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Abstract

This paper re-examines the dependence structure between uncertainty in oil prices and

sovereign credit risk of oil exporters. To address this issue, we employ a copula approach

that allows us to capture a myriad of complex and nonlinear dependence structures. Em-

pirical analyses involve daily data of the 5-year sovereign credit default swaps spreads

and the crude oil implied volatility from January 2010 to May 2019, covering a sam-

ple of ten oil-exporting countries. Except for Brazil and Venezuela, our results provide

evidence of signi�cant positive and upper tail dependence in the relationship between

oil market uncertainty and oil exporters’ sovereign risk. Overall, our �ndings highlight

that high uncertainty in oil prices coincides with large-scale increases in the sovereign

credit risk of oil-exporting countries, supporting the hypothesis that investors, exposed

to economic losses from risk events in oil exporters, are all the more pessimistic that

prevails high uncertainty about future oil prices. Our �ndings have implications for oil

exporter’ policymakers as well as investors.
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1 Introduction

Frequent changes in oil prices over the last few years, particularly their sharp fall since

June 2014, have challenged market analysts and researchers to �nd suitable explanations

and discuss the economic and �nancial consequences. Speculative demand and inven-

tory management, the drop in the global demand, the recent developments in oil supply,

namely shale oil, oil sands, and biofuels, and �nally, the shift in the Organization of

the Petroleum Exporting Countries (OPEC)’ strategy 1 have been identi�ed as the main

drivers of the recent behavior of oil prices (Beidas-Strom and Pescatori, 2014; Kilian and

Lee, 2014; Mănescu and Nuño, 2015; Baumeister and Kilian, 2016; Behar and Ritz, 2016;

Kilian, 2017). About the consequences, the drop in oil prices supports the global eco-

nomic activity, improves �scal balances, and reduces in�ation and external �nancing

pressures in oil-importing economies. On the contrary, as lower oil prices cause sub-

stantial losses in export and �scal revenues and currency adjustments for oil-exporting

economies, their growth is adversely a�ected (Kilian et al., 2009; Allegret et al., 2014;

Arezki and Blanchard; Mottaghi, 2015). Besides, the uncertainty generated by an abrupt

fall in oil prices generally triggers sharp re-pricing of credit and sovereign risk of oil

exporters by investors (Ba�es et al., 2015). As an illustration, several oil-exporting coun-

tries (Bahrain, Kazakhstan, Nigeria, Qatar, Russia, the United Arab Emirates, Venezuela,

among others) have seen their level of debts increased dramatically following the oil

prices collapse of 2014-2015, leading to a rise in the cost of buying protection against

defaults, measured by credit default swap (CDS) spreads 2 for sovereign securities.

The literature has attributed the variation of sovereign credit risk spreads to three main

factors: country-speci�c economic, global, and political factors. It turns out that sovereign

risk perception is a�ected by the level of external debt and foreign reserves, growth, in-

1. OPEC’s strategy was to reduce supply and pull prices up when they were deemed low. Following
the oil price drop in June 2014, like Saudi Arabia, which stated its intention not to limit its production, the
organization decided to maintain the collective production ceiling at 30 million barrels per day despite an
apparent overabundance.

2. Sovereign CDS contracts allow investors to protect themselves against losses from credit events on
sovereign debt. Here, a credit event is equivalent to a debt-issuing country defaulting on its debt payment
commitments (Broto and Perez-Quiros, 2015).
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�ation, institutional quality of the country, global liquidity conditions, and global risk. 3

Hilscher and Nosbusch (2010) claim that a country with higher macroeconomic volatility

is potentially more prone to sovereign debt default. Since an oil price shock represents

an essential source of macroeconomic instabilities, at least for oil-dependent countries,

the link between the oil market volatility and the pricing of credit and sovereign risk

by investors has garnered signi�cantly increased attention following the prolonged low

oil prices environment from 2014 to 2016. This episode has provided a starting point for

discussions about the relation between oil market volatility and the sovereign credit risk

of oil exporters. Our study is a part of the recent literature dealing with this topic by

paying particular attention to the dependence structure between uncertainty regarding

future oil prices and the �nancing conditions of oil exporting-countries.

In the same vein, Wegener et al. (2016) and Chu�art and Hooper (2019) study the re-

lationship between oil prices and sovereign credit risk of several oil exporters and �nd

that positive oil price shocks lead to lower sovereign CDS spreads. Liu et al. (2016) test

the statistical properties of country risk rating for oil exporters under oil price volatil-

ity and �nd that the latter may accentuate their country risk rating volatility. Lee et al.

(2017) show that oil price shocks a�ect country risk in net oil exporters (Canada and the

United Kingdom) but also in net oil importers (Germany, France, Italy, Japan, and the

United States).

Some studies (Bouri et al., 2017, 2018; Pavlova et al., 2018) investigate volatility spillovers

from oil prices to sovereign CDS spreads. Bouri et al. (2017) study volatility spillovers

from commodities prices (including oil prices) to sovereign CDS spreads of emerging

and frontier markets and �nd signi�cant volatility spillovers for most countries. Bouri

et al. (2018) examine spillovers using multivariate regression quantiles and reveal that

oil volatility represents a common risk for oil-exporting (Russia and Brazil) and oil-

importing (China and India) BRICS countries. Pavlova et al. (2018) conduct a dynamic

spillover analysis of crude oil prices e�ects on the sovereign credit risk of exporting

countries and provide evidence of considerable oil prices e�ects on sovereign spreads,

even after accounting for global and country-speci�c factors.
3. See Edwards (1983); Kulatilaka and Marcus (1987); Calvo et al. (1993); Kamin and von Kleist (1999);

Garcia-Herrero et al. (2006); Ciarlone et al. (2009); Longsta� et al. (2011); Baldacci et al. (2011); Comelli
(2012); Csonto and Ivaschenko (2013); Kocsis and Monostori (2016), among others.
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Another strand of this recent empirical literature (Sharma and Thuraisamy, 2013; Shahzad

et al., 2017; Bouri et al., 2018) has focused on the capacity of uncertainty regarding

future oil prices to predict sovereign credit risk. To test whether oil volatility pre-

dicts CDS returns for eight Asian countries, Sharma and Thuraisamy (2013) use the pre-

dictability test proposed by Westerlund and Narayan (2011, 2012). Their �ndings support

evidence of out-of-sample predictability for six countries (Indonesia, Japan, Malaysia,

the Philippines, South Korea, and Vietnam). In contrast, in-sample evidence reveals

that oil price uncertainty can predict CDS returns for only three countries (Indonesia,

South Korea, and Vietnam). Shahzad et al. (2017) apply a bootstrapped rolling win-

dow predictability procedure to examine the directional dependence from oil volatility

to sovereign CDS spreads of four Gulf Cooperation Council (GCC) countries (Bahrain,

Qatar, Saudi Arabia, and the United Arab Emirates) and �ve other oil-exporting coun-

tries (Brazil, Mexico, Norway, Russia, and Venezuela). Their �ndings highlight that the

sovereign credit risk of the GCC and the other oil-exporting countries are at least par-

tially driven or directionally predicted by the oil volatility shocks. The authors also use

the cross-quantilogram approach to check the robustness of their results. This latter ap-

proach allows them to measure the directional predictability across the entire range of

quantiles (in lower, median, and upper quantiles). They provide su�cient evidence that

the upper quantiles of oil volatility predict the upper quantile of CDS spreads, suggest-

ing that an extreme increase in oil price uncertainty increases the sovereign credit risk

of the oil-exporting countries. Bouri et al. (2018) conduct a similar analysis based on

BRICS economies (Brazil, Russia, China, Indian, and South Africa). Their sample covers

two major importers and consumers of crude oil (China and India) and one of the lead-

ing oil producers and exporters (Russia). They show that upper quantiles of oil price

volatility predict the upper quantile of sovereign CDS spreads for all the countries un-

der consideration. Contrary to Shahzad et al. (2017), they also �nd evidence that lower

quantiles of oil price volatility predict the lower quantiles of sovereign CDS spreads for

oil exporters, namely Russia and Brazil. This achievement implies that extremely low

oil price uncertainty implies little changes in the sovereign CDS spreads of oil exporters.

At �rst glance, this seems to be counterintuitive since sovereign credit risks have key

determinants like political factors and some economic speci�cities that might in�uence
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investors’ perception of risk to make signi�cant changes on sovereign spreads, even

during period of low uncertainty in oil prices.

Our study is closely related to the extant empirical literature dealing with the relation-

ship between uncertainty in oil prices and the sovereign credit risk of oil exporters

(Shahzad et al., 2017), but it di�ers in several regards. The main di�erence stems from the

methodological approach. To detect the potential presence of dependence between oil

price uncertainty and oil-exporting sovereign CDS spreads, we �rst employ two graph-

ical tools, known as Kendall-plot or Chi-plot, respectively, introduced by Fisher and

Switzer (1985, 2001) and proposed by Genest and Boies (2003). Moreover, we examine

the co-movement and dependence structure of oil price uncertainty and oil-exporting

sovereign CDS spreads using a copula approach. This approach presents several advan-

tages. There exists a large number of copulas to capture a myriad of complex and non-

linear dependence structures, notably tail and asymmetric dependencies. Importantly,

this approach allows us to model co-movement and dependence in extreme market con-

ditions. In our context, that means the copula approach may provide information on

the probability that uncertainty in the oil market and the sovereign credit risk of oil ex-

porters jointly experience extreme upwards or downwards movements, an issue that has

not already been addressed by the prior studies. This represents an extension to prior

studies that focus on sovereign risk reactions to oil volatility shocks on the one hand,

and on the other, the predictability of sovereign risk based on oil implied volatility in

di�erent quantiles. Understanding the dependence structure between oil price uncer-

tainty and sovereign risk of oil exporters from a perspective of extreme market-risks

has important implications for policymakers of oil-exporting countries, particularly for

their debt policies. It also provides a new analysis tool for investors and traders seeking

to monitor their trading risks during extreme periods.

Another di�erence concerns our data sample, which is daily, while Shahzad et al. (2017)

use a weekly frequency. A daily frequency seems to be more appropriate to capture

better the dynamics of the relationships among the oil and sovereign CDS markets. More

interestingly, our study (January 2010 to May 2019) covers periods of moderate and high

volatility in the crude oil market, and periods of upwards and downwards trends in oil

prices, allowing us to consider diverse oil market conditions in our analysis.
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Besides, as opposed to Shahzad et al. (2017) that only focus on oil implied volatility

(OVX), we go further by considering an alternative measure of the oil price uncertainty,

namely the oil volatility risk premium. Since there is currently no consensus regarding

the best measure of oil price uncertainty, the use of this alternative measure serves as a

robustness check.

Based on the daily time series price of the Chicago Board Options Exchange (CBOE)

implied volatility index of crude oil (OVX) and the 5-year CDS spreads for the selected

oil-exporting countries (Brazil, Indonesia, Kazakhstan, Malaysia, Mexico, Norway, Qatar,

Russia, Venezuela, and Vietnam), our empirical �ndings can be summarized as follows.

We identify a positive dependence between oil price uncertainty and sovereign credit

risk of oil exporters, except for Brazil and Venezuela, for which we provide evidence of

independence. Furthermore, as expected and consistent with Shahzad et al. (2017), we

only �nd upper tail dependence in the relationship. Our results suggest that an environ-

ment of high uncertainty regarding future oil prices is always coupled with a signi�cant

surge in oil exporters CDS spreads. In contrast, low oil price uncertainty does not nec-

essarily imply a moderate change in oil exporters CDS spreads. Therefore, our study

helps to understand better the dependence structure between oil price uncertainty and

sovereign risk of oil exporters from a perspective of extreme market-risks, and adds to

the related literature (Sharma and Thuraisamy, 2013; Shahzad et al., 2017; Bouri et al.,

2018).

The remainder of this paper proceeds as follows. Section 2 presents the data used in

the study and some stylized facts. Section 3 outlines our methodological approach. The

main results are reported in Section 4. We provide evidence for our results’ robustness

in section 5, and the concluding remarks are given in Section 6.
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2 Data and stylized facts

Our empirical investigation relies on the daily price of the 5-year sovereign credit de-

fault swaps (CDS) spreads, which are by far the most liquid CDS contracts (Packer and

Suthiphongchai, 2003), and the CBOE Crude oil ETF implied volatility index (OVX).

5-year sovereign CDS spreads 4 serve as a proxy of sovereign credit risk. Sovereign credit

risk is de�ned as the risk of a government becoming unable or unwilling to meet its loan

obligations. The Sovereign CDS Contracts are triggered when a credit event occurs. 5

They can be used by investors, for instance, to hedge against losses from potential dete-

rioration of the creditworthiness of the borrower, or be used as trading tools to exploit

arbitrage opportunities in government bond markets.

As a proxy of oil price uncertainty, we consider OVX. Calculated by the United States Oil

Fund using the VIX methodology, OVX is the volatility of the markets’ expectation of

30-day crude oil prices. The high value of OVX means expectations of high uncertainty

about the future evolution of oil price, suggesting that OVX can be regarded as a measure

of oil price uncertainty. However, it is worth noting that this approximation does not

imply that the concepts of volatility and uncertainty are equivalent. The term volatility

indicates how much and how quickly the value changes, while uncertainty refers to

situations involving imperfect or unknown information and applies to predictions of

future events. In our context, as OVX re�ects markets’ expectation, we think it is a good

proxy of uncertainty.

The data runs from January 2010 6 to May 2019 and are sourced from datastream. We

consider ten oil-exporting countries, namely Brazil, Indonesia, Kazakhstan, Malaysia,

Mexico, Norway, Qatar, Russia, Venezuela, and Vietnam. Our sample of countries’ choice

stems from CDS data availability for the period under consideration and because it

presents some attractive speci�cities. Our panel of countries includes i) OPEC and non

4. CDS are �nancial instruments that allow credit risk to be taken or transferred from one party to
another. CDS markets are, therefore, essential vehicles for reallocating risks in �nancial markets.

5. Notably, failure to pay a coupon or principal on a bond or loan moratorium, the announcement of
the intention to suspend payments of debt obligations and changes of the terms of a debt obligation able
to disadvantage the investors.

6. We made a deliberate choice concerning the start of the study period, �rstly, to ensure that the
latter does not match with the global �nancial crisis of 2008–2009 and secondly, because the date for the
beginning of the CDS series for all the selected countries is January 2010.
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OPEC members, and ii) advanced (Norway), emerging and developing economies (the

others) 7. The selected countries also di�er according to their relative dependence on

oil revenues (see Table 1 for the level of dependence). The heterogeneity of the sam-

ple o�ers the possibility to uncover through our analysis any signi�cant di�erences in

the dependence structure of the OVX-CDS relationship between oil-exporting countries.

Table 1: Oil dependency for our sample of oil-exporting countries.

Country Oil rents (% GDP)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Brazil 1.32 1.51 1.98 2.01 1.84 1.85 1.08 0.82 1.25 1.32
Indonesia 2.25 2.37 2.94 2.63 2.33 2.01 0.81 0.65 0.83 2.25
Kazakhstan 14.2 16.6 19.42 17.26 14.29 13.63 6.75 7.15 10.19 14.20
Malaysia 4.38 5.32 6.30 5.78 4.91 4.28 2.04 1.71 2.36 4.38
Mexico 3.41 4.11 5.61 5.34 4.72 3.93 1.61 1.22 1.72 3.41
Norway 5.53 6.48 8.00 6.96 5.81 5.62 3.13 2.68 3.75 5.53
Qatar* 23.27 28.41 32.72 29.06 26.48 23.03 13.8 11.73 14.23 23.27
Russia 8.43 9.94 11.37 10.33 9.08 9.19 5.93 5.16 6.43 8.43
Venezuela* 9.92 11.84 22.70 17.72 17.07 11.29 - - - -
Vietnam 3.55 4.48 5.46 5.35 4.31 3.58 1.52 1.07 1.27 3.55

Notes: This table reports the economic dependence on oil of the selected oil ex-
porters, calculated as the ratio of oil revenues to GDP. From 2015 to 2018, data for
Venezuela are not available. *Qatar is a member of the Cooperation Council for the
Arab States of the Gulf (GCC) and Venezuela is a member of OPEC. Source: Datastream.

Table 2 reports the main descriptive statistics of the OVX index and CDS spreads series.

Norway has the lowest average CDS spread (2.81). One of the distinctive features of this

country is the diversi�ed nature of its economy. Moreover, according to data published

online by the Sovereign Wealth Fund Institute, Norway has the highest sovereign wealth

fund in the world, four times larger than its public debt. These characteristics could ex-

plain such a level of CDS spread. The table also indicates that, on average, the CDS

spreads of the most-oil-dependent countries (Kazakhstan, Qatar, Russia, and Venezuela)

range from 4.44 (Qatar) to 7.64 (Venezuela). The lower level of the CDS spreads for Qatar

than the other most oil-dependent countries can be explained by its diversi�cation pol-

icy, which helps it manage temporary shocks and prepare for sweeping changes to the

7. Countries are classi�ed following the IMF classi�cation.
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economic setting. Moreover, in the aftermath of lower oil prices in 2014, the Qatar gov-

ernment implemented signi�cant �scal consolidation that has put the �scal position on

a sounder footing (IMF, 2019). Venezuela’s situation, which exhibits the largest mean

CDS spread, is most likely due to the persistent political instability and the precarious

�scal and external situation prevailing in this country (Moatti and Muci, 2019). The OVX

values range from 2.67 to 4.37.

Skewness and kurtosis indicate signi�cant deviations of the series from normality. We

also assessed the correlations between sovereign spread changes of oil exporters and

OVX. A reliable and positive correlation between the two series is evidenced for all the

countries, with the highest values recorded for Indonesia, Mexico, Malaysia, and Russia.

Table 2: Descriptive statistics for sovereign CDS and OVX.

Variables Statistics Correlation
Mean Min Max Std dev Skewness Kurtosis ρp

CDS spreads
Brazil 5.19 4.51 6.26 0.39 2.66 5.83 0.43
Indonesia 5.04 4.34 5.73 0.26 1.08 5.77 0.55
Kazakhstan 4.65 4.93 5.84 0.30 2.25 5.54 0.25
Malaysia 4.63 3.93 5.48 0.30 2.52 4.53 0.58
Mexico 4.78 4.62 5.44 0.22 1.05 5.94 0.70
Norway 2.81 2.06 3.95 0.30 1.66 6.31 0.29
Qatar 4.44 3.86 5.00 0.23 2.12 5.50 0.24
Russia 5.24 4.62 6.44 0.35 1.91 6.40 0.52
Venezuela 7.64 6.35 9.31 0.81 2.10 4.35 0.29
Vietnam 5.38 4.70 6.19 0.31 2.02 5.54 0.37
OVX 3.45 2.67 4.37 0.31 0.03 5.78 1.00

Notes: This table reports the main descriptive statistics of the 5-Year CDS series
of the selected oil exporters and OVX (both expressed in logarithm) over the entire
study period. All the statistics were calculated on stationary series. Std dev stands for
standard deviations. Correlation denotes correlation with OVX. ρp is the traditional
linear correlation coe�cient.
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Figure 1 and Figure 2 display the dynamics of the OVX index and the sovereign CDS

spreads per country and over time, respectively.

Figure 1 shows that crude oil prices are characterized by very high volatility over the

whole period, although less important in terms of magnitude on the 2010-2013 period

and after 2018. Some surges in trend are identi�ed during the recent oil prices collapse

over the 2014-2016 (upward trend) and the 2016-2018 periods.

As illustrated in Figure 2, the oil-exporting CDS spreads exhibit a similar behavior dur-

ing most periods. There is a slight rise over the 2010-2012 European sovereign debt

crisis, followed by an impressive growth from mid-2014 to 2016, which corresponds to

the prolonged period of low oil prices and a signi�cant decline from 2016 to 2018, and

then a slight increase from 2018 to the end of the study period.

Figure 1: Crude oil implied volatility (OVX) dynamics over the 2010-2019 period.
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Figure 2: 5-Year Sovereign CDS spread patterns during the 2010-2019 period.
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Figure 2: (Continued) 5-Year Sovereign CDS spread patterns during the 2010-2019
period.
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Figure 2: (Continued) 5-Year Sovereign CDS spread patterns during the 2010-2019
period.
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In light of these stylized facts, a positive link between oil exporters CDS spreads and

oil market uncertainty seems to exist. The two series comove in the same direction.

Furthermore, this co-movement di�ers across countries and seems to be stronger when

oil prices volatility is high. Besides, these stylized facts highlight the eventual presence

of asymmetry in the relation between the OVX index and the sovereign CDS of oil ex-

porters, which will be taking into account by the copula approach.

3 Methodology

In this section, we present an overview of the research methodology used in the empi-

rical analysis, including graphical tools and the copula model of dependence.
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3.1 Exploring dependence using graphical tools

Scatter plot of the pairs (X1, Y1), (X2, Y2), ..., (Xn, Yn) is the traditional and most widely

graphical tool used for detecting a linear dependence between two variables X and Y .

To reveal more detailed and explicit information regarding the nature of the association

between X and Y , for instance, to detect nonlinear and asymmetric dependence in the

relationships, the best alternatives graphical tools are Chi-plot and Kendall-plot. The

latter procedures can capture the nature (even complex) of the dependence between the

variables and are useful to choose the appropriate form of the copula to model the joint

distribution between the variables.

3.1.1 Chi-plot

The chi-plot procedure was initially proposed by Fisher and Switzer (1985) and more

fully illustrated in Fisher and Switzer (2001). Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be a

random sample of a joint continuous distribution function H for a pair of random vari-

ables (X, Y ) and let I(A) be the indicator function of the event A.

Speci�cally, for each observation (Xi, Yi), the following procedure is performed:

Hi =
1

n− 1

∑
j 6=i

I(Xj ≤ Xi, Yj ≤ Yi) (1)

Fi =
1

n− 1

∑
j 6=i

I(Xj ≤ Xi) (2)

Gi =
1

n− 1

∑
j 6=i

I(Yj ≤ Yi) (3)

By noting thatHi, Fi andGi depend on the ranks of the observations, Fisher and Switzer

(1985, 2001) propose to plot the pairs (λi, χi) such as:

χi =
Hi − Fi ∗Gi√

Fi(1− Fi)Gi(1−Gi)
(4)

λi = 4.sign(F̃i, G̃i).max(F̃i
2
, G̃i

2
) (5)

B̃i = Bi −
1

2
(6)
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The Chi-plot is the scatter plot of the pairs (λi, χi). λi measures the distance between the

pair (Xi, Yi) and the center of the scatter plot. Values of χi signi�cantly di�erent from

zero are symptomatic of deviation from the null hypothesis of independence. To help

identify such deviations, Fisher and Switzer (1985, 2001) indicate that "control limits"

could be drawn at±cp
√
n. cp is selected so that approximately 100 p% of the pairs (λi, χi)

lie between the two horizontal lines. Under the hypothesis of dependence, most of the

values of λi are expected to be outside the con�dence band, and the graph tends to be

randomly scattered around the value χi = 0. If the data constitute a bivariate sample

with independent continuous marginals, the values of λi are evenly distributed.

3.1.2 Kendall-plot

The Kendall-plot (K-plot) procedure, the other rank-based graphical tool for visualizing

dependence, was proposed by Genest and Boies (2003) and inspired by the familiar no-

tion of QQ-plot. According to the authors, K-plots are more comfortable to interpret

than chi-plots, although retaining the chi-plots’ fundamental property, notably those of

invariance concerning monotone transformations of the marginal distributions.

Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be a random sample of a joint continuous distribution

function H(X, Y ). The procedure to build the K-plot is the following:

- For each i ∈ {1, ..., n} compute and sort the Hi values such that H(1) ≤ H(2) ≤ ... ≤

H(n). H(1), H(2),..., H(n) are the range of statistics associated with the quantities H1,

H2,..., Hn introduced in the "Chi-plot" subsection.

- Plot the pairs (Wi:n, Hi), where Wi:n is the expectation of the ith order statistic in

a sample of size n from the random variable w = C(U, V ) = H(X, Y ) under the null

hypothesis of independence between U and V (or betweenX and Y , which is the same).

This expected value is calculated as follows:

Wi:n = n
(
n−1
i−1
) ∫ 1

0

w[K0(w)]i−1[1−K0(w)]n−idK0(w) (7)

K0(w) = w − wlog(w), 0 ≤ w ≤ 1 (8)
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The interpretation of K-plots is near to the QQ-plots ones. Any departure from the main

diagonal is a sign of dependence between the two variables involved.

3.2 Dependence structure modeling based on the copula approach

Since their introduction in the seminal work of Sklar (1959), copulas have enjoyed great

popularity in di�erent applied sciences, 8 especially where dependence is of interest, and

the usual normality assumption is called into question. Copula modeling makes possible

the release of the normality assumption. It also allows us to consider more realistic

models of asymmetric marginal distributions with heavy tails and more adequate models

of nonlinear dependence between the multivariate distribution components. This paper

will focus on bivariate distributions, but it should be noted that the copula approach is

applicable to the more general multivariate case.

We have considered di�erent bivariate parametric copula functions from various cop-

ula classes to model the dependence structure between uncertainty in oil prices and

sovereign CDS spreads of oil exporters. The process of construction and validation of bi-

variate parametric dependence models for oil price volatility and sovereign CDS spreads

may be divided into several stages: i) specifying and estimating the parametric models

for the marginal distribution of each series, ii) selecting of parametric pair copula mod-

els and estimating the associated parameters, iii) and testing the Goodness-of-�t. Details

about these di�erent stages are available in the Appendix A.

Let beX and Y continuous random variables with joint cumulative distribution function

H and margins F and G, respectively. Sklar’s Theorem guarantees the existence of a

unique function C such that, for all X and Y ∈ R,

H(X, Y ) = C{F (X), G(Y )} (9)

8. For instance in �nance literature, they are used in asset allocation, credit scoring, default risk mod-
eling, derivative pricing, and risk management (Bouyé et al., 2000; Embrechts et al., 2003; Cherubini et al.,
2004). More recently, Nguyen and Bhatti (2012) and Sukcharoen et al. (2014) have used copula approach
to model dependency between oil prices and stock markets.

16



The functionC , called the copula of (X, Y ), is the joint cumulative distribution function

of the pair (U, V ) = (F (X), G(Y )), whose components are distributed uniformly on the

interval [0; 1]. Sklar’s representation of H provides a useful way to model the joint

behavior of X and Y by choosing C , F , and G from appropriate parametric families.

Typically, it is assumed that C ∈ Cθ, where θ the parameter is a real-value.

In selecting the copula models, we must have a clear idea of their properties and features

and the type of dependence structure they allow for. One most important feature of

pair copula models is that they make it possible to model the joint distribution of two

variables C{F (X), G(Y )}, and allow to separate the estimation of dependence from

the estimation of marginal distributions F (X) and G(Y ). The association parameter θ

determines the strength of dependence within a given copula family. This dependence

strength can also be expressed in Spearman’s coe�cient rho (ρs) and Kendall’s coe�cient

tau (τk), two rank correlation measures. The higher are tau and rho values, the stronger

is the dependence.

Another useful pattern of dependence de�ned by copulas is the tail dependence, which

measures the probability that both variables are in their lower or upper joint tails. Intu-

itively, tail dependence refers to the degree of dependence in the corner of the lower-left

quadrant or upper-right quadrant of a bivariate distribution. This concept is relevant for

the study of dependence between extreme values. The lower tail (τL) and upper tail (τU )

dependence coe�cient of X and Y are respectively de�ned by:

τL = lim
α→0+

P{X ≤ F−1X (α)|Y ≤ F−1Y (α)} (10)

τU = lim
α→1−

P{X > F−1X (α)|Y > F−1Y (α)} (11)

provided that the limits exist.

F−1X and F−1Y denote the generalized inverse distribution functions of X and Y . (X, Y )

is upper tail-dependent if τU ∈ [0;1], meaning that there is a non-zero probability that

one random variable exceeds a high quantile, given that the other variable exceeds a

high quantile. (X,Y) is no upper tail-dependent if τU = 0. Similarly, (X, Y ) is lower tail-

dependent if τL ∈ [0;1], no lower tail-dependent if τL = 0 and the interpretation holds.
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An important question to address in building copula models is the choice of the para-

metric class of pair copulas. There are two prominent bivariate families: elliptical and

archimedean families.

Elliptical copulas are simply the copulas of elliptical distributions and are easy to simu-

late. They provide a rich source of multivariate distributions that share many of the

tractable properties of the multivariate normal distribution and enable modeling of mul-

tivariate extremes and other forms of non-normal dependencies. Elliptical distributions

are symmetric, i.e., the coe�cient of upper and lower tail dependence coincide. Gaussian

and Student-t copulas are the most commonly-used elliptical copulas functions.

However, archimedean copulas are more studied than elliptical copulas because the for-

mer allow for a great variety of dependence structures. Contrary to elliptical copulas,

the class of archimedean copula models can capture asymmetry in tail dependence by

exhibiting only upper or lower tail. For instance, in our study, an upper tail dependency

in the oil uncertainty-sovereign CDS spread relationship will suggest that uncertainty

in oil prices and the sovereign credit risk of oil exporters jointly experience extreme

upwards movements. In contrast, lower tail dependency will imply jointly experience

extreme downwards movements.

The testing copulas’ classes include the most commonly used in �nancial applications

(see Table 3), namely Gaussian, Student-t, Frank, Plackett, Clayton, Gumbel, Joe, Rotated

Clayton, and Rotated Gumbel copulas. Among the �rst four, which are symmetric, only

student-t copula exhibits tail dependence. The asymmetric copulas Gumbel, Joe, and Ro-

tated Clayton exhibit upper tail dependence, while Clayton and Rotated Gumbel exhibit

lower tail dependence. Recall that our goal is to suggest the best bivariate copulas class

that �ts the dependence structure between oil price uncertainty and the sovereign risk

of oil-exporting countries.
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Table 3: The selected copula models.

Copulas Functional form Upper tail Lower tail

Cθ(u, v) τU τL

Symmetric copulas

Gaussian
∫ φ−1(u)

−∞

∫ φ−1(v)

−∞ A. exp (−x2−2ρpxy
2(1−ρ2p)

) dx dy 0 0

Student-t

∫ t−1
v (u)

−∞

∫ t−1
v (v)

−∞ A. (1 + x2−2ρpxy
2(1−ρ2p)

)−
v+2
v dx

dy t1 t2

Frank 1
θ

log( (1−e
−θ)−(1−e−θu)(1−e−θv)

(1−e−θ) ) 0 0

Plackett 1
2(θ−1) {B −

√
B2 − 4θ(θ − 1)uv} 0 0

Asymmetric copulas

Clayton max{(u−θ + v−θ − 1)−
1
θ , 0} 0 2−

1
θ

Gumbel exp{−[− log(u)−θ + log(v)−θ]
1
θ } 2 - 2−

1
θ 0

Joe 1− [(1−u)θ+(1−v)θ−(1−u)θ(1−v)θ]
1
θ 2 - 2−

1
θ 0

Rotated Clayton u+ v − 1 + [(1− u)−θ + (1− v)−θ − 1]
1
θ 2−

1
θ 0

Rotated Gumbel u+v−1+exp{−[− log(u)−θ+log(v)−θ]
1
θ } 0 2 - 2−

1
θ

Notes: θ denotes the association parameter of the copula model. A = 1

2π
√

1−ρ2p
, t1 = t1 =

2 tv+1(
−
√
1+v
√

1−ρp√
1+ρp

), and B = 1 + (θ − 1)(u+ v).
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4 Empirical results

4.1 Preliminary assessment of dependence with visual tools

As mentioned in the methodology section, chi-plots (Figure B.1) and k-plots (Figure B.2

to B.3), reported in the Appendix B, are used to detect the eventual presence of depen-

dence between oil-exporting CDS spreads and oil price uncertainty.

When looking at Figure B.1, we can see that most of the points fall outside the "con-

�dence band" of the chi-plots, except for Brazil and Venezuela, where many points lie

inside the con�dence bounds. This result suggests a positive association between oil-

exporters CDS spreads and oil price uncertainty, meaning that the two variables tend to

move together. This result is supported by the k-plots in Figure B.2. Indeed, the pairs

of dots lying between the dotted curve and the 45 line point to the existence of a posi-

tive relationship between oil-exporting CDS spreads and oil price uncertainty. Brazil’s

result re�ects that it is not a major oil-exporting country and has a relatively more di-

versi�ed basket of exports than most countries considered in our sample. In Venezuela,

Investors seem to attribute more weight to factors such as political instability in their

perception of credit risk. For the others, the dependence is higher for speci�c coun-

tries (e.g., Malaysia, Mexico, and Russia) and lower for others (Kazakhstan, Norway, and

Qatar). One explanation of the positive dependence between oil price uncertainty and

sovereign credit risk of oil exporters stems from the fact that CDS market players usu-

ally base their decisions on the expected future economic trends. Indeed, uncertainty

in oil prices is synonymous with economic instability in oil-exporting countries, and as

claimed by Hilscher and Nosbusch (2010), a country with higher macroeconomic volatil-

ity is potentially more prone to sovereign debt default. Thus, our �ndings provide strong

evidence that oil price uncertainty appears to be a key factor on which investors rely to

assess credit risk in oil-exporting countries. These �ndings corroborate existing evi-

dence of the previous studies that examine the links between oil price uncertainty and

sovereign credit risk of oil-exporting countries (Bouri et al., 2017; Shahzad et al., 2017;

Bouri et al., 2018; Pavlova et al., 2018; Chu�art and Hooper, 2019).
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Interestingly enough, in lines with Shahzad et al. (2017) and Bouri et al. (2018), the two

visual tools seem to provide upper tail dependence evidence. When looking at the chi-

plots, we can see many points lying in the upper right part of the graphs in most cases.

Likewise, a prominent cluster is also apparent in the K-plots’ upper-right quadrant,

meaning that the OVX-CDS spreads relationship could be slightly more accentuated for

high quantile observations. An upper-tail dependency suggests a non-zero probability

that an environment of high uncertainty about future oil prices coincides with large-

scale changes in CDS spreads. This supports the hypothesis that investors, exposed to

economic losses from risk events in oil exporters, are all the more pessimistic that pre-

vails high uncertainty about future oil prices. As documented by Chen et al. (2015), a

too high level of OVX means that market participants fail to predict future returns well,

thus increasing oil-exporting countries’ economic instability. Hence, a strong disincen-

tive for market participants to invest in oil-exporting countries emerges, and even more

so, their economy depends mainly on oil revenues.

4.2 Estimation of residuals marginal distribution

The parameter estimates for the marginal distribution models (Equations 14 to 19) are

presented in Table 4 and Table 5. Panels A and B provide the estimates for the mean

and variance equations based on asymmetric Student-t distributions for the standardized

residuals, respectively, while Panel C provides the asymmetric parameters and degrees of

freedom estimates. Panel D relies on the diagnostics tests relative to models of marginal

distribution and the standardized residuals.

We �rst notice that the series of sovereign CDS spreads of oil exporters and implied

volatility of oil are a�ected by their past values, as evidenced by the signi�cance at the

5% level of the coe�cients α1X and α1Y . The results provide evidence of persistence in

the conditional volatility series, the parameters β1X and β1Y being signi�cantly di�erent

from zero at the 5% level. The signi�cance of the parameter d indicates persistence in

the OVX series. Persistence in OVX series re�ects a slowly decreasing auto-correlation

function, which from an economic point of view, means that market participants’ ex-

pectations regarding the price of crude oil a�ect future expectations over a long period.
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Table 4: Parameter estimates for marginal distribution models.

OVX Brazil Indonesia Kazakhstan Malaysia Mexico
Panel A. Mean equations parameters
α0 0.002∗∗∗ −0.0002 −0.001 −0.0001 −0.0003 0.02
α1 0.98∗∗∗ 0.10∗∗∗ 0.05∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.09∗∗∗

d 0.13∗∗∗ - - - - -

Panel B. Variance equations parameters
β0 1.88.10−5* 8.17.10−5* 4.01.10−5* 2.56.10−5* 1.28.10−5* 0.001∗

β1 0.24∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.07∗∗∗

β2 0.68∗∗∗ 0.85∗∗∗ 0.84∗∗∗ 0.90∗∗∗ 0.91∗∗∗ 0.56∗∗∗

Panel C. Asymmetry coe�cients and degree of freedom
η 3.83∗∗∗ 5.52∗∗∗ 3.13∗∗∗ 2.64∗∗∗ 3.33∗∗∗ 3.29∗∗∗

λ 1.37∗∗∗ 1.01∗∗∗ 1.03∗∗∗ 1.02∗∗∗ 1.03∗∗∗* 1.00∗∗∗

Panel D. Model and residual diagnostics
LLV 5356 3893 3869 3794 3452 2619
LM(36) 0.16 22.02 0.06 27.28 36.60 0.11
Q(36) 35.43 46.83 39.79 27.50 24.55 20.90
Skweness 1.29 0.16 0.47 0.45 0.35 0.51
Kurtosis 6.95 4.63 8.39 7.09 8.29 9.38
Jarque-Bera 1703∗∗∗ 213∗∗∗ 2285∗∗∗ 1338∗∗∗ 2171∗∗∗ 2689∗∗∗

Notes: This table reports parameter estimates for the marginal distribution models for stan-
dardized residuals based on an asymmetric Student-t distribution. Parameters are de�ned
in Eqs. (14) to (19). Model and residual diagnostics, including Log-Likelihood Value (LLV)
LM(K) statistics for heteroscedasticity and the Q(K) statistic for serial correlation com-
puted with K lags, and normality tests are also reported. ∗∗∗, ∗∗∗ and ∗∗∗ denote rejection of
the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical level.

The results show that both the asymmetric parameter ν and the degree of freedom λ are

always signi�cant. Results relative to diagnostics tests suggest rejecting the Gaussian

speci�cation for the conditional distribution of the standardized residuals, as indicated

by skewness and kurtosis values, and con�rmed by Jarque–Bera test. LM(K) statistic

tests indicate the absence of ARCH e�ects in the series under consideration. According

to Q(K) statistics, we do not observe correlations in residuals series in most cases.
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Table 5: Parameter estimates for marginal distribution models.

Norway Qatar Russia Venezuela Vietnam
Panel A. Mean equations parameters
α0 0.001 −0.0004 0.001 0.0001 −0.0002
α1 −0.001∗∗∗ 0.08∗∗∗ 0.19∗∗∗ −0.28∗∗∗ 0.01∗∗∗

Panel B. Variance equations parameters
β0 0.001∗ 0.0002∗∗∗ 0.003 0.0001∗∗∗ 7.26.10−6*
β1 −0.001∗∗∗ 0.22∗∗∗ 0.01∗∗∗ 1.71∗∗∗ 0.13∗∗∗

β2 0.57∗∗ 0.67∗∗∗ −0.12 0.18∗∗∗ 0.86∗∗∗

Panel C. Asymmetry coe�cients and degree of freedom
η 2.00∗∗∗ 2.77∗∗∗ 2.39∗∗∗ 2.00∗∗∗ 2.00∗∗∗

λ 0.97∗∗∗ 1.03∗∗∗ 1.03∗∗∗ 1.03∗∗∗ 0.99∗∗∗

Panel D. Model and residual diagnostics
LLV 2993 3483 2665 4426 4712
LM(36) 0.16 22.02 0.06 4.15 16.40
Q(36) 35.43 46.83 39.79 81.75∗∗∗ 46.07∗∗∗

Skweness 28.01 0.76 18.49 −3.03 0.77
Kurtosis 1043.77 12.52 605.40 78.54 14.08
Jarque-Bera 8265368∗∗∗ 7083∗∗∗ 27714174∗∗∗ 437607∗∗∗ 9530∗∗∗

Notes: This table reports parameter estimates for the marginal distribution models for
standardized residuals based on an asymmetric Student-t distribution. Parameters are
de�ned in Eqs. (14) to (19). Model and residual diagnostics, including Log-Likelihood
Value (LLV) LM(K) statistics for heteroscedasticity and the Q(K) statistic for serial
correlation computed with K lags, and normality tests are also reported. ∗ ∗ ∗, ∗∗ and
∗ denote rejection of the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical
level.

Furthermore, because of the importance of accurate modeling of the conditional dis-

tribution for residuals in the copula model, we also consider student-t distribution and

perform the goodness-of-�t of this distribution using the Kolmogorov-Smirnov test. 9

The p-value of this test, summarized in Table 6, indicate that the hypothesis of student-t

distribution is rejected in all cases, suggesting that asymmetric student-t is adequate to

model residuals marginal distribution.

9. Details on the Kolmogorov- Smirnov test are available in Patton (2001).
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Table 6: Results for Kolmogorov-Smirnov test.

Student-t distribution
OVX 0.05
Brazil 0.03

Indonesia 0.05
Kazakhstan 0.02

Malasia 0.01
Mexico 0.03
Norway 0.01
Russia 0.05
Qatar 0.02

Venezuela 0.02
Vietnam 0.01

Note: This table reports the P-value associated with the Kolmogorov-Smirnov test.

4.3 Estimation of copula models of dependence

We study the relationship between oil-exporting CDS spreads and oil price uncertainty

using bivariate copula models of dependence. We assume that the "true or correct model"

is among the nine parametric bivariate copulas (see Table 3).

The correct model refers here to the copula family that better captures the dependence

structure between the series under consideration. The parameter estimates have been

obtained by applying the inference function for margins (IFM) method (described in the

Appendix). The selection of the appropriate model for �tting the OVX-CDS spreads rela-

tionship is based on the information criteria, including the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC). Then, we employ formal goodness-

of-�t tests of the selected copula models. The estimations’ results are displayed in Table

7, while goodness-of-�t test results are summarized in Table 8.

Except for Brazil and Venezuela, where independence is found, 10 the results provide

evidence of positive dependence between OVX and the CDS spreads of the selected oil

exporters, as evidenced by Spearman’s rho’s estimated values and Kendall’s tau corre-

lation measures. The estimations indicate that Joe copula (Indonesia, Mexico, Norway,

and Vietnam) and Rotated Clayton copula (Kazakhstan, Malaysia, Qatar, and Russia)

10. Here, we use the term "independence" to state that, none of the tested models is able to capture the
dependence structure between oil price uncertainty and the sovereing credit risk for these two countries.
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are adequate to model the dependence structure between oil price uncertainty and the

sovereign CDS spreads. The goodness-of-�t tests support these �ndings. The null hy-

pothesis of the adequacy between the empirical copula and the selected copula models

cannot be rejected in any case as the p-values are always higher than 5%. As Joe and

Rotated Clayton copulas exhibit upper tail dependence, the estimations’ results are thus

in complete support with the assessment with visual tools. Overall, our �ndings are

in line with previous studies (Shahzad et al., 2017; Bouri et al., 2018), which considered

some oil-exporting countries and found that a high level of uncertainty in oil prices pre-

dicts signi�cantly large-scale changes of their sovereign CDS spreads. However, there

are some points on which our �ndings di�er.

Our result of independence between Brazil’s sovereign credit risk and the oil price un-

certainty is similar to those of Shahzad et al. (2017). This result is explained by the fact

that Brazil is not a major oil-exporting country and has a relatively more diversi�ed

basket of exports than most countries considered in our sample. As concerns Venezuela,

we do not provide evidence of dependence between OVX and the sovereign CDS spread

regardless of the level of uncertainty in oil prices in contrast to Shahzad et al. (2017). The

discrepancy between the results may be explained by the di�erence in the frequency of

the data. Indeed, whereas Shahzad et al. (2017) use a weekly frequency, we use a daily

frequency that seems to be more appropriate to better capture the �nancial market dy-

namics. The result suggests that the sovereign credit risk of Venezuela is not driven by oil

price uncertainty. In this country, investors’ perception of credit risk is based on many

constraints that weaken the country’s economic potential, namely political instability,

the sanctions imposed against the country, and the economy’s weak liberalization.

In Norway and Qatar’s speci�c cases, the correlation measures and the tail dependence

coe�cients are reasonably close to zero, thereby indicating a weak positive dependence

between oil price uncertainty and the sovereign credit risk perception in these countries.

This outcome is not surprising and can be explained as follows. Qatar’s low dependence

between oil price uncertainty and sovereign CDS spread compared to the other coun-

tries is a sign of investor con�dence in Qatar’s economy and its ability to meet its loan

obligation even in times of considerable uncertainty about the future evolution of oil

price.
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Table 7: Parameter estimates of the selected copula models.

Country Selected Copula θ τk ρs τU τL

Brazil - - - - - -
Indonesia Joe 1.30∗∗∗ 0.14 0.20 0.30 0.00

Kazakhstan Rotated Clayton 0.61∗∗ 0.24 0.36 0.32 0.00

Malaysia Rotated Clayton 1.01∗∗∗ 0.34 0.49 0.50 0.00

Mexico Joe 1.53∗∗∗ 0.23 0.33 0.43 0.00

Norway Joe 1.04∗∗∗ 0.04 0.06 0.05 0.00

Qatar Rotated Clayton 0.29∗∗∗ 0.13 0.20 0.09 0.00

Russia Rotated Clayton 1.59∗∗∗ 0.45 0.62 0.65 0.00

Venezuela - - - - - -
Vietnam Joe 1.57∗∗∗ 0.22 0.33 0.44 0.00

Notes: This table reports the best copula models, based on AIC, BIC, that capture the
dependence structure between OVX and the oil-exporting countries CDS spreads per
country, the parameter estimates for each model, and the associated tail dependency
measures. The rank correlation measures ρs and τk as well as tails dependency
coe�cients, de�ned in subsection 3.2, are also reported. ***, ** and * denote rejection of
the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical level.

Several key factors explain investors’ con�dence, notably the stability of its currency

against the dollar, practicing one of the lowest corporate tax rates in the world (10%), 11

and owning a large stock of foreign currency reserves. As concerns Norway, it owns the

world’s largest sovereign wealth fund (SWF) in the world and has a diversi�ed economy

compared to the other oil-exporting countries under consideration, then showing its

enhanced ability to carry its debts commitments.

Further, contrary to Bouri et al. (2018) but in agreement with Shahzad et al. (2017), we

do not provide evidence of any lower-tail dependence in the relationship. No lower-

tail dependence means that extremely low oil price uncertainty does not necessarily

imply little CDS changes, or inversely. Indeed, sovereign credit risks have other key

determinants like political factors and some economic speci�cities that might in�uence

investors’ perception of risk in order to make signi�cant changes on sovereign spreads,

even during a period of low uncertainty regarding future oil prices.

11. Based on the data published by Tax Foundation, an American research institution.
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Table 8: Goodness-of-Fit test results.

Country Copula GOF P-value
Asymptotic Exact

Indonesia Joe 0.61 0.97
Kazakhstan Rotated Clayton 0.57 0.96
Malaysia Rotated Clayton 0.89 0.99
Mexico Joe 0.62 0.96
Norway Joe 0.66 0.98
Qatar Rotated Clayton 0.28 0.76
Russia Rotated Clayton 0.18 0.70
Vietnam Joe 0.56 0.90

Note: This table reports the results of the bootstrap based on the Cramér–von Mises
statistic CMn for testing the Goodness-of-Fit of the selected copula models.

Understanding the dependence structure between oil price uncertainty and sovereign

risk of oil exporters from a perspective of extreme market-risks has important implica-

tions for policymakers of oil-exporting countries, particularly for their debt policies and

the reform of their economic structure. First, to avoid unfavorable borrowing costs, our

results highly recommend that policymakers of oil-exporting countries have to borrow

when the market expects high uncertainty regarding future oil prices. Second, lessons

need to be learned from Norway and Qatar’s experiences. Following Norway’s exam-

ple, it is crucial for oil-exporting countries to diversify their economies and, preferably,

away from other energy resources since it is widely accepted that oil and energy prices

(like gas and coal) are positively correlated (Joëts and Mignon, 2012). In the same vein,

Qatar’s experience suggests the e�ectiveness of amassing considerable foreign currency

reserves that allow oil exporters running de�cits for an extended period, thereby en-

hancing investor con�dence. Our �ndings also provide a new analysis tool for investors

and traders exposed to economic losses from risk events in oil exporters to monitor their

risks during extreme periods. They can build upon our �ndings to re-weight their inter-

national portfolio more e�ectively and construct a hedging-based strategy.
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5 Robustness check

In this section, we undertake an additional check in order to ensure that our results are

robust. Recall that we relied on the Crude Oil Volatility Index (OVX), often viewed as

re�ecting uncertainty in oil prices, to conduct our empirical analysis. Bekaert et al. (2013)

highlighted that a market-based measure is not a good proxy of uncertainty because it

is more closely related to time-varying risk aversion than the real uncertainty. Jurado

et al. (2015) argue that this measure of uncertainty can change over time even if there

is no change in uncertainty about fundamentals, if leverage changes, or if movements

in risk aversion drive the market �uctuations. While the use of market volatility as a

measure of uncertainty is not free from criticisms, it is di�cult to have a better proxy in

high-frequency data. Accordingly, we consider the variance risk-premium of oil price

as an alternative market-based proxy or indicator of the oil price uncertainty and follow

the same methodology described in section 3 to assess our �ndings’ validity. 12

The data used to compute daily variance risk-premium span from January 2010 to June

2016. 13

Following Bollerslev et al. (2009), we de�ne the daily variance risk-premium of oil price

(OV RPt) as the di�erence between the ex-ante risk-neutral expectation of the future

return variation and the ex-post realized return variation of the daily crude oil price.

OV RPt is thus interpreted as the error in forecasting crude oil price volatility. The ex-

ante risk-neutral expectation of the future return variation is proxied by the square of

the daily Crude Oil implied Volatility Index (OVX2
t ), while the daily realized variance

(ORVt) of crude oil price is used to proxy the ex-post realized return variation:

OV RPt = OVX2
t −ORVt (12)

12. Several tests reveal that the logarithmic di�erence of the daily variance risk-premium of oil prices
follows an AR(1)-GARCH(1, 1).

13. Here, the data ends in 2016 due to a lack of available data. Indeed, the dataset on the historical
intraday serie we use to estimate realized volatility has a restricted policy and is not available free of
charge. However, it worth noting that the results obtained by using the Crude Oil Volatility Index as the
proxy of oil price uncertainty hold over this period. The latter is available upon request.
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We estimate the daily realized variance (ORVt) of crude oil price as the sum of squared

intra-day returns of crude oil price following Andersen and Bollerslev (1998) :

ORVt =
J∑
j=1

r2t,j (13)

with the indexes t and j denoting the day of the observation and the intraday time of

observation on a particular day, respectively. rt,j=Pt,j-Pt,j−1 is the 5-minute return of

crude oil price at trading day t in time j, where Pt,j is the logarithm of the observed spot

price of the West Texas Intermediate (WTI) crude oil at trading day t in time j. WTI

crude oil price is sourced from tick data market.

Figure 3 displays the time trends in the variance risk-premium of oil prices. Interestingly,

it turns out that the upward and downward movements of the oil variance risk premium

are associated with some major events a�ecting the oil market. 14 This con�rms that the

oil variance risk premium re�ects oil investor fear and can be considered as an oil price

uncertainty indicator.

Figure 3: Variance risk-premium of oil price over the 2010-2016 period.
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14. Notably, the signi�cant growth in US shale, from next to nothing in 2010 to more than 7 mb/d at
the start of this year, the popular uprising against Colonel Kadda�’s regime and the ensuing civil war (at
the heart of 2011), and the historical drop in the price of crude oil by about 50 percent between June 2014
and January 2015 and the period of uncertainty that has prevailed since then.
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The results of the estimation are reported below in Table 9 to Table 11. The marginal

distribution model (Table 9) shows that the series of oil price variance risk-premium is

a�ected by its past value and provides evidence of persistence in the volatility of this

serie. Moreover, it turns out that the asymmetric student-t distribution is adequate to

model residuals marginal distribution.

Table 9: Parameter estimates for the marginal distribution model for OVRP.

Coe�cient P-value
Panel A. Mean equations parameters
α0 0.001 0.00
α1 0.92 0.00

Panel B. Variance equations parameters
β0 2.30.106 0.00
β1 0.40 0.00
β2 0.70 0.00

Panel C. Asymmetry coe�cients and degree of freedom
η 3.95 0.00
λ 1.01 0.00

Panel D. Model and residual diagnostics
Loglikelihood 5356 -
LM(36) 39.03 0.99
Q(36) 121.31 0.00
Skweness −0.62 0.00
Kurtosis 13.08 0.00
Jarque-Bera 7875 0.00
KS - 0.75

Notes: This table reports parameter estimates for the marginal distribution models for
standardized residuals based on an asymmetric Student-t distribution. Model and residual
diagnostics, including LM(K) statistics for heteroscedasticity and the Q(K) statistic for
serial correlation computed with K lags, and normality tests are also reported. KS is
the result of the Kolmogorov-Smirnov test used as the goodness-of-�t test of student-t
distribution, and the reported P-value is the asymptotic ones.
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Regarding the results of copula model selection (Table 10 and Table 11), the series of

oil price variance risk-premium and the sovereign CDS spread seem to be independent

for Brazil and Venezuela. Substantial evidence of positive and asymmetric dependence

between the variance risk-premium of oil price and the sovereign CDS spread is found

for the other countries. Indeed, the results suggest Joe copula (Indonesia, Kazakhstan,

Mexico, and Russia) and Rotated Clayton copula (Malaysia, Qatar, Norway, and Viet-

nam), which exhibit upper tail-dependence, as the models of choice to �t the dependence

structure between oil price variance risk-premium and sovereign CDS spread. Therefore,

these �ndings are in line with those obtained using the crude oil volatility index as the

proxy of oil price uncertainty.

Table 10: Parameter estimates of the selected copula models.

Country Selected Copula θ τk ρs τU τL

Brazil - - - - - -
Indonesia Joe 1.42∗∗∗ 0.18 0.27 0.37 0.00
Kazakhstan Joe 1.26∗∗ 0.14 0.21 0.27 0.00
Malaysia Rotated Clayton 1.03∗∗∗ 0.34 0.48 0.51 0.00
Mexico Joe 1.60∗∗∗ 0.26 0.37 0.46 0.00
Norway Rotated Clayton 0.17∗∗∗ 0.11 0.17 0.02 0.00
Qatar Rotated Clayton 0.20∗∗∗ 0.09 0.14 0.03 0.00
Russia Joe 1.92∗∗∗ 0.33 0.48 0.57 0.00
Venezuela - - - - - -
Vietnam Rotated Clayton 1.43∗∗∗ 0.42 0.59 0.38 0.00

Notes: This table reports the best copula models, based on AIC, BIC, that capture the
dependence structure between OVX and the oil-exporting countries CDS spreads per
country, the parameter estimates for each model, and the associated tail dependency
measures. The rank correlation measures ρs and τk as well as tails dependency
coe�cients, de�ned in subsection 3.2, are also reported. ***, ** and * denote rejection of
the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical level.
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Table 11: Goodness-of-Fit test results.

Country Copula GOF P-value
Asymptotic Exact

Indonesia Joe 0.57 0.97
Kazakhstan Joe 0.16 0.97
Malaysia Rotated Clayton 0.62 0.98
Mexico Joe 0.86 0.99
Norway Rotated Clayton 0.51 0.78
Qatar Rotated Clayton 0.14 0.71
Russia Joe 0.37 0.96
Vietnam Rotated Clayton 0.69 0.88

Note: This table reports the results of the bootstrap based on the Cramér–von Mises
statistic CMn for testing the Goodness-of-Fit of the selected copula models.

6 Concluding remarks

This paper investigates the co-movement and dependence structure between oil price

uncertainty and sovereign credit risk for several oil-exporting countries from the Jan-

uary 2010-May 2019 period, proxied respectively by the crude oil implied volatility index

(OVX) and the 5-year sovereign CDS spreads.

Distinguishing our study from prior studies via a copula-based approach, we reported

some nuanced �ndings in several respects. With two exceptions (Brazil and Venezuela),

we provide evidence of positive dependence between oil price uncertainty and the credit

risk of oil exporters.

Furthermore, the results reveal an upper tail dependency in the relationship between

oil price uncertainty and oil exporters’ sovereign risk. These results suggest a non-zero

probability that high uncertainty about future oil prices coincides with large-scale in-

creases in the sovereign credit risk of oil-exporting countries, supporting the hypothesis

that investors, exposed to economic losses from risk events in oil exporters, are all the

more pessimistic that prevails high uncertainty about future oil prices. Importantly, we

do not show evidence of low tail dependence in the relationship under consideration,

contrary to Bouri et al. (2018). Although we ignore the origin of this discrepancy between
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the results, we can emphasize our �ndings’ most intuitive character. In fact, sovereign

credit risks have key determinants like political factors and some economic speci�ci-

ties that might in�uence investors’ perception of risk to make signi�cant changes on

sovereign spreads, even during low oil uncertainty periods.

Our �ndings carry profound implications for oil-exporting countries’ policymakers, par-

ticularly for their debt policies and economic structural reform. Speci�cally, oil ex-

porters’ policymakers can avoid unfavorable borrowing costs if they borrow before an

expected high uncertainty regarding future oil prices. Moreover, Norway’s experience

highlights the relevance for oil exporters to diversify their economies and, preferably,

away from other energy resources. It is indeed widely accepted that the price of oil and

other energies like gas and coal are positively correlated (Joëts and Mignon, 2012). In

the same vein, Qatar’s experience suggests that amassing considerable foreign currency

reserves, which helps oil exporters to run de�cits for an extended period, enhances in-

vestor con�dence. Our �ndings can also be useful for investors exposed to economic

losses from risk events in oil exporters to monitor their risks during extreme periods.

Indeed, they could build upon to re-weight more e�ectively their international portfolio

and construct e�cient hedging strategies.
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Appendices

A Validation’s process of bivariate copula models

The models for marginal distributions of residuals series

Following the schemes of Patton (2001) and Jondeau and Rockinger (2006), the models

we employed for marginal distributions are de�ned as below:

∆Xt = α0X + α1X∆Xt−1 + εX,t (14)

σ2
X,t = β0X + β1Xσ

2
X,t−1 + β2Xε

2
X,t−1 (15)

εX,t = σX,tZX,t, ZX,t ↪→ ST (ηX , λX) (16)

and

∆dYt = α0Y + α1Y ∆dYt−1 + εY,t (17)

σ2
Y,t = β0Y + β1Y σ

2
Y,t−1 + β2Y ε

2
Y,t−1 (18)

εY,t = σY,tZY,t, ZY,t ↪→ ST (ηy, λy) (19)

Xt and Yt denote the logarithm of the sovereign CDS spreads of oil exporters and the

OVX series’s logarithm, respectively. To address autocorrelations and heteroskedasti-

city, Xt is assumed to be characterized by an ARIMA(1, 1, 0) – GARCH(1, 1) model,

while Yt is modeled by an ARFIMA(1, d, 0) - GARCH(1, 1).

The parameter d, the degree of fractional integration, takes into account the long memory

in the implied volatility series. ∆d = (1−L)d is the fractional di�erence operator, and L

is the lag operator. Yt is stationary if 0 < d < 0.5, and anti-persistent if −0.5 < d < 0.

The innovation ε is de�ned as the product between the conditional volatility σ and the

standardized residual Z . The standardized residuals Z follow an asymmetric Student-

t distribution as proposed by Hansen (1994). The asymmetric Student-t distribution is
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de�ned as follows:

d(Zi, η, λ) =

 bc(1 + 1
η−2( bZ+a

1−λ )2)
η+1
2 if Z < −a/b

bc(1 + 1
η−2( bZ+a

1+λ
)2)

η+1
2 if Z ≥ −a/b

(20)

where 2 <η <∞ and -1 <λ <1.

η and λ denote the degree-of-freedom parameter and the asymmetry parameter, respec-

tively. The real a, b and c are given by:

a = 4cλ(
η − 2

η − 1
) (21)

b =
√

1 + 3λ2 − a2 (22)

c =
Γ(η+1

2
)√

π(η − 2)Γ(η
2
)

(23)

The marginal densities ofZX,t andZY,t are de�ned by d(ZX,t, φX |Ft−1) and d(ZY,t, φY |Ft−1)

where φX and φY represent the vector of parameters for each model and Ft−1 corre-

sponds to the set of information available at the period t−1. The parameters of marginal

distributions models are all estimated via the maximum-likelihood method.

Estimation

We use a two-step parametric approach to estimate our dependence model’s parameters

based on the copula approach, also known as inference functions for margins (IFM).

IFM consists of estimating the marginal parameters �rst (accepting the hypothesis of

asymmetric Student t-distribution) and then estimating the association parameter given

the marginals. Let denote fx and fy as the marginal densities of the residuals ZX,t and

ZY,t, respectively.

The parameters of each marginal distribution are obtained by maximizing the log-likelihood

of the marginal densities:

φ̂X = argmax

T∑
t=1

log(fx(ZX,t, φX |Ft−1)) (24)

φ̂Y = argmax

T∑
t=1

log(fy(ZY,t, φY |Ft−1)) (25)
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Then, the residuals ZX,t and ZY,t are transformed using the cumulative asymmetric

Student-t distribution functions:

v̂X,t =

∫ ZX,t

−∞
dX,t(u, φ̂X |Ft−1) (26)

v̂Y,t =

∫ ZY,t

−∞
dY,t(u, φ̂Y |Ft−1) (27)

Finally, the association parameter estimate is derived in the ultimate step as follows:

θ̂ = argmax
T∑
t=1

logCt( ˆvX,t, v̂Y,t; θ|Ft−1) (28)

Once the association dependence parameter θ obtained, selecting the most appropriate

bivariate copula function for the data under analysis is based on information criteria,

including the Akaike (AIC) and Bayesian (BIC) Information Criteria. The copula model

with the lowest information criteria should be considered as the best �t.

Goodness-of-�t testing

Goodness-of-�t (GOF) testing allows us to �nd out whether the selected bivariate model

Cθn from the estimation step provide the best representation of the dependence struc-

ture for the data under analysis. Concretely, GOF consists of testing the following null

hypothesis:

H0 : Cθ = Cθn (29)

To measure this step’s signi�cance, keep in mind that if the selection criteria do not

agree, we can slice after applying GOF testing. For testing the goodness-of-�t, we use a

formal procedure based on the empirical copula Cn. 15

The formal test consists of comparing the distance between the empirical copula Cn and

an estimation Cθn of the copula Cθ obtained under H0.

15. Introduced by Deheuvels et al. (1979) and formally de�ned as follows Cn(u, v) = 1
n

∑n
i=1 I(

Ri

n+1 ≤
u, Si

n+1 ≤ v), the empirical copula is a rank-based estimator of the true unknown copulaCθ(u, v). Ganssler
and Stute (1987), Fermanian et al. (2004) and Tsukahara (2005) give various conditions under which Cn is
a consitent estimator of Cθ .
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Based on the following process
√
n (Cn−Cθn), the test is only practicable by bootstrap-

ping as evoked by Fermanian et al. (2005) and validated by Genest and Rémillard (2008).

Speci�cally, the latter proposed computing a Cramér–von Mises statistic CMn de�ned

below:

CMn = n
n∑
i=1

{Cn(
Ri

n+ 1
,
Si

n+ 1
)− Cθn(

Ri

n+ 1
,
Si

n+ 1
)}2 (30)

The bootstrap methodology required to compute the p-values associated with the formal

procedure proceeds as follows: (1) Estimate θ by a consistent estimator θn ; (2) Generate

N random samples of size n from Cθn and estimate θ by the same method as before, and

determine the value of the statistic test for each of these samples; (3) An approximate

of the critical value of the test based on CMn is given by CM∗
b(1−α)Nc:N and 1

N
6= {j :

CM∗
j ≥ CMn} yields an estimate of p-values associated with the observed value CMn

of the statistic at level α, where the values of the test statistics calculated in the second

step are ordered as follows: CM∗
1:N ≤ CM∗

2:N ≤ ... ≤ CM∗
N :N . brc refers to the integer

part of r ∈ R.
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B Dependence assessment with graphical tools

Figure B.1 Chi-plots based on OVX and 5-Year oil exporters sovereign CDS spread.
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Figure B.1 (Continued) Chi-plots based on OVX and 5-Year oil exporters sovereign CDS
spread.
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Figure B.2 K-plots based on crude oil prices volatility and 5-Year oil exporters sovereign
CDS spreads data set.

45



Figure B.2 (Continued) K-plots based on crude oil prices volatility and 5-Year oil
exporters sovereign CDS spreads data set.
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Figure B.3 K-plots corresponding to extreme cases based on random samples.
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