demarcated in Figure 3. We proceed from left to right
and bottom to top:44

S1 When βi ≤ −F/(p − T ), firm i more than recovers the fixed cost by just selling its
initial surplus (−βi(p − T ) ≥ F ). Because this comes at no other cost for firm i, this

43The analytical derivations necessary to characterize these movements are collected in Appendix A.3.
44In an intertemporal setting with banking and borrowing our categories would need be amended to reflect

arbitrage opportunities, which would have a bearing on price formation and compliance costs. For instance,
firms in S1, S2, A1 and S3 could bank some surplus permits for future compliance or sales (if they expect
the discounted price to be higher or to sell them in larger batches to reduce trading costs) or firms in A2 and
D could borrow future permits to cover a share of today’s shortage and delay the full cost of compliance.
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Figure 3: Market participation frontiers given price p and trading costs F and T

holds whatever its marginal abatement cost αi. Moreover, firm i finds it profitable to
also abate (p− T )/αi > 0 and sell the corresponding amount of freed-up permits.45

S2 When −F/(p− T ) < βi ≤ 0, selling the initial surplus is not enough to cover the fixed
cost. Because firm i can abate at a sufficiently low cost at the margin (i.e. αi < α0), it
make profits by selling both surplus and freed-up permits (p− T )/αi − βi.

A1 When −F/(p− T ) < βi ≤ 0, selling the initial surplus is not enough to cover the fixed
cost. Because firm i cannot abate at a sufficiently low cost at the margin (i.e. αi > α0),
it is better off under autarky, i.e. not using its surplus permits and not abating.

S3 When βi > 0 but small and abatement is sufficiently cheap at the margin (i.e. αi < α−)
firm i abates to both meet compliance and sell some freed-up permits (p− T )/αi − βi.

A2 When βi > 0 is relatively larger and/or abatement is relatively less cheap at the margin
(i.e. α− ≤ αi ≤ α+) firm i is better off abating its deficit only so as to comply without
entering the market and incurring the associated trading costs.

D When βi > 0 becomes larger and/or abatement becomes more expensive at the margin
(i.e. αi > α+) firm i is better off incurring the trading costs so as to purchase permits
to cover some portion of its deficit, the remainder being abated internally.

Importantly, note that with F = 0 and T > 0, the demand and supply sets in Proposition 2
rewrite D = {i|αi > (p+T )/βi∧βi > 0} and S = {{i|αi < (p−T )/βi∧βi > 0}∪{i|βi ≤ 0}}.

45With p given, one might think that firm i abates less than when T = 0 by T/αi. However, because p in
equilibrium hinges on the trading costs, one cannot conclude prima facie. This applies to all zones.
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That is, overallocated firms would always find it profitable to sell their extra permits at a price
p > T so in our model a fixed entry cost is necessary to have that some overallocated firms
prefer autarky over market participation. Additionally, when F > 0 and both trading costs
increase, the last permit supplier has characteristics (

¯
α,

¯
β). It drops out of the market when

α0(p, F, T ;
¯
β) =

¯
α. Symmetrically, on the demand side, as trading costs rise, the last buying

firm has characteristics (ᾱ, β̄). It switches to autarkic compliance when α+(p, F, T ; β̄) = ᾱ.
Lemma 2 summarizes the above considerations.

Lemma 2. The fixed and proportional trading costs F and T are said admissible when

F < ᾱβ̄2/2 and 2T +
√

¯
β2

¯
α2 + 2

¯
αF +

√
2ᾱF < ᾱβ̄ −

¯
α

¯
β. (4)

When one of the above two conditions does not hold, the market breaks down. Given admis-
sible trading costs F and T , a permit price p is said feasible when

¯
β

¯
α + T +

√
¯
β2

¯
α2 + 2

¯
αF < p < ᾱβ̄ − T −

√
2ᾱF . (5)

Proof. See Appendix A.4.

Trading costs are said admissible when positive supply and demand can emerge on the market
– roughly speaking, when they are not too large. When this is not the case, the market breaks
down. A permit price is said feasible when it may clear the market – it is thus necessarily
bounded by the participation price thresholds of the last potential permit buyer (ᾱ, β̄) and
seller (

¯
α,

¯
β) on the market as given in Lemma 1. Note that the set of feasible prices in (5) is

not empty provided that trading costs are admissible, i.e. if they satisfy (4).

Equipped with Proposition 2, supply and demand functions can then be defined as follows

S(p, F, T ) =
∫
S(p,F,T )

(a∗i (p− T )− βi)di and D(p, F, T ) =
∫
D(p,F,T )

(βi − a∗i (p+ T ))di,

where a∗i (x) = x/αi is participating firm i’s optimal abatement decision given the net permit
price x = p± T . If we denote by h the density function of the βi’s and by g(·|β) that of the
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αi’s conditional on the βi’s, supply and demand rewrite

S(p, F, T ) =
∫ −F/(p−T )

¯
β

∫ ᾱ

¯
α

(
(p− T )/x− y

)
g(x|y)h(y)dxdy

+
∫ 0

−F/(p−T )

∫ α0(p,F,T ;y)

¯
α

(
(p− T )/x− y

)
g(x|y)h(y)dxdy

+
∫ β̄

0

∫ α−(p,F,T ;y)

¯
α

(
(p− T )/x− y

)
g(x|y)h(y)dxdy,

(6)

and D(p, F, T ) =
∫ β̄

0

∫ ᾱ

α+(p,F,T ;y)

(
y − (p+ T )/x

)
g(x|y)h(y)dxdy, (7)

Lemma 3 characterizes how S and D vary with F , T and p alternatively.

Lemma 3. For any admissible trading costs F and T and feasible market price p, it holds
that

∂S

∂p
> 0, ∂S

∂F
< 0, ∂S

∂T
< 0, ∂D

∂p
< 0, ∂D

∂F
< 0, and ∂D

∂T
< 0.

Proof. See Appendix A.5.

Equipped with Lemmas 2 and 3 and letting V = S−D denote the net permit supply function,
we can now state the following result.

Proposition 3. Given admissible trading costs F and T , there exists a unique feasible permit
price p̂ that clears the market, i.e. V (p̂, F, T ) = 0.

Proof. See Appendix A.6.

Proposition 3 ensures the existence and uniqueness of a market equilibrium in the presence of
admissible fixed and proportional trading costs. Except with zero costs where the equilibrium
collapses to the frictionless one, i.e. V (p?, 0, 0) = 0, it is otherwise apparent from (6) and (7)
that p̂ does not admit a simple closed-form solution in general. Below we thus seek to derive
some properties of the equilibrium in the presence of trading costs using comparative statics.

3.3 Equilibrium with trading costs: Some properties

In this section, we leverage the equilibrium framework developed in Section 3.2 to extend the
comparative static results in Stavins (1995) and Montero (1998). Specifically, we analyze the
sensitivity of market equilibrium outcomes to incremental changes in the trading costs and
firms’ permit allocations. We complement our formal analysis with analytical and numerical
examples to go beyond the impacts of incremental changes and gain further insight.
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3.3.1 Impacts of a change in trading costs

Consider an arbitrarily small increase dK > 0 in the trading cost K = F or T . By virtue of
the implicit function theorem, the resulting price response dp̂ in the vicinity of the equilibrium
reads

dp̂
dK = −∂V (p̂, F, T )/∂K

∂V (p̂, F, T )/∂p ≷ 0, (8)

which cannot unambiguously be signed in general. Indeed, Lemma 3 shows that ∂V/∂p > 0
but the sign of ∂V/∂K is indefinite and hinges on the relative magnitudes of the demand and
supply responses to the trading cost increase.46 For instance, when demand is more responsive
than supply, i.e. |∂D/∂K| > |∂S/∂K|, then dp̂/dK < 0. In words, the equilibrium price is
lowered as demand is relatively more constricted than supply, and vice versa. As a corollary,
it follows that

p̂ ≷ p?, (9)

depending on the distributions of the firms’ characteristics αi and βi and the levels of the
trading costs. This showcases the break-down of the Coasean independence property in the
presence of trading costs – in particular, equilibrium outcomes hinge on the initial allocation
of permits across firms. Further taking the total differentials of supply and demand yields

dS
dK = ∂S

∂K︸︷︷︸
<0

+ ∂S

∂p︸︷︷︸
>0

dp̂
dK︸︷︷︸
≷0

and dD
dK = ∂D

∂K︸︷︷︸
<0

+ ∂D

∂p︸︷︷︸
<0

dp̂
dK︸︷︷︸
≷0

, (10)

which, on the face of it, cannot unambiguously be signed either. Yet, dS/dK = dD/dK must
hold in equilibrium,47 which in conjunction with (10) implies that dS/dK = dD/dK < 0. In
words, an increase in the trading costs always lowers the equilibrium volume of trade.

As a result, the total regulatory control costs, i.e. the costs of abatement and trading summed
over all firms, always increase as K rises. Because firms choose whether to trade or not, and if
so the extent thereof, by minimizing their compliance costs, there exists a decreasing mapping
between the total volume of trade (which measures the degree of cost-effective reallocation of
abatement among firms) and the total control costs. In words, therefore, an increase in the
trading costs negatively impacts welfare by consuming more monetary resources and stifling
more trades which would have otherwise been mutually beneficial, at both the extensive and
intensive margins. Proposition 4 summarizes the above results.

46Note that even taking (8) in the small as F and/or T → 0 also yields an indefinite sign.
47One can formally see this by unpacking (8) with V = S −D and term identification with (10).
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Proposition 4. In response to an increase in the fixed or proportional trading cost, the equi-
librium volume of trade (resp. total regulatory control costs) always decreases (resp. increases)
and vice versa. However, the market equilibrium price may increase or decrease.

Proof. See above.

To illuminate our general results, we exclusively focus on the equilibrium price impacts of a
shift in the trading costs for two reasons. First, because Stavins (1995) and Montero (1998)
shut down this channel in their comparative static analyses of trading costs. Second, because
price impacts can go both ways, it is worthwhile investigating their determinants per se.

To go beyond the equilibrium sensitivity to incremental changes in the trading costs charac-
terized in Proposition 4, below we provide both analytical and numerical illustrations. First,
we consider two simple analytical examples for the distributions of the firms’ characteristics
whereby we are able to derive implicit closed-form solutions for the equilibrium price which
lend themselves to economic interpretation. Second, we develop three numerical examples in
more general cases to gain further insight into the price impacts of trading costs.

Analytical examples. We primarily focus on the price impacts of the fixed trading cost,
i.e. we let F ≥ 0 and T = 0. We also let firms be homogeneous in terms of initial net deficit,
i.e. βi = β = U − Q > 0 for all i in I, and proceed with two alternative distributions of the
αi’s, namely

g1(x) = 2x/(ᾱ2 − α2) and g2(x) = ᾱα/(x2(ᾱ− α)),

for x ∈ [ᾱ;α] and g1,2(x) = 0 elsewhere. These density functions are normalized to a unitary
mass and cherry-picked to ensure both analytical tractability and clear-cut results which are
otherwise hard to come by.48 They represent two opposite distributions of the αi’s: with g1

(resp. g2), {αi}i is skewed towards high (resp. low) values. The sketches of the derivations
leading to the following results are gathered in Appendix A.7.

Case 1. Fix βi = β > 0 for all i in I and let g = g1. Then p̂1 is implicitly defined by

p̂1 +
2F
√
F (F + 2βp̂1)
β3(ᾱ− α) = p?1, (11)

where p?1 = β(ᾱ + α)/2. In this case, p̂1 ≤ p?1 with equality in F = 0 and dp̂1/dF < 0.
48For instance, when {αi}i is uniformly distributed we arrive at an analytically intractable transcendental

equation in p̂. The ordering between p̂ and p? thus depends on F in a non-straightforward way.
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Case 2. Fix βi = β > 0 for all i in I and let g = g2. Then p̂2 is implicitly defined by

p̂2 −
4Fᾱ2α2

(ᾱ2 − α2)p̂3
2

√
F (F + 2βp̂2) = p?2, (12)

where p?2 = 2βᾱα/(ᾱ + α). In this case, p̂2 ≥ p?2 with equality in F = 0 and dp̂2/dF > 0.

Observe that p?1 > p?2. Indeed, with a homogeneous deficit β across firms the frictionless price
is higher the more skewed the distribution of the αi’s towards high values. Crucially, a fixed
trading cost tends to mitigate this. When the αi’s are tilted towards high values, introducing
or increasing the fixed cost tends to evict more firms with a high αi (i.e. demanders) than
with a low αi (i.e. suppliers), ceteris paribus. This entails that demand is more constricted
than supply, hence a downward pressure on the price. The converse holds when the αi’s are
skewed towards low values as a higher fixed cost shrinks supply more than demand, ceteris
paribus. Hence, a fixed trading cost tends to have a tempering effect on the price when the
frictionless price is ‘high’ – and conversely, it tends to hike p̂ when p? is ‘low’.

Numerical examples. To expand the parameter space and enrich the analysis, we let {αi}i
and {βi}i follow independent beta distributions B(αα, βα) and B(αβ, ββ) and consider both
fixed and proportional trading costs simultaneously. We set

¯
α = 1, ᾱ = 10,

¯
β = −5 and

β̄ = 10 and consider three cases: both {αi}i and {βi}i uniform (i.e. αα = αβ = βα = ββ = 1);
{αi}i skewed towards high values (i.e. αα = 3, βα = 1) with {βi}i uniform; and {βi}i skewed
towards high values (i.e. αβ = 3, ββ = 1) with {αi}i uniform.49

Given the trading costs F and T we can solve numerically for p̂0 such that V (p̂0, F, T ) = 0,
jointly verifying the cost admissibility conditions. Specifically, we seek p̂0 = min p such that
D − S > 0 and p̂0 is feasible. The left column in Figure 4 depicts our results and shows the
ratios p̂0/p

?
0 in the (F, T )-space in the three cases, with V (p?0, 0, 0) = 0. The thick black line

delineates the admissible cost range defined by (4), i.e. the market breaks down above it.

With {αi}i and {βi}i both uniform (Figure 4a) the market price in the presence of trading
costs is always larger than absent trading costs (p̂0/p

?
0 ≥ 1) and it gets larger the larger F or

T (contour lines are downward-sloping) but increases relatively more with T than F (contour
lines are convex). For instance, p̂0 can be five times as large as p?0 when F = 0 and T is large
while it is at most twice as large when T = 0 and F is large. This is no longer so in the other
two cases: p̂0 can be lower than p?0 for some trading costs (e.g. when F is large and T small

49The cases where {αi}i or {βi}i are skewed towards low values lead to magnified but qualitatively similar
results as for the case of {αi}i and {βi}i both uniform, hence omitted here.

26



Figure 4: Ratios p̂0/p
?
0 (left) and p̂t−p̂0

p̂0

/
p?t−p?0
p?0

(right)

(a) αα = βα = αβ = ββ = 1 (p?0 = 9.8) (b) αα = βα = αβ = ββ = 1 (p?t = 13.7)

(c) αα = 3, βα = αβ = ββ = 1 (p?0 = 18.0) (d) αα = 3, βα = αβ = ββ = 1 (p?t = 25.2)

(e) αβ = 3, αα = βα = ββ = 1 (p?0 = 24.4) (f) αβ = 3, αα = βα = ββ = 1 (p?t = 28.3)

Note: The subscript 0 (resp. t) indicates the pre (resp. post) supply tightening situation.
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in Figure 4e) and is non-monotonic in the trading costs (i.e. contour lines have distorted U
shapes in Figures 4c and 4e). In particular, p̂0 increases with the trading costs when they
are ‘low enough’ but the converse holds when they are ‘large enough’.

Generally speaking, we find that the higher the frictionless price to start with, the relatively
lower the market price in the presence of trading costs. Moreover, only when the frictionless
price is sufficiently high can trading costs lead to a lower price level for some cost pairs. This
relates to the aforementioned tempering price effect of trading costs.

3.3.2 Impacts of a change in total supply and individual allocations

We now study the equilibrium price impacts of a shift in total supply and firm-level allocations
in the presence of constant trading costs. We refer the reader to Stavins (1995) and Montero
(1998) for illustrations of how the total volume of trade and compliance costs vary with firms’
initial allocations. Compared to these comparative static analyses taking the perspective of a
given firm (i.e. assuming the market price is invariant), we use our equilibrium framework to
analyze the case where all firms’ allocations can vary simultaneously, which affects both the
market price and firms’ trading decisions. This in turn leads to different results. Contrary to
Stavins (1995) for instance, the way permits are allocated among firms does affect equilibrium
outcomes even with linear marginal trading costs.

We consider an arbitrarily small variation in {βi}i, i.e. we let βi change to βi+ dβi for all i in
I, possibly with dβi 6= dβj, and then let the price adapt to p̂+dp̂ so that V (p̂+dp̂, F, T ) = 0
remains satisfied. This is tantamount to taking the total differential of V (p̂, F, T ) = 0 w.r.t. p̂
and all βi’s. With a slight abuse of notation for the partial derivatives w.r.t. the βi’s, one has

∂V (p̂, F, T )
∂p

dp̂+
∫
I

∂V (p̂, F, T )
∂βi

dβidi = 0. (13)

For the sake of the argument, we here only consider induced changes at the intensive margin
(i.e. within S and D as given prior to the change in {βi}i) and ignore those at the extensive
margin (i.e. changes due to the shifts in the locations of the participation frontiers in Figure
3). Extensive margin impacts, which render the exposition more complex but do not change
the nature of the results, are formally treated and discussed in Appendix A.8.

Noting that ∂V
∂βi

= −
∫
S(p̂,F,T )∪D(p̂,F,T )

δ(j = i)dj where δ(·) denotes the Dirac distribution,
(13) simplifies to

∂V (p̂, F, T )
∂p

dp̂ =
∫
S(p̂,F,T )∪D(p̂,F,T )

dβidi, (14)
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meaning that the sign and magnitude of dp̂ hinge upon the overall net change in the βi’s over
S(p̂, F, T )∪D(p̂, F, T ). This is because allocation changes for autarkic firms have no market
impacts given our exclusive focus on the intensive margin impacts. Interestingly, note that
the mere reshuffling of individual allocations, while keeping total supply invariant, may also
influence the price outcome as the dβi’s may not cancel out over S(p̂, F, T ) ∪ D(p̂, F, T ).

Now consider that total supply is tightened by dQ > 0 and that the tightening is uniformly
distributed among all firms.50 Because I is of mass one, we have that dβi = dQ for all i. If
we let | · | denote the mass (or measure) of a set, (14) then rewrites

dp̂
dQ = |S(p̂, F, T )|+ |D(p̂, F, T )|

∂V (p̂, F, T )/∂p > 0, (15)

that is, the price response to the tightening is always positive in the presence of trading costs.
But how does its magnitude compare to that in the frictionless case? Without trading costs,
(14) reads

∂V (p?, 0, 0)
∂p

dp? =
∫
I

dβidi = dQ, (16)

so that
dp̂/dQ
dp?/dQ =

(
|S(p̂, F, T )|+ |D(p̂, F, T )|

)
︸ ︷︷ ︸

distribution effect ≤1

∂V (p?, 0, 0)/∂p
∂V (p̂, F, T )/∂p︸ ︷︷ ︸

price effect ≥1

≷ 1. (17)

The ordering of dp̂ and dp? is ambiguous in general and hinges on two countervailing forces.
First, the overall impact on the net demand for permits (holding the price constant) relative
to that without trading costs which ultimately depends on how the tightening is distributed
among firms. In the intensive margin only case, for a given incidence of the tightening, this
distribution effect always works to mitigate the price increase, all the more so that trading
costs are large and the mass of autarkic firms is sizable. Second, the ratios of the sensitivities
of the net supply functions to a price change with and without trading costs. In the intensive
margin only case, this price effect always works to magnify the price increase, all the more
so that trading costs are large.51 This yields the overall ambiguous effect in (17).

We now state the following result in the general case of any change in supply inclusive of the
induced impacts at both the intensive and extensive margins.

50Two alternative firm-level distributions of the tightening are considered in Appendix A.8.
51Since |S|+|D| ≤ |I| = 1, distribution effect ≤1 and decreases as |A| increases. ∂V (p?, 0, 0)/∂p =

∫
I di/αi

while ∂V (p̂, F, T )/∂p =
∫

S∪D di/αi so price effect ≥1. See Appendix A.8 for more details.
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Proposition 5. The market price response to a supply change can be amplified or dampened
in the presence of trading costs relative to frictionless conditions. This hinges on a distribution
effect (the relative impact on net permit demand holding the price constant) and a price effect
(the relative price elasticity of net permit demand) which are generally countervailing.

Proof. See Appendix A.8.

In the general case the distribution and price effects can be greater or lower than one. Specif-
ically, the distribution (resp. price) effect is likely to be predominantly lower (resp. greater)
than one, except possibly when trading costs are small. In particular, when F = 0, the ex-
tensive margin effects are nil so that this case collapses to the above analysis. Appendix A.8
also discusses how the magnitude of the distribution effect depends on the type of firm-level
incidence of the supply change. We now turn to analytical and numerical examples.

Analytical examples (cont’d). We consider that pursuant to some regulatory amendment
overall supply Q is reduced by an arbitrarily small amount dQ > 0, which translates into a
small increase dβ = dQ in the firms’ uniform deficit. We have the following results.

Case 1. The market price response to a small uniform supply tightening of dβ is positive, i.e.
dp̂1/dβ > 0. However, only when p̂1 is not too small does it hold that dp̂1/dβ ≥ dp?1/dβ > 0,
specifically when (p?1 − 3F/β)/5 ≤ p̂1 ≤ p?1.

Case 2. The market price response to a small uniform supply tightening of dβ is positive, i.e.
dp̂2/dβ > 0. However, only when p̂2 is not too large does it hold that dp̂2/dβ ≥ dp?2/dβ > 0,
specifically when p?2 ≤ p̂2 ≤ p?2 +

√
p?2(p?2 + 3F/(2β)).

Intuitively, tightening supply always implies higher price levels in the presence of a fixed cost,
but the price rise can be magnified or dampened relative to frictionless conditions. The two
cases suggest that the price response is more likely to be magnified in the presence of a fixed
cost when p̂ is not too distant from p? prior to the tightening, ceteris paribus. We investigate
this further with numerical examples.

Numerical examples (cont’d). We illustrate a uniform supply tightening with a shift in
the support of the distribution {βi}i from [−5; 10] (indexed by 0) to [−4; 11] (indexed by t).
The right column in Figure 4 depicts our results and shows the ratios of the relative induced
price increase p̂t−p̂0

p̂0
with trading costs to the relative induced price increase under frictionless

conditions p?t−p?0
p?0

in the (F, T )-space in the three cases considered.

We find that the relative induced price increase in the presence of trading costs is less pro-
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nounced the larger p̂0 relative to p?0 to start with. Consequently, it tends to be larger under
frictionless conditions than present trading costs most of the time in our simulations. Only in
one case do we find that the relative price increase is larger with trading costs than without,
namely in Figure 4f when F is large and p̂0 is close to or lower than p?0.

4 Illustration

In this section, we illustrate our theoretical results based on actual market data. Specifically,
we consider the universe of allocations, emissions, transactions and prices in Phase II of the
EU ETS (2008-2012) to discipline both the calibration of model parameters and selection of
practically relevant values for the fixed and proportional trading costs. We next leverage our
calibrated model to compare the relative implications of various supply-tightening policies in
terms of market price responses and compliance costs, with and without trading costs.

4.1 Calibration to EU ETS Phase II

We utilize our transaction and compliance databases consolidated at the firm level to calibrate
the model parameters for each year in Phase II. We proceed in two steps. First, we infer yearly
firms’ characteristics (αi,t, βi,t) conditional on given pairs of trading costs (F, T ). Second, we
select the trading cost pair that best rationalizes firms’ observed participation in trading and,
where applicable, the sign of their net market positions.

4.1.1 Inferring firms’ characteristics with given trading costs

Yearly initial allocations and verified emissions are readily available at the polluting unit (or
account) level from the EUTL which we consolidate at the firm level (see Appendix B for the
methodology). We respectively denote them qri,t and eri,t for firm i in year t. We also compute
yearly-averaged EUA spot prices prt using ICE data. Except for the consolidation procedure,
this is quite straightforward. We now need to make assumptions to set firms’ yearly baseline
emissions and marginal abatement cost slopes (which are both unobservable quantities) and
control for banking and borrowing in our static setting. In a context where relevant quantities
are either scarce or hard to reconstruct ex post, we opt for workable assumptions allowing
for a first-pass yet reasonable model calibration.

We set year-t baseline emissions ui,t as the moving averages of i’s verified emissions over the
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three preceding years t− 3 to t− 1. This captures the persistence in emissions demand over
time and a steadily declining aggregate trend (e.g. Quemin & Trotignon, 2019). This proxy is
further adjusted with yearly-fixed effects ηt introduced below. We exclude firms with implied
negative abatement, i.e. with ui,t− eri,t < 0, which is the case for 30% of the firms on average
across years. This leads to some changes in the size of the annual samples of firms.

Next, we set firms’ marginal abatement cost slopes based on the equimarginal value principle
applied to the total permit cost (i.e. permit price adjusted for the proportional trading cost)
using observed prices prt and implied abatement levels ui,t−eri,t. The imputed αi,t’s thus need
to be conditioned on observed market participation decisions and net positions, that is

αi,t =


(prt + T )/(ui,t − eri,t) if i ∈ Drt
(prt − T )/(ui,t − eri,t) if i ∈ Srt
prt/(ui,t − eri,t) if i ∈ Art

(18)

where Drt , Srt and Art are the sets of observed net buying, net selling and autarkic firms in
year t, respectively. In (18) we assume that autarkic firms treat the permit price as a relevant
signal to guide their abatement decisions though they do not effectively trade.

We then adjust firms’ allocations for the temporal dimension that our static model does not
capture, i.e. we compute effective allocation levels net of temporal intra-firm redistribution.52

To that end, we begin by imputing firms’ permit bank dynamics as

bri,t = bri,t−1 + qri,t + xri,t − eri,t, (19)

where bri,t is firm i’s observed bank carried over from year t to year t+ 1 with bri,2007 = 0, and
xri,t is firm i’s observed net permit purchase in year t. Then the banking-adjusted allocation
for firm i in year t, denoted by qai,t, is set as

qai,t =

 qri,t − (bri,t − bri,t−1) = eri,t − xri,t if i ∈ Drt ∪ Srt
qri,t − 1

2(bri,t − bri,t−1) = 1
2(qri,t + eri,t) if i ∈ Art

(20)

For observed trading firms, effective allocations are simply raw allocations net of yearly bank
increments bri,t − bri,t−1. That is, observed buying (resp. selling) firms are ex-ante short (resp.
long) by their ex-post net traded volumes. For observed autarkic firms, we add a 1

2 factor in
front of the bank increment. Were it not for this factor, these firms would by construction

52This implies that (1) trading costs only affect the extent of annual inter-firm trading in isolation of other
years and (2) each year temporal intra-firm trading is carried out before spatial inter-firm trading.
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have no need to trade ex ante as qai,t would coincide with eri,t since xri,t = 0. But because one of
our aims is to recover autarkic compliance via the introduction of trading costs, this arbitrary
factor leaves some trading opportunities open for these firms – here selling (or buying) up to
half of their yearly permit surpluses (or deficits). Indeed, as discussed in Section 1.1, autarkic
firms could in principle increase profits by trading on the market to some extent rather than
exclusively exploiting the temporal flexibility margin.53 From (20) we finally compute annual
permit deficits as βi,t = ui,t − qai,t and Table C.1 contains some descriptive statistics on the
inferred firms’ characteristics {αi,t, βi,t}i,t binned by sectors.

So equipped, we can populate the sets Dt, St and At defined in Proposition 2 for any feasible
price p and admissible trading costs (F, T ). We consider a mesh where F and T respectively
range from 0 to 200 ke and 0 to 1.5 e/tCO2 with steps of 1 ke and 0.05 e/tCO2, and p can
vary freely within the feasibility region as per (5). This defines supply St and demand Dt as
per (6-7) for any discretized pair (F, T ). For any given pair, we can then solve for the year-t
equilibrium price p̂t, namely p̂t = min p subject to Dt − St > 0.

4.1.2 Selecting relevant trading costs

As Carlson et al. (2000, p. 1319) observe, the failure of firms to realize cost savings through
trading cannot be inferred simply by comparing price levels obtained under different modeling
scenarios with those that actually prevailed. Specifically in our case, a multiplicity of trading
cost pairs can replicate the observed price levels prt . Additionally, price formation is influenced
by a variety of other factors our model does not explicitly account for. As such, the ability to
replicate observed prices is not robust enough a criterion to discriminate between cost pairs.
Accordingly, we eliminate the initial difference between prt and the p̂t’s for all pairs.54

To this end we introduce additive yearly fixed effects ηt adjusting firms’ marginal abatement
cost schedules to αi,t(ui,t − ei,t) + ηt, de facto shifting firms’ initial permit deficits by ηt/αi,t.
For instance, the ηt’s can be thought of as partly controlling for common shocks to or trends
in firms’ baseline emissions, or for firms’ intertemporal trading decisions, thereby improving
on our first-pass proxies for baselines and banking-adjusted allocations. Specifically, ηt > 0
corrects for higher baselines or market-wide incentives to bank or both. We then pick the ηt

53The 1
2 factor is arbitrary and reflects a lack of relevant empirical guidance. It affects our selected values

for the trading costs thus: given the market-wide bank build-up in Phase II, a higher factor would imply less
surplus permits available, hence lower trading costs to rationalize autarkic compliance, and vice versa.

54This implies that we ignore the direct impacts that trading costs may have on price formation when we
select a cost pair but we do capture their indirect impacts i.e. as firms adjust their participation in, and their
extent of, trading based on the cost levels.
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Table 1: Typology of sorting errors

Observations
Autarkic Buyer Seller

M
od

el Autarkic – E1 E2
Buyer E3 – E5
Seller E4 E6 –

that eliminates the initial price wedge: for every cost pair (F, T ) and year t there corresponds
a unique ηt ensuring that p̂t = prt (if initially p̂t < prt then ηt > 0 and vice versa).

To make an educated guess about practically relevant trading costs values and discriminate
between cost pairs, we propose to discipline the selection of trading costs by jointly minimizing
the total number of modeling sorting errors and their dispersion across error types. That is,
this selection criterion minimizes discrepancies between firms’ participation in trading and
their net market positions as predicted by the model vs. as observed in the data.

Among the six error types listed in Table 1, types 1-4 relate to the firms’ market participation
decisions while types 5-6 relate to their net market positions conditional on participation.
For example, the set E1 (resp. E5) contains observed buyers (resp. sellers) mistakenly sorted
as autarkic (resp. buyers) by the model given a triplet (F, T, ηt). When F = T = 0, no firm
chooses autarky in the model so that E1 = E2 = ∅. As F and/or T rises and the autarkic
zone in Figure 3 widens the cardinalities of these sets, |E1| and |E2|, increase while both |E3|
and |E4| decrease, indicating a trade-off in the cost levels. Recall that F > 0 is necessary to
explain that some overallocated firms may remain autarkic, which causes |E4| to shrink. We
note that |E5| and |E6| are negligible relative to the numbers of participation-related errors.55

This was to be expected because we set trading firms’ effective allocations in line with their
observed net market positions by construction in (20).

Formally, our twin objective is to (1) minimize the total number of sorting errors and (2) favor
balanced distributions of these errors among error types. Goal (2) is congruent with maximiz-
ing Shannon’s entropy applied to the distribution of error types {|E1|, . . . , |E6|}. Specifically,
letting Pi = |Ei|

/∑6
j=1 |Ej| denote the proportion of type-i errors, Shannon’s entropy H is

defined by

H = −
6∑
i=1
Pi log(Pi) ∈ [0; log(6)],

and is maximal when the errors are evenly distributed, i.e. Pi = Pj for all i 6= j. With N the
55Specifically, it suffices that F or T be positive but small for |E5| and |E6| to become nil.
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Table 2: Annual calibration results (2008-2012)

prt ηt F T T/prt H/ log(6) 1−∑6
i=1 |Ei|/N

2008 19.6 4.1 10 0.55 2.8% 0.74 0.90
2009 13.3 -0.3 18 1.40 10.5% 0.66 0.85
2010 14.3 8.1 5 0.55 3.8% 0.76 0.89
2011 13.1 0.3 16 1.30 9.9% 0.66 0.87
2012 7.4 0.3 8 0.60 8.1% 0.67 0.90

Note: prt , ηt and T given in e/tCO2. F given in ke.

total number of firms in the sample, we thus select (F, T ) to maximize the normalized index

(
H/ log(6)

)
×
(
1−

6∑
i=1
|Ei|/N

)
∈ [0; 1].

Given the aforementioned trade-off in trading cost levels and as detailed further in Appendix
C, the normalized index is mostly determined by its entropy component which is inverted U
shaped, hence globally concave. Our calibration results are reported in Table 2. In 2009, 2011
and 2012, η is close to zero, suggesting that baselines and effective allocations are on average
satisfactorily parametrized for these years. In 2010, however, η is significantly larger, implying
that an upward shift in the firms’ initial deficits is necessary to reproduce observed prices.
This can be explained by the economic downturn which dramatically decreased emissions in
the three preceding years and thus our proxy for 2010 baselines.

The selected annual values for F and T vary between 5 and 18 ke, and 0.55 and 1.40 e/tCO2

(or 2.8 and 10.5% of the EUA price) across years.56 To substantiate the improvement relative
to zero trading costs on average across years (see Appendix C for graphical illustrations and
more details in a given year), the selected cost pairs decrease the number of sorting errors by
40%, rationalize 70% of individual autarkic compliance decisions and reduce the dispersion
across sorting error types as measured by a 160% increase in Shannon’s entropy.

Although our approach to selecting trading costs differs from the various methods used in the
related empirical literature, our results are in the same range. For instance, Naegele (2018)
estimates median and mean fixed permit market entry costs of 7 and 21 ke across firms in
Phase II, respectively.57 Similarly, estimates of proportional trading costs are in the order of

56As a robustness check, we increase (resp. decrease) all firms’ baseline emissions by 5%. As expected, the
calibrated ηt’s are smaller (resp. larger). However, the resulting variation in the selected values for F and T
is negligible relative to the reference case.

57See also Table 1 in Naegele (2018) for a literature overview of transaction cost estimates in the EU ETS.
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0.1 e per permit traded but can go up to 2 e for small firms (e.g. Jaraitė et al., 2010; Heindl,
2012b; Joas & Flachsland, 2016). Additionally, Frino et al. (2010) and Medina et al. (2014)
find a bid-ask spread for Phase II futures contracts ranging from 1 to 10% of the EUA price,
which can give a rough sense of the magnitude of proportional trading costs.

4.2 Supply control with vs. without trading costs

Trading costs affect equilibrium outcomes, which has important implications for policy design,
evaluation and implementation. We thus utilize our calibrated model to appraise the market
price responses to supply-curbing policies in the presence vs. absence of trading costs and
how they depend on their incidence across firms.58 We also evaluate how total compliance
costs vary as supply is tightened depending on how firms change their trading behavior.

4.2.1 Impacts on market prices

We evaluate the price impacts of an arbitrary one-sixth tightening in (annual) supply in 2009
and 2012 for each select sample of firms.59 We consider these two years because they feature
negligible adjustment terms ηt and differing values for the trading cost pairs and market price
levels prt . We assume that permits are withdrawn directly from firms’ allocations according to
four alternative scenarios: (1) proportionally to their initial allocations, (2) uniformly across
all firms, or uniformly across overallocated (3) or underallocated (4) firms exclusively. We
take two alternative perspectives in this appraisal: one which is oblivious to the trading costs
in the model calibration, the other in which trading costs are accounted for and selected as
in Section 4.1.2. Our simulation results are reported in Table 3.

As expected, the incidence of the cutback across firms is neutral vis-à-vis the magnitude of
the market price increase under the assumption of no trading costs. This is no longer the case
when one accounts for trading costs: as Proposition 5 indicates, the magnitude of the market
price increase, relative to the frictionless case, depends on a price effect and a distribution
effect, i.e. how the tightening is distributed among firms.

Two findings emerge from our calibrated examples. First, the price increase is always larger
when one accounts for trading costs than in the frictionless case, irrespective of the incidence

58This is a timely issue in a context where the Market Stability Reserve (MSR) is bound to reduce annual
supply schedules in the short to mid term (e.g. Perino, 2018; Quemin & Trotignon, 2019).

59This is roughly the magnitude of the yearly reductions in auctions due to the MSR in 2019 and 2020,
i.e. about 380 MtCO2 for a total cap of about 1,850 MtCO2 (European Commission, 2019). The magnitude
of the tightening does not affect the qualitative nature of our results, see also Section 4.2.2.
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Table 3: Price responses to a 1
6 supply tightening with different incidence scenarios

Incidence scenario
(1) (2) (3) (4)

2009
(pr=13.3)

(p? − pr)/pr 0.70 0.70 0.70 0.70
(p̂− pr)/pr 1.11 1.29 1.19 1.59

(p̂− pr)/(p? − pr) 1.59 1.84 1.70 2.27

2012
(pr=7.4)

(p? − pr)/pr 1.04 1.04 1.04 1.04
(p̂− pr)/pr 2.14 2.47 2.27 2.79

(p̂− pr)/(p? − pr) 2.06 2.38 2.18 2.68

Note: pr is the pre-tightening reference price in e/tCO2, p? (resp. p̂) is the post-tightening price without
(resp. with calibrated) trading costs. Incidence scenario: permits are withdrawn (1) proportionally to firms’
allocations, uniformly across all (2), overallocated (3) or underallocated (4) firms in the annual samples.

scenario. This is because in our samples of firms some potential suppliers are autarkic due to
the trading costs so that the market is initially tighter than in the frictionless case, which in
turn tends to amplify the tightening-induced price increase. Additionally, the lower the price
level to start with, the larger the relative tightening-induced price increase and the larger the
absolute price increase in the absence vs. presence of trading costs – as previously hinted at
in the analytical and numerical examples in Section 3.3. Relatedly and crucially, note that
larger trading costs (as in 2009 w.r.t. 2012) should not be thought of as a sufficient condition
to sustain larger price responses to a supply tightening.

Second, the incidence of the tightening has significant impacts on the resulting price increase,
which can vary in size by 30-40% across incidence scenarios. Intuitively, we see that uniformly
targeting the supply tightening on underallocated (resp. overallocated) firms leads to a larger
(resp. smaller) price increase than when it is evenly distributed among all firms.60 The lowest
price increase obtains when the tightening is spread across firms in proportion to their initial
permit endowments, a proxy for their size under grandfathering-based allocation. As Section
4.2.2 will confirm with a welfare analysis, this incidence type leaves less (costly) reallocations
to occcur through the market than the others (relative to the least-cost optimum). As such,
it mitigates induced additional market strain and thus the resulting price increase.

In summary, modeling assumptions (here considering trading costs or not) matter for supply
policy evaluation (e.g. size of the price response) and implementation (e.g. role of the incidence

60Given a fixed market price, when targeting underallocated firms (i) demand from buyers in D rises; (ii)
some autarkic firms in A2 become buyers, increasing demand further; (iii) supply by sellers in S3 declines
and (iv) some of them become autarkic, reducing supply further. By contrast, only (iii) and (iv) applied to
S1 ∪ S2 occur when targeting overallocated firms.
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on firms). Specifically, our simulation results suggest that a modeler/regulator who does not
account for trading costs though they prevail in reality may underestimate the price impacts
of supply-curbing policies, here by a factor of about two. This underestimation bias is slightly
more pronounced the lower the pre-tightening price and varies with the incidence type.

4.2.2 Impacts on compliance costs

We evaluate compliance costs for a 0–30% range of tightening in supply for the 2009 select
sample of firms and compare them depending on (1) whether trading costs are accounted for
or not and (2) the type of incidence on firms. Overall compliance costs comprise abatement
costs and incurred trading costs (if any) which we sum over all firms. By construction, they
are increasing and convex in the stringency of the tightening and always higher in the presence
of trading costs (Proposition 4). Relative to frictionless conditions, extra compliance costs
result from incurred trading costs and foregone efficiency gains at the extensive and intensive
margins. Figure 5 depicts these extra costs in relative terms as a function of the stringency
of the tightening with the same four types of incidence as in Section 4.2.1.

Two findings emerge from our simulations. First, the extra compliance costs attributable to
trading costs are in the order of 7% with the reference supply. This figure should be taken
as illustrative only because it results from a comparison of modeling outputs under different
modeling assumptions, not from a proper counterfactual analysis which we by construction
cannot perform in our framework. As supply is tightened, the relative extra compliance costs
decrease as the associated increase in compliance costs in absolute terms gradually dwarfs
the difference in compliance costs with and without trading costs.

Second, the incidence of the tightening has notable impacts on the size of the extra compliance
costs, which are higher by 15 to 35% between the most and least welfare-deteriorating type of
incidence. Although there are many moving parts, most of this wedge can be explained by the
relative changes in the number of autarkic firms as supply is tightened across incidence types.
Indeed, autarkic firms’ compliance costs are invariant when supply varies, namely nil when
they are overallocated, positive but constant when underallocated. Simulations reveal that
the number of autarkic firms (mostly overallocated) is relatively stable under incidence type
(1) while it immediately collapses under types (2) and (4) as they induce the largest changes
in market structure (here, initial individual deficits/surpluses).61 An incidence proportional
to firms’ allocations thus appears as the least distortive incidence type.

61The share of autarkic firms under a uniform targeting of overallocated firms is also stable at first before
starting to drop at a 7% cutback. This separation between incidence types (1) and (3) is visible in Figure 5.
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Figure 5: Compliance costs for a 0–30% supply tightening with different incidence scenarios

Note: Based on the 2009 select sample of firms. Incidence scenario: permits are withdrawn (1) proportionally
to firms’ allocations, (2) uniformly across all, (3) overallocated or (4) underallocated firms.

Finally, we note that for a given emissions cap stringency, the simulated market price level is
commensurate with the market strain which is reflected in the size of unrealized gains from
trade and incurred trading costs. That is, the ranking of incidence types in terms of welfare
loss visible in Figure 5 is identical to that in terms of price level given in Table 3, specifically
incidence type (1) � (3) � (2) � (4) where � denotes welfare dominance.

5 Conclusion

This paper advances the frontier of research on permit markets with transaction costs and
makes three contributions to the literature. First, we develop a consolidation procedure for
annual transaction and compliance data allowing us to scrutinize firms’ market behavior over
EU ETS Phase II. This reveals two important empirical facts, which we interpret as pointing
to the existence of fixed and variable trading costs: autarkic behavior is pervasive, especially
among small or long firms, and those firms that engage in trade do so quite sparsely and only
for sufficiently large volumes. Second, we incorporate fixed and proportional trading costs in
a standard permit market model. In our equilibrium framework, the permit price and firms’
participation in and extent of trading are determined endogenously. This allows us to analyze
the sensitivity of the equilibrium to shifts in the trading costs and firms’ allocations, and we
characterize the properties of the market price impacts, as they are generally ambiguous and
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can go both ways. Third, we calibrate our model to EU ETS Phase II transaction data and
show how trading costs in the order of 10 ke per annum plus 1 e per permit traded noticeably
reduce the discrepancies between observations and theoretical predictions for firms’ behavior.
Our simulations also suggest that ignoring trading costs may lead modelers to underestimate
the price impacts of supply-curbing policies, with the size of this underestimation bias notably
hinging on the specific incidence of such policies on firms.

It is important to acknowledge the caveats one must apply when interpreting our results, two
of which we wish to highlight as alleys for future research – see also Section 1.1 for a broader
discussion. First, while our measure of transaction costs captures all sorts of frictions (or the
resultant thereof) one should seek to formally disentangle ‘hard’ financial trading costs from
‘soft’ behavioral factors such as the endowment effect or rational inattention. Second, one
should aim to refine the modeling of the market structure to formally account for the temporal
trading dimension and the presence of non-compliance entities such as intermediaries in order
to understand their interaction with transaction costs and market efficiency. The theoretical
and quantitative caveats of our modeling framework notwithstanding, we believe that it is a
valuable contribution in the direction of bringing models closer to practical realities, and as
such, making them better equipped for policy design and evaluation.
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Appendices

A Analytical derivations and collected proofs

A.1 Proof of Proposition 1

Given a market price p > 0, firm i’s optimal abatement is a∗i (p) = p/αi and its individual
efficiency gains from permit trading are defined by

Gi(p) = Ci(a0
i )−

(
Ci(a∗i (p)) + p(βi − a∗i (p))

)
,

where a0
i = max{0; βi}. Recalling that p0

i = αia
0
i and Ci(ai) = αia

2
i /2, the above rewrites

Gi(p) = Ci(a0
i )−

(
Ci(a∗i (p)) + p(max{0; βi}+ min{0; βi} − a∗i (p))

)
= Ci(a0

i )−
(
Ci(a∗i (p)) + p(a0

i + min{0; βi} − a∗i (p))
)

=
(
(p0
i )2 − p2 − 2pp0

i + 2p2
)
/(2αi)− pmin{0; βi}

= (p0
i − p)2/(2αi)− pmin{0; βi} = (p0

i − p)2/(2αi) + pmax{0;−βi}.

Firm i is better off buying (resp. selling) permits when p0
i > p (resp. p0

i < p) which defines
the sets D and S. Consequently, no firm is willing to buy (resp. sell) permits on the market
when p ≥ ᾱβ̄ (resp. p = 0). Hence, a market price is feasible when p ∈ (0; ᾱβ̄).

A.2 Proof of Lemma 1

For βi ≤ 0, i sells permits on the market if Gi(p− T )− F > 0, i.e. X2 − 2αiβiX − 2αiF > 0
with X = p−T . Only keeping the positive root, this occurs if p−T > αiβi+

√
α2
iβ

2
i + 2αiF ,

which is nil for F = 0 and positive for F > 0.

For βi > 0, i buys (+) or sells (−) permits on the market if X2 − 2αi(F + βiX) + α2
iβ

2
i > 0

with X = p± T . For a seller, we only keep the relevant root X = p− T > αiβi so i partakes
in the market if p− T > αiβi +

√
2αiF , which is always positive. For a buyer, we only keep

the relevant root X = p + T < αiβi so i partakes in the market if p + T < αiβi −
√

2αiF .
This is positive provided that F is not too large, i.e. F < αiβ

2
i /2. This must at least be true

for the last potential buyer so F < ᾱβ̄2/2, see Lemma 2.
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A.3 Proof of Proposition 2

Expanding firm i’s market participation constraint Gi(p± T )− F > 0 gives

(p0
i )2 − 2p0

i (p± T ) + (p± T )2 − 2αi(p± T ) min{0; βi} − 2αiF > 0

⇔ α2
i (max{0; βi})2 − 2αi(p± T )(max{0; βi}+ min{0; βi})− 2αiF + (p± T )2 > 0

⇔ α2
i (max{0; βi})2 − 2αi(βi(p± T ) + F ) + (p± T )2 > 0.

Substantiating the three different cases depending on the pairs (αi, βi), this rewrites

α2
iβ

2
i − 2αi(F + (p+ T )βi) + (p+ T )2 > 0 when αiβi > p+ T,

α2
iβ

2
i − 2αi(F + (p− T )βi) + (p− T )2 > 0 when 0 < αiβi < p− T, or

− 2αi(F + (p− T )βi) + (p− T )2 > 0 when βi ≤ 0.

When βi ≤ 0 (resp. βi > 0) the αi-thresholds obtain by solving a first-order (resp. second-
order) polynomial inequality and keeping the relevant roots. When βi ≤ −F/(p − T ), the
third inequality above holds for all αi > 0. This defines the sets D(p, F, T ) and S(p, F, T ).

We verify that S(p, F, T ) (resp. D(p, F, T )) effectively contains all selling (resp. buying) firms.
To see this, observe that i is a seller (resp. buyer) i.f.f. βi− a∗i (p− T ) < 0⇔ αi < (p− T )/βi
(resp. βi − a∗i (p + T ) > 0 ⇔ αi > (p + T )/βi). This suffices to demonstrate our claim since
i’s thresholds can easily be shown to satisfy α0

i , α
−
i < (p− T )/βi and (p+ T )/βi < α+

i .

Below, we provide the partial derivatives of the α-thresholds with their signs:

∂α±/∂p = (1± F/X±1 )
/
β > 0 ∂α±/∂β = −X±2 (1± F/X±1 )/β3 < 0

∂α±/∂F = (1±X±3 /X±1 )
/
β2 ≷ 0 ∂α±/∂T = (±1 + F/X±1 )

/
β2 ≷ 0

∂α0/∂p = (p− T )X−2
/

2(X−3 )2 > 0 ∂α0/∂β = −(p− T )3
/

2(X−3 )2 < 0

∂α0/∂F = −(p− T )2
/

2(X−3 )2 < 0 ∂α0/∂T = −(p− T )X−2
/

2(X−3 )2 < 0

where X±1 =
√
F (F + 2(p± T )β) > F , X±2 = 2F +(p±T )β > 2F and X±3 = X±2 −F > X±1 .

This proves our claim on the changes in the measures of D(p, F, T ) and S(p, F, T ) as p, F or
T increases. Note also that limβ→0+ α+ = limβ→0+ 2F/β2 = +∞. To get at limβ→0+ α−, we
first compute the second-order Taylor expansion of the numerator in α−, namely

F + (p− T )β − F
1 + 1

2
2(p− T )β

F
− 1

8

(
2(p− T )β

F

)2
 = (p− T )2β2

2F ,
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so that α− ∼β→0+ (p − T )2/(2F ) = α0(p, F, T ; 0), i.e. there is continuity between α− and
α0 in β = 0. By a similar token, ∂α−/∂β ∼β→0+= −(p − T )3/2F 2 = ∂α0/∂β(p, F, T ; 0),
i.e. there is also continuity in slope. Finally, limβ→0+ ∂α+/∂β = limβ→0+ −4F/β3 = −∞,
limβ→+∞ α

± = 0, limβ→−F/(p−T ) α
0 = +∞ and limβ→−F/(p−T ) ∂α

0/∂β = −∞, which com-
pletes the description of the behaviors of the supply and demand frontiers in Figure 3.

A.4 Proof of Lemma 2

A price is feasible as long as there is at least one buyer and one seller in the market. Hence
(5) follows from Lemma 1 applied to the last potential buyer (ᾱ, β̄) and seller (

¯
α,

¯
β). Alter-

natively, the two price bounds obtain by solving α0(p, F, T ;
¯
β) =

¯
α and α+(p, F, T ;

¯
β) = ᾱ.

Trading costs are admissible if there exist feasible prices. From (5) this requires
¯
β

¯
α + T +√

¯
β2

¯
α2 + 2

¯
αF < ᾱβ̄ − T −

√
2ᾱF and ᾱβ̄ −

√
2ᾱF > p+ T > 0, which gives (4).

A.5 Proof of Lemma 3

First note that D and S are continuous and differentiable in p, F and T .

Partial derivatives w.r.t. p. D (resp. S) is strictly decreasing (resp. increasing) with p. In
the case of D, it suffices to see that p 7→ y− (p+ T )/x is strictly decreasing with p and that
α+ is strictly increasing with p. A similar argument follows for S, although the behavior of
the second term in (6) is unclear as the bound −F/(p − T ) is increasing with p. To clarify,
we compute the partial derivatives of the two terms of interest in (6) using Leibniz’s rule in
conjunction with Fubini’s theorem. This yields

F/(p− T )2
∫ ᾱ

¯
α

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx

− F/(p− T )2
∫ α0

¯
α

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx,

which concludes since by Chasles’ rule the above simplifies to

F/(p− T )2
∫ ᾱ

α0

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx > 0.

Partial derivatives w.r.t. F . A qualitative argument as in the above could suffice but formal
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calculus will prove helpful in the following. Differentiating (7) and (6) w.r.t. F gives

∂D

∂F
= −

∫ β̄

0

∂α+(p, F, T ; y)
∂F

(
y − (p+ T )/α+(p, F, T ; y)

)
g(α+(p, F, T ; y)|y)h(y)dy < 0,

∂S

∂F
= −1/(p− T )

∫ ᾱ

¯
α

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx

+ 1/(p− T )
∫ α0

¯
α

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx

+
∫ 0

−F/(p−T )

∂α0(p, F, T ; y)
∂F

(
(p− T )/α0(p, F, T ; y)− y

)
g(α0(p, F, T ; y)|y)h(y)dy

+
∫ β̄

0

∂α−(p, F, T ; y)
∂F

(
(p− T )/α−(p, F, T ; y)− y

)
g(α−(p, F, T ; y)|y)h(y)dy.

By Chasles’ rule again, the first two terms in ∂S/∂F reduce to

−1/(p− T )
∫ ᾱ

α0

(
(p− T )/x+ F/(p− T )

)
g(x|y = −F/(p− T ))h(−F/(p− T ))dx < 0.

Thus ∂S/∂F < 0 as the last two terms in ∂S/∂F are also negative.

Partial derivatives w.r.t. T . Similar arguments show that ∂S/∂T and ∂D/∂T are negative.

A.6 Proof of Proposition 3

The proof relies on the intermediate value theorem applied to V = S −D, which Lemma 3
shows to be continuous and strictly increasing with p.

Denote the upper (resp. lower) feasible price bound in (5) by p̄ (resp.
¯
p). Assume trading costs

are admissible as in (4), thus p̄ >
¯
p. By definition, D(p̄, F, T ) = 0 since α+(p̄, F, T ; β̄) = ᾱ

and α+ > ᾱ for all 0 < β < β̄ as α+ is strictly decreasing with β. Because D is strictly
decreasing with p, D(p, F, T ) > 0 for any p < p̄. Similarly, by definition S(

¯
p, F, T ) = 0.

Indeed the first integral in S is nil since
¯
β > −F/(

¯
p− T ); the second and third integrals are

also nil since α0(
¯
p, F, T ;

¯
β) =

¯
α so that α0 <

¯
α and α− <

¯
α for all β >

¯
β since α0 and α−

are decreasing with β. Because S is strictly increasing with p, S(p, F, T ) > 0 for any p >
¯
p.

Therefore, V (
¯
p, F, T ) = −D(

¯
p, F, T ) < 0 and V (p̄, F, T ) = S(p̄, F, T ) > 0. The intermediate

value theorem concludes: there exists p̂ ∈ (
¯
p; p̄) such that V (p̂, F, T ) = 0 and it is unique.

49



A.7 Proofs of analytical examples

After tedious but standard calculus (11) and (12) obtain by solving D(p, F, 0) = S(p, F, 0) for
p and p? solves D(p, 0, 0) = S(p, 0, 0). Below we sketch out the key steps of the computations
for Case 1 and omit those for Case 2 as they follow the same lines. Define function J by

J = p̂1 +
2F
√
F (F + 2βp̂1)
β3(ᾱ− α) − p?1,

which is constant (in specie, nil) according to (11). The implicit function theorem yields

dp̂1

dF = − ∂J/∂F
∂J/∂p̂1

and dp̂1

dβ = − ∂J/∂β
∂J/∂p̂1

.

One then has dp̂1/dF < 0 and dp̂1/dβ > 0 as it is easy to check that ∂J/∂F > 0, ∂J/∂p̂1 > 0
and ∂J/∂β < 0. In particular, it is convenient to rewrite the second equality above as follows

dp̂1

dβ (1 + β2X) = X(3F + 5βp̂1) + dp?1
dβ with X = 2F 2

/(
β4(ᾱ−

¯
α)
√
F (F + 2βp̂1)

)
> 0.

By linearity of p?1 in β we have β dp?1
dβ = p?1 so that it finally comes

(dp̂1

dβ −
dp?1
dβ

)(
1 + βX2

)
= X(3F + 5βp̂1 − βp?1) ⇒ dp̂1

dβ ≥
dp?1
dβ iff p̂1 ≥ (p?1 − 3F/β)/5.

A.8 Proof of Proposition 5

We compute and determine the magnitudes of both the price and distribution effects in the
face of a small variation in individual allocation levels accounting for induced changes at both
the intensive and extensive margins. We study the two effects in turn.

Price effect. We aim to rank ∂V (p̂, F, T )/∂p and ∂V (p?, 0, 0)/∂p. We first note that

∂D(p̂, F, T )
∂p

= −
∫ β̄

0

∫ ᾱ

α+
(1/x)g(x|y)h(y)dxdy︸ ︷︷ ︸

intensive margin≤ 0

−
∫ β̄

0

∂α+

∂p

(
y − (p̂+ T )/α+

)
g(α+|y)h(y)dxdy︸ ︷︷ ︸

extensive margin≤ 0

,

where we omit the arguments in α+ to reduce clutter. The intensive margin term captures the
decrease in demand on the part of firms in D(p̂, F, T ). The extensive margin term captures
the coexistent decrease in demand as the A2-D frontier moves to the northeast (see Figure
3). On that frontier the net demand y− (p̂+ T )/α+ is zero when F = 0 for any T ≥ 0 since
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α+ = (p̂+T )/y; and positive whenever F > 0 (specifically, firms enter or exit D with positive
individual demands). This means that the extensive margin drops to zero when F = 0.

We proceed similarly for S, see Appendix A.5 for some computation details. In total, we get

∂V (p̂, F, T )
∂p

=

intensive margin︷ ︸︸ ︷
∂V (p?, 0, 0)

∂p
−
∫ β̄

0

∫ α+

α−
(1/x)g(x|y)h(y)dxdy −

∫ 0

−F/(p−T )

∫ ᾱ

α0
(1/x)g(x|y)h(y)dxdy

+ sum of positive terms︸ ︷︷ ︸
extensive margin

≷
∂V (p?, 0, 0)

∂p
=
∫ β̄

¯
β

∫ ᾱ

¯
α

(1/x)g(x|y)h(y)dxdy.

When F = 0 the extensive margin effects are nil so ∂V (p̂, 0, T )/∂p < ∂V (p?, 0, 0)/∂p, i.e. the
price effect is above one. It can however be below one for some pairs (F > 0, T ) for which the
extensive margin effects surpass those at the intensive margin. This is more likely to occur
for small costs as the intensive margin terms decrease with the cost levels.

Distribution effect. Consider the collection of individual deficit shifts {βi + γ(βi)}i for some
bounded function γ such that |γ| � 1. Subsequent demand Dt evaluated at (p̂, F, T ) reads

Dt(p̂, F, T ) =
∫ β̄

0

∫ ᾱ

α+(y0+γ(y0))

(
y0 + γ(y0)− (p̂+ T )/x

)
g(x|y0)h(y0)dxdy0,

where we omit the arguments in α+ that are irrelevant for the proof to reduce clutter. Note
that for all y0 we can expand α+ in powers of γ as follows

α+(y0 + γ(y0)) = α+(y0) + γ(y0)∂α
+

∂y

∣∣∣∣∣
y=y0

+O(|γ(y0)|2).

Denoting equilibrium demand prior to small cap change by D0, one gets

Dt(p̂, F, T ) = D0(p̂, F, T ) +
∫ β̄

0

∫ ᾱ

α+(y0)
γ(y0)g(x|y0)h(y0)dxdy0

−
∫ β̄

0

∫ α+(y0)+γ(y0) ∂α
+

∂y
|y=y0

α+(y0)

(
y0 + γ(y0)− (p̂+ T )/x

)
g(x|y0)h(y0)dxdy0 +O(|γ(y0)|2).

The last line in the above expression can be approximated by

−
∫ β̄

0
γ(y0)∂α

+

∂y

∣∣∣∣∣
y=y0

(
y0 − (p̂+ T )/α+(y0)

)
g(α+(y0)|y0)h(y0)dxdy0 +O(|γ(y0)|2),

where the approximation becomes exact in the limit as |γ| → 0. Further assuming a uniformly
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distributed cap tightening, i.e. γ is constant and positive, limγ→0(Dt −D0)/γ writes

∫ β̄

0

∫ ᾱ

α+(y0)
g(x|y0)h(y0)dxdy0︸ ︷︷ ︸

intensive margin≥ 0

−
∫ β̄

0

∂α+

∂y

∣∣∣∣∣
y=y0

(
y0 − (p̂+ T )/α+(y0)

)
g(α+(y0)|y0)h(y0)dxdy0︸ ︷︷ ︸

extensive margin≥ 0

as limγ→0O(γ) = 0. The intensive margin term captures the increase in demand on the part
of firms in D prior to the tightening. The extensive margin term captures what happens at
the A2-D frontier, i.e. the novel demand on the part of firms exiting A and entering D. Note
again that the extensive margin component drops for any T ≥ 0 when F = 0.

We proceed similarly for S (computations are longer but follow the same logic). Then, all
the terms in limγ→0(Vt − V0)/γ can be grouped into two categories, namely

lim
γ→0

(Vt(p̂, F, T )− V0(p̂, F, T ))/γ = |I| − |A(p̂, F, T )|︸ ︷︷ ︸
intensive margin

+ sum of positive terms︸ ︷︷ ︸
extensive margin

≷ |I|,

where |I| = limγ→0(Vt(p?, 0, 0) − V0(p?, 0, 0))/γ. Roughly put, the larger the set of autarkic
firms, i.e. the larger the trading costs, the more likely the distribution effect is below one, i.e.
limγ→0(Vt(p̂, F, T )− V0(p̂, F, T ))/γ < |I| holds. With F = 0, this holds for all T > 0.

Finally, we consider alternative distributions of supply tightening in the intensive margin only
case treated in the body of the paper. When uniformly distributed among all firms, dβi = dQ
holds for all i ∈ I. When uniformly targeted on all firms with positive (resp. negative) deficits,
dβi = dQ/(|S̄3|+ |D̄|+ |Ā2|) > dQ (resp. dβi = dQ/(|S̄1|+ |S̄2|+ Ā1|) > dQ) holds for all i
with βi > 0 (resp. βi < 0) where the sets Sk and Ak are defined in Figure 3 and the upper bar
is a shorthand meaning ‘evaluated at (p̂, F, T )’. In these three cases the distribution effect is

(|S̄1|+ |S̄2|+ |S̄3|+ |D̄|)/|I| < 1,

or (|S̄3|+ |D̄|)/(|S̄3|+ |D̄|+ |Ā2|) < 1,

or (|S̄1|+ |S̄2|)/(|S̄1|+ |S̄2|+ |Ā1|) < 1.

The magnitude of the price increase in the face of a given supply tightening thus depends on
the way it is allocated among firms. The ranking between the three incidence types presented
above is unclear prima facie: it hinges on the levels of the trading costs F and T and on the
distributions of the firms’ characteristics {αi}i and {βi}i.
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B Consolidation methodology

Data recorded in the European Union Transaction Log (EUTL) contains both compliance and
trading related information (at the account level) in two separate databases: the compliance
database keeps track of the initial allocation and reconciliation of allowances; the transaction
database records every physical exchange completed across accounts (including the account
holder names of trading parties, date and volume traded). There are three main categories of
accounts: Operator Holding Accounts (OHAs, one per regulated installation), Person Holding
Accounts (PHAs) and Trading Accounts. The latter two can be opened and managed by non-
regulated entities with no compliance obligations (e.g. intermediaries, financiers).

These two databases need to be consolidated at the company level – the relevant granularity
level for abatement, compliance, trading and wider economic decisions. However, two issues
arise when trying to match accounts to parent companies. First, only limited or incomplete
information is available on the firms and sectors associated to each account. For instance, no
dedicated field in the account characteristics indicates the name of a parent company, when
it exists (e.g. account holders must fill an ‘Account Holder Name’ field but it is uneven across
accounts as to the precision of company-specific details). Second, there is no key to match
the two databases so we need to create our own beforehand.

To get at the ownership structure within the EUTL, we first construct a list of parent company
names from the compliance database which we then use as a key to consolidate the trading
information from the transaction database at the company level. To that end, we first clean
the ‘Account Holder Name’ fields in the compliance database, totaling about 17,000 accounts
over all years. Specifically, we remove punctuation marks, prefixes, suffixes, etc and separate
words. We then run a first round of matching for duplicates on the first word the character
strings contain, and obtain a first-pass list which associates the so-extracted parent companies
to their accounts. We gradually refine the list by repeating this procedure with the second,
third and fourth words for the remaining unassigned accounts.

In practice, a company name – when explicitly specified – often appears in the first or second
word of the search field so that our simple method allows us to get a reasonably goof idea of
which company owns which accounts. After the fourth iteration of the matching procedure,
around 10% of accounts are single. We manually assign them to a parent company (e.g. with
dedicated web searches) and those for which manual matching is unsuccessful remain single.
Our final parent company list contains 7,215 entries in total over Phase II (2008-2012).

In parallel, a total of 7,210 accounts recorded some trading activity (at least one exchange) in
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Table B.1: Descriptive statistics for consolidated regulated firms (2009 sample)

Trading firms

Sector Number 〈Number〉 % of total Median 〈Number〉 of 〈Volume〉 of
of firms of accounts emissions deficit transactions transactions

Combustion 872 2.6 71.2 70,654 15.8 39,517
Refining 23 4.0 8.5 72,063 10.9 211,449

Metallurgy 37 3.4 3.2 -114,510 6.8 218,805
Cement & Lime 344 3.1 15.1 -25,474 5.5 34,095

Chemicals 8 3.1 0.2 -11,056 6.1 52,201
Paper & Glass 164 2.6 1.6 -8,272 8.3 23,242

Other 3 6.0 ≈ 0 -5,600 4.0 1,494
Total number of observations: 1451.

Autarkic firms

Sector Number 〈Number〉 % of total Median
of firms of accounts emissions deficit

Combustion 848 2.3 62.6 3,665
Refining 14 2.1 11.0 267,178

Metallurgy 41 2.0 3.7 -52,835
Cement & Lime 165 2.3 13.6 -7,749

Chemicals 4 2.0 1.2 -13,266
Paper & Glass 217 2.4 8.9 -3,114

Other 1 1.0 ≈ 0 -11,139
Total number of observations: 1290.

Note: Median deficits and average volumes of transactions given in tCO2. 〈·〉 denotes the average.

the transaction database over Phase II, some of which with no compliance obligations. Only
considering compliance entities reduces the transaction database to 5,145 active accounts.
This essentially amounts to keeping OHAs, or PHAs opened and run by a regulated company
(typically to first pool allocations and later dispatch EUAs for compliance). Figure 1 is based
on this select database, where (1) a compliance entity is deemed autarkic if it records no trade
with compliance or non-compliance entities alike; (2) year-on-year changes in the number of
observations occur due to installation/account closures and new entries as they occur.

We cross-check our consolidation outputs with those in Jaraitė-Kažukauskė & Kažukauskas
(2015), Naegele (2018) or Hintermann & Ludwig (2018) who link EUTL accounts to the Orbis
database (Bureau van Dijk) to match installations to parent companies. Their methodologies
are similar to that underpinning the Ownership Links and Enhanced EUTL Dataset, hosted
by the European University Institute. Although we were not aware of this publicly available
database linking accounts to parent companies when we started our project, it allows us to
perform an ex-post sanity check for our consolidation methodology. Our respective results
are found to be similar, e.g. Naegele finds a close 4,578 firms with her method.
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The Illustration requires us to merge the compliance and transaction databases as we want
the allocation, verified emissions and trading activity at the regulated firm level. Because the
‘Account Holder Name’ field is present in both databases, this is in principle straightforward.
Due to matching discrepancies, however, the merged database only contains 2,500 entries. It
is used to plot Figure 2 but needs further cleaning to be used in the Illustration. Specifically,
we exclude firms whose reported information is anomalous (e.g. emissions are nil) or missing
(e.g. no allocation nor market position provided). This leads to slight changes in the number
of yearly entries. Table B.1 below draws on these datasets. Finally, we remove firms with
implied negative abatement and our yearly datasets are ready for use. This leads, again, to
slight changes in the number of yearly entries, see Table C.1 for descriptive statistics.

C Calibration results

This Appendix provides additional details on the model parametrization (Section 4.1.1) and
the selection of trading costs (Section 4.1.2). Specifically, Table C.1 provides basic descriptive
statistics to help visualize the annual {αi,t, βi,t}i,t inference outputs and Figure C.1 graphically
depicts how our cost selection criteria evolve with F and T for the year 2009.

Table C.1: Annually inferred firms’ characteristics (rounded)

Year #Firms Min Max Mean Median % Positive

2008 1,868 2.1·10−6 59 9.4·10−2 7.1·10−3 100
2009 1,954 1.3·10−6 13 2.9·10−2 3.6·10−3 100

α 2010 1,378 1.6·10−6 43 7.1·10−2 5.1·10−3 100
2011 1,592 3.8·10−6 11 5.6·10−2 5.5·10−3 100
2012 1,496 3.4·10−6 22 4.5·10−2 3.1·10−3 100

2008 1,868 -4.0·106 1.9·107 23·103 -29 49
2009 1,954 -2.8·106 2.2·107 50·103 39 51

β 2010 1,378 -7.7·106 1.8·107 17·103 -1,100 38
2011 1,592 -2.2·106 1.4·107 26·103 -320 46
2012 1,496 -4.9·106 7.5·106 30·103 810 59

Note: α given in e/(tCO2)2 for T = 0. β given in tCO2, not adjusted for year-on-year bank variations.

Let us elaborate on Figure C.1. As F and/or T increase the proportion of observed autarkic
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Figure C.1: Selection criteria as functions of F and T (2009 sample)

(a) Normalized index (b) Normalized entropy

(c) Ratio of rationalized autarkic firms (d) Number of sorting errors (T=0.5e/tCO2)

firms sorted as autarkic by the model increases (type 3-4 errors decrease). However, higher
trading costs also imply that the model sorts more observed trading firms as autarkic (type 1-
2 errors increase). As a result, for every value of T , Shannon’s entropy hence has an inverted
U shape and is maximal at some intermediate value of F . In turn, since the total number of
errors is relatively stable, index variations are primarily driven by the entropy component –
note that it can be locally non-concave due to the discrete nature of our problem.

We see that curves in Figure C.1c are ranked by increasing T values, i.e. the higher F and/or
T the more autarkic compliance decisions are replicated by the model. In Figure C.1b this
ranking only holds when F is not too large – specifically before the crossing in Figure C.1d.
After this point, the ranking is reversed as an increase in F and/or T increases the imbalance
between type 1-2 and type 3-4 sorting errors.
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