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Abstract

Small and Medium Size enterprises (SMEs) are critical actors in the fabric of the econ-
omy. Their growth is often limited by the difficulty in obtaining financing. Basel II accords
enforced the obligation for banks to estimate the probability of default of their obligors.
Currently used models are limited by the simplicity of their architecture and the available
data. State of the art machine learning models are not widely used because they are of-
ten considered as black boxes that cannot be easily explained or interpreted. We propose
a methodology to combine high predictive power and powerful explainability using var-
ious Gradient Boosting Decision Trees (GBDT) implementations such as the LightGBM
algorithm and SHapley Additive exPlanation (SHAP) values as post-prediction explanation
model. SHAP values are among the most recent methods quantifying with consistency the
impact of each input feature over the credit score. This model is developed and tested using
a nation-wide sample of French companies, with a highly unbalanced positive event ratio.
The performances of GBDT models are compared with traditional credit scoring algorithms
such as Support Vector Machine (SVM) and Logistic Regression. LightGBM provides the
best performances over the test sample, while being fast to train and economically sound.
Results obtained from SHAP values analysis are consistent with previous socio-economic
studies, in that they can pinpoint known influent economical factors among hundreds of
other features. Providing such a level of explainability to complex models may convince
regulators to accept their use in automated credit scoring, which could ultimately benefit
both borrowers and lenders.
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1 Introduction

Small and Medium sized Enterprises (SMEs) play an important role in France’s economical en-

vironment, as in various other countries. According to french official statistics1 there were 3.8

million of french companies by the end of 2017, 96% of which are micro-companies and another

3.8% are SMEs, both categories providing 48.7% of national employment and 43.2% of domestic

added value. Outstanding loans to SMEs amount to EUR 420.5 billions, which represents 50.6%

of the country’s outstandings for companies of all sizes, and their progression was the highest

(+6.2% in one year) compared to those of large companies (+2.9%). However, contrary to large

companies, SMEs are not part of interconnected and mutually-dependant networks of actors and

have no choice but to apply for credit to finance themselves [Kuntchev et al., 2012], with very little

prior information available to the lenders to evaluate their creditworthiness. Consequently, risk

analysis is a particularly complex task, as asymmetry and high uncertainty of information gath-

ering phenomenon appear [Berger & Udell, 2002; Pollard, 2003; Beck & Demirguc-Kunt, 2006],

and the identification of low-risk borrowers is difficult. Moreover, physical distance to banks

also impacts the information gathering process, which leads to uneven geographical treatment of

SMEs’ loan applications [Agarval & Hauswald, 2010]. Finally, as a consequence of their increased

tendancy to default, SMEs are often charged with higher interest rates [Beck, Demirguc-Kunt

& Martinez Peria, 2008]. This situation results in the creation of a funding gap or anti-selection

process that can severely impact their growth, and thus the real sector [Stiglitz & Weiss, 1981;

Bell & Young, 2010; Fraser, Bhaumik & Wright, 2015]. Literature stresses the importance of

specifically considering SMEs when engaging financial regulatory and policy reforms, diversifying

those policies’ assessment methodologies, and collecting as much data as possible to support the

research [Beck, 2013].

SME’s credit scoring literature essentially focused on traditional bank loans as it has histor-

ically been the only possible source of credit. However, after its emergence in the last decade,

crowdlending has recently been given some attention. Indeed, adressing the economic segment

of SMEs that have been progressively neglected by the banks, this new activity has grown expo-

nentially [Ziegler et al., 2018]. Only recently has the subject of SME’s credit financing through

crowdlending platforms been adressed for the first times by literature [Moreno, Berenguer &

Sanch́ıs Pedregosa, 2018; Cumming & Hornuf, 2020]. Findings suggested that crowds follow

different criteria than banks : financial information is given less importance in favor of less quan-

titative information such as trust in the borrower or in the platform scoring.

1Information gathered from INSEE’s 2017 edition of “Les entreprises en France” report, available at
https://www.insee.fr/fr/statistiques/4256020
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The search for explanation of the default phenomenon and identification of risky borrow-

ers, combined with Basel II’s obligation for banks to enforce 12-months horizon credit scoring

approaches, led to widespread adoption of machine learning algorithms. Those automated meth-

ods are designed to provide a fast and robust ranking of loan applicants based on their potential

financial vulnerability, while reducing the costs associated with collect and processing of informa-

tion [Berger & Frame, 2007]. Many different models have since been internally adopted although

quite few of it do specifically adress SME specificities [Edmister, 1972; Pompe & Bilderbeek,

2005; Altman & Sabato, 2007].

Although those studies provided better insights on the default phenomenon, the possibilities

to further improve the performances of applied methods ran into two a priori irreconciliable

directions. On one hand, as regulators call for highly interpretable credit scoring models, major

lender actors such as banks focused on poorly predictive / highly explanable models, such as

discriminant analysis or logistic regression. On the other hand, scientific literature saw the emer-

gence of numerous highly predictive / poorly explanable models able to handle vast amounts of

data, but whose intrinsic complexity - often referred to as “black box phenomenon” - prevented

them from widespread adoption. Indeed, the ability to pinpoint the specific individual charac-

teristics that lead an automated process to accept or reject a loan application - which will be

called “feature importance analysis” in this study - has been adressed severous times for com-

plex models in the literature. However, those very empirical methodologies were proven to be

unconsistent with each other [Lundberg & Lee, 2017]. To overcome this duality and reconciliate

predictive power with explainability, research is currently conducted on two different paths : a

first approach consists in refining the existing interpretable algorithms like logistic regression

through feature engineering [Dumitrescu et al., 2020], while a second one consists in develop-

ing consistent post-prediction interpretability tools for black box machine learning-algorithms

supported by robust theory. The latter option is the one we chose to explore in this study.

Thus the main goal of this paper is to propose a methodology combining a highly perfor-

mant credit scoring model with an effective theory-proven explanation method. We choose three

state-of-the-art Gradient Boosting Decision Trees (GBDT) implementations as candidate mod-

els, for their ability to handle large amounts of data with high dimensionality as well as their

high predictive power. Those three algorithms - XGBoost, Light Gradient Boosting Machine

(LGBM) and Categorical Boosting (CatBoost) - share a similar intrinsic complexity from their

tree forest structure, which would make them subject to the black box phenomenon without fur-

ther treatment. We compare their performance against those of Logistic Regression and Support

Vector Machines (SVM), which are the two reference methods in traditional and modern credit

scoring. We then apply SHapley Additive exPlanation (SHAP) value determination algorithm
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to provide explainability to the best performing model, as it is one of the first method claimed to

fix the inconsistencies of other previous empirical explanation attempts. Another contribution

of this paper lies in the richness of the data used, as the study is conducted on 400.000 French

companies’ balance sheets, each described by nearly 450 features, corresponding to two years

of financial closings at national scale. This vast amount of data justifies the call for complex

models, and avoids any potential subsampling bias, which is a recurrent issue frequently reported

by authors using small datasets. Finally, our goal is also to establish a robust baseline method

on which to expand upon in future research.

The results confirm a higher predictive performance from the three GBDT implementations

over the traditional methods, with LightGBM’s AUC reaching 0.92 over the holdout sample while

being the fastest forest architecture to train. The application of SHAP values determination over

LGBM’s predictions provides in-depth explainability while remaining consistent with previous

findings from the literature. Leverage financial ratios are found to be the most indicative of

imminent failure. Profitability, liquidity and activity ratios contribute to a lesser extent to reveal

financial stability. Balance sheet items with higher cash availabilities, profit and income taxes

are also found to be beneficial. We also confirmed that SMEs are more exposed to failure than

bigger firms, especially for micro-structures that do not have the status of employer. Finally,

a more economically-oriented performance analysis confirms the superiority of LGBM over all

other methods.

This paper proceeds as follows. Section 2 provides a survey of the most relevant literature

about default prediction methodologies. Section 3 then describes the augmented balance sheet

dataset alongside the GBDT implementations we will rely on. It also introduces the SHAP

paradigm that will be used to explain the variable importance over the models’ outputs. Section

4 describes the results while comparing GBDT implementations’ performances against Logistic

Regression’s and Support Vector Machine’s, and also features an economic evaluation of those

performances. Section 5 provides our conclusions.

2 Review of literature

One of the oldest and most well-known studies aiming at proposing a firm-rating statistical

model has been provided by Altman [1968], whose choice was to use Multivariate Discriminant

Analysis (MDA) on a sample of sixty-six companies - half of which bankrupted - to fit a linear

discriminant function. Amongst the twenty-two financial ratios considered in the model, five

were finally kept due to their high statistical significance and inter-correlation properties. While

the MDA was frequently used in several studies thereafter [Deakin, 1972; Edmister, 1972; Blum,

1974; Eisenbeis, 1977; Altman, Haldeman & Narayanan, 1977; Altman, Eom & Kim, 1995;
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Micha, 1984; Lussier, 1995], its inadequacy has also been highlighted on the literature, under

the justification that its assumptions - normal distribution of the predictors and same variance-

covariance matrix characteristics for both failed and non-failed groups - are often violated in

practice.

Ohlson [1980] proposed a new approach relying on Logistic Regression and offering three

major improvements over the previous method : its unrestrictive environment assumptions, its

ability to procure an interpretable score - which corresponds to the business probability of failure

- and its adaptability to unbalanced group sizes, which is the situation always encountered in

practice. It was also the first study to emphasize the importance of timing between the financial

year-end closing during which the ratios are sampled and the date of bankruptcy for concerned

businesses. Its conclusions established the fact that the performance of failure prediction based

on financial ratios diminishes after a one-year horizon following the financial year-end closing.

Since then, the vast majority of balance sheets based studies have been using logistic regression

[Gentry, Newbold & Whitford, 1985; Keasey & Watson, 1987; Aziz, Emanuel & Lawson, 1988;

Platt & Platt, 1990; Mossman et al., 1998; Charitou & Trigeorgis, 2002], while focusing on

improving the prediction accuracy over this one-year horizon.

From 1990 onwards, the range of methods applied to business credit scoring and bankruptcy

prediction vastly expanded, from the first use of neural networks [Odom & Sharda, 1990; Bell,

Ribar & Verichio, 1990] to the introduction of Support Vector Machine (SVM) [Kim & Sohn,

2010] and more recently ensemble methods such as Random Forests (RF) [Malekipirbazari &

Aksakalli, 2015]. However, as underlined in the introduction, the development of those new tools

progressively raised a new issue, in the form of a conflictual efficiency-explainability tradeoff.

Indeed, the statistical performances of those new algorithms represents a major improvement

upon the traditional approaches, but their inner complexity - often reffered to as a “black box”

- prevents any attempt to confidently explain the related decisions. This problem became all

the more cumbersome as clients and financial regulators stressed for clarity and explainability

of the scoring processes2, although recent studies adressed the problem, either by developing

explanation models [Thomas, Crook & Edelman, 2017] or combining the best of both worlds in

efficient and interpretable new techniques [Dumitrescu et al., 2020].

Unfortunately, the SME population have only been given little specific attention during that

period. Would it have been left completely unaddressed, this problem could have led to a

more dramatic credit rationing situation. Following the works of Altman in 1968, Edmister

[1972] was the first to address the question of SMEs using the newly elaborated MDA method.

His conclusions already highlighted the fact that this population needed specific approaches as

2See, for instance, the recent reports on this topic published by the French regulatory supervisor (ACPR,
2020), the European Commission (EC, 2020), and the European Banking Authority (EBA, 2020)
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data is sparser and harder to collect. With time, a few more studies proposed SMEs-oriented

methodological approaches [Collongues, 1977; Everett & Watson, 1998; Van Caillie et al., 2006;

Altman & Sabato, 2007; Vallini et al., 2009] stressing the differences between large corporates

and SMEs, and advising banks to develop scoring systems specifically designed for this portfolio.

Other findings also suggest that, as opposed to larger companies, small structures tend to be

more vulnerable to unsystematic risks caused by local, exogenous circumstances that cannot be

explained by financial information alone. Indeed, among all nonfinancial information available

relative to SMEs, age and size of the business are among the first descriptive factors that have

been proven effective in explaining their financial robustness [Dunne, Roberts & Samuelson,

1989; Baldwin, 1997]. Similarly, Platt & Platt [1991] found that a scoring system is likely to

perform better if it has been previously adjusted to the business activity sector of the companies

it is supposed to rate. Other studies later confirmed this finding, recommending for SMEs credit

scoring models to take into account industry sector in order to be more accurate [Lennox, 1999;

Glennon & Nigro, 2005; Altman, Sabato & Wilson, 2008].

More specifically, Altman and Sabato [2007] applied MDA and logistic regression on a set of

2.010 SMEs with five carefully selected financial features. They demonstrated the superiority

of the latter method over the former and reached a statistical accuracy of 87%. As the trained

Logistic regression can be expressed as a simple formula, banks easily applied those findings which

also met regulators’ call for interpretability. Considering more complex models, Zhang, Hu and

Zhang [2015] applied SVM and neural network models over a sample of 153 observations, reaching

a classification accuracy of 93.7% over the test sample with SVM, but reported a statistical

collapse of their neural network from training to validation phase (-11%, down to 55.6% of

classification accuracy). As they aknowledged in their conclusion, the data sample of their study

was too limited to correctly feed their models, which is a recurring problem concerning SMEs.

It has indeed always been historically difficult to collect a large data sample over this population

as a consequence of the information asymmetry issue. This becomes all the more problematic

as more complex models requires larger amounts of data to run correctly. The other point to

notice from their study is also the absence of options to interpret feature importance with such

models, which makes any statistical or economical performance improvement pointless if the

model cannot be scrutinized by regulators.

As a consequence, the adoption of more performant models in the SMEs scoring field has

been slowed down by the absence of a recognized method to intepret their output. The current

conflict between model performance and model explainability is not restricted to SMEs credit

scoring only, as it also hits the consumer loans sector. Here also, first propositions are being

made to reconcile both ends and meet the agreement of regulators [Albanesi & Vamossy, 2019].
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We will further develop this matter in the following sections.

3 Empirical framework

3.1 Models and fitting details

The 12-month business failure risk we are trying to estimate in this study can be represented

by a latent continuous variable Ŷ ∈ RN in our machine learning models, where the true binary

response vector Y = Y1, ..., YN is such that Yi equals 1 if the ith balance sheet from our sample is

associated with a positive event - which we will define in section 3.3.3) - 0 elseway. A decision

threshold t links the two variables such that:

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 if Ŷi > t

0 else
∀i ∈ [∣1;N ∣] (1)

Our general mathematical model is Ŷ = f(X)+ ε where X = x1, ...,xM ∈ RN×M is the feature

matrix, M is the number of features and ε is the error term capturing noise and measurement

errors. All discussed machine learning models have the objective of finding the best function

f̂ ∈ RM → R which minimises the expected loss L(., .) :

f̂ = argmin
f∈RM→R

EY,XL(Y, f(X)) (2)

3.1.1 Gradient Boosting Decision Tree (GBDT)

Gradient Boosting Decision Tree (GBDT) is an ensemble model using binary decision trees

(hk)k∈1,...,K ∈ RM → R as base learners, whose goal is to sequentially approximate f̂ by fitting in

each iteration t ∈ [∣0; tmax∣] the trees with the residual errors from the previous iteration. The

model’s global decision for any observation is obtained through aggregation Φ ∈ RK → [0,1]
of the decision of each tree. Depending on the algorithm, Φ can usually be a summation, an

averaging, or a majority voting operation :

f t(x) = Φ
k∈1,...,K

htk(x) (3)

At any iteration t, each decision tree htk is built to recursively split the feature space RM by

a series of binary tests on input variables. Each node of the tree represents an element of the

space partition that can be further split until reaching the terminal nodes - or leaves - where

the decision is made through attribution of a coefficient. With J the desired number of leaves,

a binary decision tree can be fully parameterized by its splitting attributes Θk = (θp)k with

p ∈ 1, ..., Pk and the leaf coefficients Ck = (cj)k with j ∈ 1, ..., J . Indeed, the splitting attributes
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generate a final space partition Rjj∈1,..,J such that ⊍j∈1,...,J(Rj) = RM . A single tree can be

expressed as :

hk(x,Θk) =
J

∑
j=1

cj .1x∈Rj (4)

As a gradient boosting procedure, the learning of the objective function is done through

greedy minimization of a loss function L. The gradient step corresponds to the optimal feature

splitting of the tree, considering the model predictions at the previous iteration. To that end, at

iteration t, the loss function Lt is composed of a first term evaluating the quality of the gradient

step, and a second regularization term penalizing the complexity of the resulting tree, as follows

:

Lt =
n

∑
i=1
l(yi, f t−1(xi) + ht(xi)) +Ω(ht) (5)

Where the differentiable sub-loss function l(., .) generally used is the binary cross-entropy

l = −∑Ni=1 yilog(ht(xi)) + (1 − yi)log(1 − ht(xi)), and the complexity penalization term Ω(h) =
γJ + 1

2
λ∣∣C ∣∣2 with (γ, λ) model hyperparameters.

In practice, as the space generated by all splitting possibilities of a new candidate tree ht

cannot be explored in a reasonable time, GBDT implementations usually start from a single

node and iteratively add branches through feature splitting, until reaching a terminal condition

such as a fixed depth or number of leaves. At each node, the decision of splitting on feature

m at value θ is then taken if it maximizes information gain, which is usually measured by the

Variance after splitting expressed as follows :

Vm(θ) = 1

n

⎛
⎝
(∑xim≤θ gi)

2

nl(θ)
+

(∑xim>θ gi)
2

nr(θ)
⎞
⎠

(6)

where (gi)i∈1,...,N are the negative gradient of the loss function with respect to each dataset

observation, nl(θ) = ∣{xi ∈ X∣xim ≤ θ}∣ and nr(θ) = ∣{xi ∈ X∣xim > θ}∣
In the following sections, we will describe Light Gradient Boosting Machine ( LightGBM

), XGBoost and Categorical Boosting ( CatBoost ) as three of the most recent and efficient

implementations of GBDT we chose to use in this study, their main fulfilled requirement being

their ability to process the important volume of data we will introduce in section 3.3.3)

3.1.2 XGBoost

Introduced by Chen and Guestrin [2016], XGBoost improves upon previous GBDT implementa-

tion attempts by proposing three key concepts. First, they developed a new Weighted Quantile
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Sketch algorithm that improves the search for approximate optimal splitting using the second-

order approximation of (5). Then, they took into account the high-sparcity phenomenon, often

encountered in practice - and resulting either from missing values, frequent zero entries or feature

engineering artifacts such as one-hot encoding outputs - and made the split finding algorithm able

to identify sparcity patterns and specifically treat them orders of magnitude faster. Their final

contribution lies in the technical system implementation of the algorithm, ensuring its scalability

against high volumes of data.

All-in-all, as XGBoost is specifically designed to adress high volumes of scarce data, it is a

promising candidate to be tested in our study.

3.1.3 LightGBM

LightGBM has been introduced one year after XGBoost and is claimed to significantly outper-

form XGBoost in terms of learning time and memory consumption [Ke et al.; 2017]. Its main

contribution relies on two optimisation techniques called Gradient-based One-Side Sampling

(GOSS) and Exclusive Feature Bundling (EFB).

GOSS is based on the statement that not all training instances have the same contribution

on information gain, and so that a more effective approach for the computation of the Variance

after splitting would be to keep only the most contributive fraction of instances, and a random

subsample among the residual instances. In practice, all instances are sorted with respect to the

absolute value of their gradients ∣gi∣, then the top a-% instances is kept to form subsample A.

A random b-% of the residual X −A ensemble is then sampled to form subsample B. With this

construction, (6) can be decently approximated by the reduced Variance after Splitting :

V̂m(θ) = 1

n

⎛
⎝
(∑xi∈Al

gi + 1−a
b ∑xi∈Bl

gi)
2

nl(θ)
+

(∑xi∈Ar
gi + 1−a

b ∑xi∈Br
gi)

2

nr(θ)
⎞
⎠

(7)

where Al = {xi ∈ A∣xim ≤ θ}, Ar = {xi ∈ A∣xim > θ}, Bl = {xi ∈ B∣xim ≤ θ}, Br = {xi ∈ B∣xim >
θ}.

EFB adresses the issue of data sparcity in high dimensional space, which is also a claim of the

XGBoost algorithm. The principle consists in scanning the features to find mutually exclusive

groups, i.e. features that never simultaneously take nonzero values, as it is for example the case

after One-Hot-Encoding preprocessing. The method then aggregates those groups of features in

so-called bundles, while ensuring the conservation of their statistical properties.

The union of GOSS and EFB, resulting in the LightGBM algorithm, is claimed to drastically

increase training speed with no significant loss of statistical performances, which is promising

enough for it to be included in our benchmarking study.
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3.1.4 CatBoost

CatBoost is the most recent GBDT implementation with a decent amount of use in machine

learning studies. It is designed to tackle prediction shift - denoted as target leakage in the

corresponding paper [Prokhorenkova et al.; 2018], which occurs when using Target Statistics as

preprocessing method.

Designed as a way to deal with high-cardinality categorical features whilst keeping the feature

dimensionality under control, Target Statistics (TS) is an alternative to One-Hot-Encoding which

consists in substituting each feature value by the expectation of the label conditioned on that

value :

xim ← TS(xim) = E(y∣xi = xim) (8)

In has been proven in the aforementioned paper that, applied to gradient boosting, the

reapeated use of TS on the same dataset iteration after iteration generates a biased model. To

counter this effect, CatBoost introduces Ordered Boosting methodology, whose idea consists in

generating an artificial time ordering for all the training observations with help of a random index

permutation σ, then using this ordering to generate a sequence of training datasets (Dt)t=0,...,tmax

such that Dt = {xi ∈ X ∣σ(i) < σ(t)}.

As we will be using One-Hot-Encoding in this study, the handling of the TS prediction shift

issue is irrelevant for us. Nevertheless, as Catboost also features technical optimisation and is

claimed to achieve equivalent if not better statistical results than LightGBM, it still represents

an interesting candidate algorithm for our study.

3.1.5 Cross-validation

For all models of algorithms, except the logistic regression whose implementation does not require

calibrating hyper-parameters, and in order to avoid overfitting issues during the learning phase,

the training set is submitted beforehand to 5-fold cross-validation [Salzberg, 1997]. The method

illustrated in Figure 1 consists in splitting the dataset into k different slices of equal size, and

training successively k submodels on all slices but one, kept away as validation data. This way,

the submodel evaluation data stays independant from the one used during the learning phase.

Any new observation’s score can then be generated as the aggregation - usually the mean - of all

scores from the subpredictors.

3.1.6 Calibration

GBDT’s outputs are raw scores used to rank observations according to their risk of default.

However it is important that they also convey a concrete probabilistic meaning i.e. that they
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Figure 1: Illustration of the cross-validation principle

The training set is split in five distinct subsets. Each subpredictor is trained on four subsets and their performance

validated on their respective residual subset. Predicting the PD of an observation from the test set or any

subsequent study set then consists in taking the mean of the five individual scorings given by the subpredictors.

represent a default probability, as they are likely to be used in subsequent decision-making

processes. To that end, Posterior probability calibration maps those scores into actual probability

estimates without shifting their ordering.

Platt’s regressor [1999] is one of the most well-known parametric calibration method, although

limited to cases where predictions’ and actual observations’ density share a sigmöıdal relationship,

as in Support Vector Machines (SVM) or naive Bayes. As the shape of this relationship is likely to

be unknown for GBDT we use Isotonic calibration as nonparametric approach [Zadrozny & Elkan,

2002]. To each cross-validation subpredictor is then associated a corresponding subcalibrator

trained on their respective holdout split.

3.2 Measuring feature influence

User trust in the model is an important factor to take into account in applied machine learning,

as it heavily influences the decision to change for new methods over traditional ones. Indeed,

accuracy metrics alone may not be enough to justify that transition if the user doesn’t have any

means to understand the model decision rules, and this is all the more true in lending processes

as borrowers have the right to ask explanations about the lender decision not to grant a loan.

Accountability is primordial when using an automated decision process, and this requirement can
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easily be met with traditional scoring methods such as MDA or Logistic regression as coefficients

estimates are directly related to feature influence. However the challenge is harder to overcome

when dealing with more recent approaches such as deep learning or ensemble methods. Indeed,

the architectural and undeterministic complexity of this new generation of algorithms make it

difficult for an observer to understand the relations between inputs and answers, hence the “black

box” phenomenon often encountered in practice.

Over the last two decades, litterature attempted in different ways to provide heuristic methods

to quantify feature importance of ensemble models. In this section we will focus on those applied

to random forests : the most widely used if the Loss Reduction approach, introduced by Breiman

et al. [1984] and mostly used in feature selection problems [Chebrolu, Abraham & Thomas, 2005;

Irrthum, Wehenkel & Geurts, 2010]. Its principle consists in evaluating, for each feature, the

reduction of the output variance that can be attributed to all different splits over that feature.

The greater that reduction, the more important the corresponding feature. A second approach

is based on the hypothesis that important features are highly sensitive to perturbation in their

values. The method consists in arbitrarily swapping values for a given feature and quantifying

the resulting increase in the model’s error. The greater that increase, the more important the

corresponding feature [Dı́az-Uriarte & Andres, 2006; Ishwaran, 2007; Strobl et al., 2008]. Lastly,

a final approach consists in simply counting the number of times a feature has been used as a

split feature, as seen in the implementation of the XGBoost algorithm [Chen & Guestrin, 2016].

However, it has been shown that those methods produce inconsistent results. Indeed, it is

possible to find some configurations where changing a model so that a feature has more impact

on its decision actually lowers the calculated impact [Lundberg, Erion & Lee, 2018]. To address

this issue, Lundberg & Lee [2017] focused on Additive feature attribution methods to theorize

a new class of importance attribution methods satisfying desirable properties, then provided a

robust framework on which our study relies to explain its findings. The underlying idea is to use

an explanation model g of the form :

g(z′) = φ0 +
M

∑
j=1

φjz
′
j (9)

where z′ = (z′j)j∈[∣1;M ∣] ∈ {0,1}M , each binary variable z′j acting like a switch to indicate the

presence (z′j=1) or absence (z′j=0) of observation for the jth feature, and each φj being the jth

feature attribution value - namely “SHAP value”. In order to use this class of models we also

need a mapping function ξx ∈ {0,1}M → RM from the simplified binary space to the original

model input space, so that f(ξx(z′)) can be evaluated and the effects of turning on and off the

z′js might be observed for any given instance x.

A useful behaviour of this class is that it has a unique solution that simultaneously meets
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the three following properties : local accuracy enforces equality between the sum of the feature

attributions and the explained model output, missingness states that any unobserved feature

must have no attributed importance, and consistency ensures that an attribution assigned to

a feature must not decrease if the explained model is changed to give a larger impact to that

feature. This unique solution is of the form :

φi = ∑
S⊆[∣0;M ∣]∖{i}

∣S∣!(M − ∣S∣ − 1)!
M !

[fx(S ∪ {i}) − fx(S)] (10)

Where S is the set of non-zero indexes in z′ and fx = f(ξx(z′)) = E[f(x)∣xS] is the expected

value of the function conditioned on S.

3.3 Data and preprocessing

3.3.1 SME definition

Multiple definitions regarding the notion of SMEs are currently used in the world. As our study

is focused on the population of companies located in France, we will be using the common EU

definition in place since 2003, which takes into account the Basel recommendations, and defining

an SME as any company with less than e50 million worth of sales, or less than 250 employees.

3.3.2 Failure definition

There has never been a clear consensus on the definition of business failure [ Dimitras, Zanakis

& Zopoudinis, 1996 ]. This definition is of great importance as it impacts credit scoring models,

and has a direct influence on the decision lending processes. Considered from a business point

of view, a legal or even a sociological one, failure stands for such an abstract notion that the

scientific community rather focused on using proxy events or measures, to rely on admittedly

imperfect but nonetheless more easily interpretable data.

In the first proposed credit scoring model, Altman [ 1968 ] considered as positive samples

the companies going bankrupt, following the definition of legal bankruptcy defined in the US

National Bankruptcy Act. As the proposed models became more refined, their ability to produce

better explanations of the failure phenomenon required them to also precisely predict the timing

between the data sampling and the phenomenon it ought to explain [ Ohlson, 1980 ].

Although legal acts of bankruptcy are frequently used as positive labels in credit scoring

studies, other criteria have also been considered, depending on specific contextual approaches

: Fredland and Morris [ 1976 ] first suggested that business discontinuance events - including

sale or liquidation - could be used as a proxy for failure. Cochran [ 1981 ] proposed an other

more subjective approach, whereby failure could be envisioned as an “ inability to make a go

of it “, meaning that business losses would end up diminishing any capital - the owner’s one,
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or anyone else’s. In our context, both of those propositions remain inadequate, as they would

include businesses which, despite discontinuance of ownership or inability to generate enough

profits, would still be able to repay their creditors.

Throughout many decades of studies, the adopted proxy has frequently been very dependent

on the data available at the time. In our study we will be using national datasets of balance sheet

records and judicial rulings, which will be further described and detailed in upcoming sections.

This allows us to consider the court decision of putting a company under economical procedure

such as recovery or liquidation as a failure proxy. The advantages of this proxy relies on its

consistency, as the information is directly gathered from official channels and derived metrics

can be compared with those published by the National Institute of Statistic and Economical

Studies ( INSEE ). Furthermore, the general nature of this proxy allows us to not limit our scope

over the debtor companies only, as the presence of a mention in economical court rulings can

be verified for all French businesses. Consequently, we will be able to predict the probability of

failure for all companies for which we have at least one balance sheet. The main limitation of

this proxy relies on its lag in relation to the failure process, as it is often the legal conclusion of

a series of events and circumstances - loss of equity, loan repayment delinquency, default - that

may have occurred months or even years earlier.

3.3.3 Balance sheets and Labels

Our initial data sample consists of the 1.610.419 French companies’ balance sheets publicly

available recordings3, corresponding to the closing of the financial years 2016 and 2017 and

available at the INPI opendata service. As various balance sheet models exist, we will focus our

study on the Complete format which is the most common and practical. With 428 financial items

it has the most detailed categorization. Furthermore, we will not consider the balance sheets of

the companies that already have any historical record of a passed financial failure, even after a

successful recovery, as our goal is to predict the probability for a business to experience its very

first failure. From the resulting dataset we then generate our Training set of 400.165 balance

sheets corresponding to the 2016 financial year closings, and our Test set of 364.935 balance

sheets corresponding to the 2017 financial year closings. Figure 2 presents the raw distribution

of four of the training set features.

To determine our classification labels, we use the public records of the SME’s court rulings

given between 2016/01/01 and 2018/12/31 and also available at the INPI opendata service.

A first text mining step is necessary to filter out the rulings that are not relative to financial

procedures. As previously discussed, we consider that a business failure is documented through

3Available at https://www.inpi.fr/fr/licence-registre-national-du-commerce-et-des-societes-rncs
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the legal act of putting the company either on liquidation or recovery process. Once the filtering

done, we use the resulting dataset of 320.923 records to label our balance sheets. As we consider

the judicial ruling date as the event of failure, any balance sheet preceding a failure event in a 12-

month window is labelled positive. This way, our previously established Train set contains 1.489

positive events, revealing a 0.37% 12-month business failure ratio, while our Test set contains

1.237 positive events, for a 0.34% 12-month business failure ratio.

Figure 2: Histogram and box plot of Assets (log), Debts (log), Profit of the year (log) and
Corporate taxes (log) of the training set

3.3.4 Additional exogenous features

In addition to the balance sheets financial items, the studied datasets are also enriched with

observed or handcrafted other known features often used in the credit scoring literature. A first

batch of business-relative information is considered, including BusinessAge the age of the com-

pany at the time of the considered financial closure, SectorCode the French Activity Nomencla-

ture (NAF) code categorizing the different business activity sectors, DepartmentCode indicating

in which of the 95 French departments are located the company headquarters, isEmployer the

variable indicating if the company employs staff, category indicating if the company is officially
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considered as a very small business, a SME, an Intermediate Size Company or a Large Com-

pany, and StaffSize categorizing the workforce among 15 size layers from 0 to more than 10 000

employees.

A second batch of exogenous features are also provided to the model to capture the effect of

close economical surroundings, as litterature has been stressing its potential influence for some

time now. The scope of those engineered additional features is to provide the best representation

of local effects, such as competition between firms, diversification of nearby activity, or observed

risk of failures from similar companies over previous years4. As some companies may have several

geographical locations through the implantations of their legal entities, those features are first

generated for each of those legal entities, then averaged company-wise before insertion into the

dataset.

3.3.5 Dataset preprocessing

It is important to note that, as balance sheets are directly gathered from the companies’ admin-

istration services, the raw data is imperfect. Over the 428 financial items of a balance sheet, a

significant number are frequently left blank in practice. We decided to delete from the dataset

all features whose fill rate is under the arbitrary threshold of 2%, as unfilled features have a

negative impact on a predictor performance while frequently being the ones carrying the fewest

information.

Moreover, as several of the additional alternative features described in the previous section

take categorical values, we have to transform them so that they can be interpreted as numerical

values by the different models. To that end, we apply One Hot Encoding to each feature,

consisting in projecting each value into its feature’s binary space representation, as follows :

OHEj ∶
Sj → {0; 1}∣Sj ∣

v z→ (1v=s1 , ...,1v=s∣Sj ∣
)

(11)

where Sj = {s1, ..., s∣Sj ∣}5 is the set of all possible values taken by the j-th categorical variable.

As this transformation drastically increases the dimensionnality of the dataset, we will only pro-

vide those transformed features as-is to the GBDT models which are designed to tackle such sizes.

As this study also includes simpler models that cannot perform well on high dimensional data,

a lighter training dataset is derived from the first : all features undergo a signed logarithmic

transformation, then the whole sample is submitted to Principal Component Analysis (PCA).

4Due to confidentiality agreements with the author’s company, the exact amount and definition of those
variables are kept undisclosed

5Notation abuse
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The resulting dataset is engineered to be 20-features wide, whilst keeping as much variance as

possible from the original data distribution.

4 Results and discussion

In this section, we report our experimental findings after training and testing the GBDT mod-

els on the national enriched datasets described in previous sections. Their performances are

compared with those of other traditional algorithms - Logistic Regression, SVM - in terms of

training time, evaluation metrics and economic accuracy. We also discuss the relevance of our

results concerning feature importance and its interest regarding all previous literature on the

subject.

4.1 Estimation Results of the LightGBM

4.1.1 Evaluation metrics

The models’ performances are evaluated through the metrics described in table 1. The third

column of the table indicates the worst possible score for each chosen metric, while the fourth

one indicates the score that would be reached by a perfect model predicting for each individual

a 100% probability of belonging to their true class.

AUC and Gini index are traditionally used to summarize the information provided by the

Receiver Operating Curve (ROC). Their construction is independant from both class unbalance

and quality of the estimates, so their information can be interpreted as a measure of the pre-

dictor’s ranking capabilities. The closest to 1 the AUC or Gini index of a model is, the closest

the model is to perfectly separate the two classes of individuals. In a similar way, an AUC close

to 0.5 or Gini index close to 0 indicates that the model has poor ranking abilities and does not

perform better than a random coin toss.

Average Precision Score (APS) is similar to AUC but based on the Precision-Recall curve

instead of the ROC. This metric gives more importance to the positive label predictions than

its AUC and Gini counterparts, and its use is recommended for discriminating predictors over

heavily unbalanced datasets.

Kolmogorov-Smirnov statistic (KS) measures the distance between two cumulative distribu-

tion functions. When applied to scoring problems, it evaluates the discrimination quality between

the true positive class scorings and true negative class scorings.

Brier score (BS) is the discrete-choice equivalent of regression’s mean-square error. It focuses

more on the quality of the scoring than on the accuracy of the class separation, and can be

heavily influenced by post-scorings calibration steps that have no impact on the ranking.
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Normalized Discounted Cumulative Gain (NDCG) is a metric imported from information

retrieval theory. It evaluates a predictor’s efficieny in discriminating rare occurences of positive

labels from a sample dominated by negative labels.

Table 1: Performance metrics and their characteristics

Metric Description Worst Best
AUC Area under the ROC ( Receiver Operating Curve ) mea-

suring the quality of the trade-off between between False
Positive Rate and True Positive Rate

0.5 1

APS Average Precision Score, similar to AUC but based on
the precision-recall curve

0 1

PGI Partial Gini Index, similar to AUC and only focusing on
the lower tail of the prediction scores, as the decision
threshold will not be set out of that region

0 1

KS Kolmogorov-Smirnov statistic, which is the maximum
distance between the cumulative distribution functions
of the negative and positive true label after scoring

0 1

BS Brier score, penalizing the distance between the esti-
mated PD and the target binary label

0.5 0

NDCG Normalized Discounted Cumulative Gain from informa-
tion retrieval theory, measuring the extraction quality of
high impact positive labels from a sample dominated by
low impact negative labels

0.5 1

4.1.2 Size of the training set

To demonstrate that a larger amount of data is beneficial for the performances of our model,

and so to justify the need to consider the whole unsampled training set as our model’s learn-

ing base, we have trained our predictor over different sizes of said training set subsamples and

compared the resulting AUCs when evaluating it on the test set. As subsampling may introduce

an additional variance into the prediction process, all experiments were repeated 10 times for

each subsampling ratio. As we can see in Table 2, the larger our training set is, the higher our

model’s performances. We can then assume that considering even more observations may further

improve the quality of our predictions.

We also considered targeted oversampling and undersampling to further consolidate those

results. Those family of methods are generally recommended when dealing with highly unbal-

anced datasets, as in those cases several machine learning models may struggle to identify the

decision border. Oversampling consists in artificially increasing the number of observations from

the minority class, while undersampling consists in decreasing those from the majority class. In
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Table 2: Influence of training set size over LightGBM’s AUC on validation set

Subsampling ratio Training set size Mean AUC (10−2) Std AUC (10−2)
0.10 40017 87.77 0.85
0.25 100041 90.04 0.22
0.50 200083 91.38 0.12
0.75 300124 91.73 0.08
0.90 360149 92.00 0.06
1.00 400165 92.18

order to evaluate the effects of class rebalancing, we chose to apply one method of oversampling

and one method of undersampling to our sample before training the LightGBM classifier.

Oversampling using ADAptive SYNthetic algorithm (ADASYN) consists in generating artifi-

cial new samples in the minority class by interpolation between pairs of observations that belong

to it. The method focuses on oversampling near points likely to be missclassified. We applied

this method to rebalance our dataset to the following negative / positive ratio : 100 to 1, 20

to 1, 5 to 1 and 1 to 1. On the other hand we also applied Random UnderSampling, which

simply consists in randomly deleting observations from the majority class, to generate an array

of datasets with the same negative / positive ratio. Table 3 summarises the results. We can

observe that both methods seem detrimental to the quality of the training.

Table 3: Influence of oversampling and undersampling methods on LightGBM’s vali-
dation performances

Method Baseline AUC
Resampling negative / positive ratio
100 to 1 20 to 1 5 to 1 1 to 1

ADASYN
92.18

92.03 91.23 89.97 89.12
Random UnderSampling 92.16 92.03 91.77 91.33

In conclusion, we chose not to apply any form of under or oversampling to our samples for

the next experiments, unless required for computational efficiency.

4.1.3 Tree structure

In this section we investigate how the structure of the LGBM trees influences the learning process.

As the algorithm is specifically designed to optimise individual node splitting, the trees do no

longer have a balanced structure as opposed to more traditional random forest implementations.

For this reason, the maximum number of leaves per tree will be considered as a construction

parameter instead of maximum tree depth.

As we can see in Figure 3, the LightGBM performance in terms of AUC over the test set

tends to increase with the number of trees, until reaching a maximum at 0.92 with 1 500 trees,
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above which it seems to stagnate. A higher maximum amount of leaves seems to be a benefit for

smaller random forests, while becoming counterproductive for bigger ones, highlighting potential

overfitting effects. For the rest of the study we will be using for LightGBM the best configuration,

which is a forest of 1500 trees of 20 leaves each, and whose validation performances over training

epochs is represented on Figure 4.

Figure 3: Validation AUC reached over different tree structures for the LGBM
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The AUC seems to rise with the number of trees in the LGBM, until it reaches a ceiling past 1500 trees. The

best AUC - illustrated with the triangle series - is reached with a forest of 1500 trees of 20 leaves each

4.1.4 Feature importance

This section describes the findings concerning feature contributions to the Probability of Failure

estimates, using the SHAP values introduced in section 3.2). Our attention will be focused on

understanding which factors seem the most influential over the PD, as well as evaluating the

relevance of financial ratios traditionally used in credit scoring procedures.

Relationships between feature values and their SHAP values are illustrated on Figure 5 for

four financial ratios, over a sample of 1 000 individuals from the test set. The SHAP value

can be interpreted as the contribution of a feature value to the log odds of default for a given

individual. As such, a positive SHAP value reveals that the real value have a tendency to

increase the risk, while a negative SHAP value reveals the opposite. It is interesting to note the
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Figure 4: Maximum, minimum and average AUC performances of the five LGBM crossvalidation
subpredictors validated on their respective residual datasets over 1 000 epochs
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presence of global discontinuities on the illustrated SHAP value point clouds : as the records have

been established before recalibration of the predictor outputs, they cannot be explained by the

splitting methodology of the isotonic regression. Our interpretation is that those discontinuities

may correspond to statistical cutoffs generated by the LightGBM.

From the next paragraph onwards, the discussion will focus on summarized SHAP information

for each feature. We consider the mean absolute deviation µabs(x) = 1
n ∑i ∣xi∣ of the SHAP values

as an empirical measure of any given feature’s global influence.

According to Figure 6 the number of influent features exponentially decreases as the SHAP

value increases, so that there are only nine features with SHAP values higher than 0,1. As we

can see in Figure 7, over the ten most influential features according to the SHAP paradigm,

five originate from the Complete balance sheet records (gross cash, net cash, income taxes,

fiscal and social debts, profit for the year), three from the company characterization (is the

company employing staff, is the company a SME), the second most influential one is derived

from geographical observations, and the first one is a traditionnal financial leverage ratio.

21



Figure 5: Financial ratio’s SHAP values against observed values

Negative SHAP values indicates that the ratio contributes to lower the estimated risk, positive SHAP values

indicates the opposite. The graphs are generated over a random sampling of 1 000 observations for the four most

influent financial ratios. Observations whose ratio values are unknown are represented sticked to the y-axis

Figure 6: Distribution of features by the amplitude of their average SHAP value
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Figure 7: Visualisation of the 10 most influential features in regards of their average contribution
to the prediction’s SHAP value

Those contributions were computed on 10 random samples of 1 000 observations each from the test set, submitted

to the five cross-validation sub-predictors. Hatched bars indicate that a higher feature value contributes to raise

the Probability of Default. Otherwise, it contributes to lower it

It is interesting to note that being located in Paris seems to be among the most influent

and favorable factor against failure. From mean-abs SHAP values of balance sheet items we

can deduce that company health is highly linked with higher cash availabilities, profits as well

as corporate taxes, while higher tax and social debts is the most important risk factor. The

findings about company characterisation information indicates that being an employing structure

is associated with higher survival rates while the opposite represents a higher risk factor. The 6th

most influential feature indicates that SMEs are more vulnerable to business failure, confirming

previous socio-economical surveys.

On Figure 8 the focus is restricted only on the most influential ratios found in the literature.

We can notice that the leverage ratios (Debt-to-asset, Financial leverage) have the highest SHAP

values, followed by order of importance by two profitability ratios (Return on assets, Net profit

margin), then a liquidity ratio (Current ratio), an activity ratio (Total asset turnover) and finally

a valuation ratio (Interest coverage).
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Figure 8: Visualisation of the financial ratio influence in regards of their average contribution to
the prediction’s SHAP value

Those contributions were computed on 10 random samples of 1 000 observations each from the test set, submitted

to the five cross-validation sub-predictors. Hatched bars indicate that a higher feature value contributes to raise

the Probability of Default. Otherwise, it contributes to lower it

4.2 Model performances comparison

4.2.1 Competing model : Support Vector Machine (SVM)

Applied to binary classification, SVM is a supervised algorithm aimed at splitting a high-

dimensionnal space into two regions - one for each class - through fitting the best hyperplane

separator xTw+b = 0 [Cortes & Vapnik, 1995]. The quality of the separator relies on maximizing

the margin width between the closest instances of both classes. In practice perfect separation is

not often possible, so instances on the wrong side of the separator are given a penalty propor-

tional to the amplitude of their deviation. SVM can then be seen as an optimization problem

combining margin maximization and penalty minimization, both objectives being reguarized by

a hyperparameter C. Its Lagrangian dual is of the form :

max
α

J(α) =
N

∑
k=1

αk −
1

2

N

∑
i=1

N

∑
k=1

αiαjyiyjK(xi, xj)

subject to :

N

∑
k=1

αkyk = 0,0 ≤ αk ≤ C,k ∈ [∣1;N ∣]

(12)

where K is a kernel whose function satisfies Mercer’s theorem, including among others linear,

polynomial or Radial Basis Function (RBF), the latter being the one used in this study.
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4.2.2 Competing model : Logistic Regression

A Logistic Regression estimator f̂ is defined as the logit transformation of a linear combination

of the individual attributes, of the form :

f̂(X) = eβX

1 + eβX (13)

The estimates β are computed using the maximum-likelihood principle [Minka, 2001]. Con-

trary to the other methods, its outputs do not require any recalibration process given that they

can be directly considered as class-conditional probabilities.

4.2.3 Statistical performance comparison

Figure 9 indicates the training time performances of all previously described algorithms over

different training set sizes. Of all three GBDT implementations, LightGBM is clearly the fastest

to train with almost an order of magnitude gap from CatBoost’s performances, and is even per-

forming better than SVM which is trained on a much lower dimensionality. We can also note

that XGBoost is the most vulnerable to combined high volumetry and high dimensionality, as

its training time over the entire dataset lasts several hours. It is also interesting to note that

CatBoost’s structure seems to be particularly well-adapted to be trained on high volumetries,

as it seems less impacted by the training set size than other models, despite being more time-

consuming on small dataset sizes.

The performance metrics of the five different models are summarized in Table 3 with Logistic

Regression considered as baseline.

The three implementations of GBDT - LightGBM, CatBoost and XGBoost - perform signif-

icantly better than SVM and Logistic Regression. LightGBM and CatBoost achieve almost the

same results, with AUC over 0.91 (+ 7 10−2 to baseline), the best KS (+ 13.2 10−2), APS (+

10.8 10−2) and NDCG statistics (+ 11.8 10−2). From their trade-off between false positive rate

and true positive rate, summarized by their AUC but better visualised in the form of their ROC

on Figure 10, we can conclude that they achieve the best performances regarding the objectives

of the study.

The fact that XGBoost’s AUC is 1.5 10−2 points under the other GBDT implementations

doesn’t necessarily mean that the method is less accurate as it was trained on only 25% of the

training set volume. Indeed, Table 4 indicates us that XGBoost nearly equals LightGBM on this

specific subsampling volume. Nevertheless, this GBDT implementation struggles with scaling

up its training process, as training over the whole dataset takes a significantly higher amount of

time.
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Figure 9: Training time of all algorithms by training set size

SVM doesn’t manage to reach the ensemble models’ performances. Its moderate improve-

ments in terms of AUC (+1.1 10−2), PGI (+3 10−2) and KS (+3.8 10−2) compared to baseline

confirms that SVM performs well in class separation. However, its loss in APS (-0.5 10−2) and

NDCG (-0.85 10−2) reveals that it is not suited for discriminating the most noticeable positive

labels.

Table 4: Performance metrics of algorithms evaluated on test set (10−2)

Algorithm AUC APS PGI KS BS NDCG
LightGBM 92.23 14.17 78.16 68.88 0.31 73.79
CatBoost 91.37 14.46 76.29 68.25 0.31 73.72
XGBoost 89.74 12.00 71.93 63.53 0.32 71.88

SVM 85.41 2.87 61.71 56.82 20.68 61.11
Logistic Regression 84.31 3.35 58.68 53.08 0.33 61.96

4.2.4 Economic performance comparison

Besides the statistical effectiveness of GBDT, the other important performance to assess is its

economical viability. As previously highlighted in the literature, statistical metrics alone cannot

fully apprehend the complexity of missclassification costs in real application scenarios [Hand,

2009], let alone with credit scoring where false positives and negatives have a significantly different

impact. In this paper, we choose to compute the Expected Maximum Profit (EMP) measure,
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Figure 10: Receiver Operator Curve of the five trained models

LightGBM and CatBoost are trained on the whole training set, XGBoost on 25% of the training set, SVM and

Logistic Regression on the PCA-reduced training set

proposed by Verbraken [2014], whose expression is of the form :

EMP =∬
b,c
P (T, b, c, c∗)h(b, c)dc.db (14)

with P the Average classification profit per borrower defined as :

P (t, b, c, c∗) = (b − c∗)π1F1(t) − (c + c∗)π0F0(t) (15)

where b is the benefit of correctly identifying and rejecting a defaulter, c is the cost of

incorrectly rejecting a non-defaulter, c∗ is the cost of taking action in the decision process, π0

and π1 are the prior probabilities of respective classes 0 and 1, F0(t) and F1(t) are the cumulated

density function of rejected negatives and positives respectively, and t ∈ [0,1] is the cutoff value,

such that in (14) : T = argmaxt P (t, b, c, c∗). As b and c are not exactly known in practice but

rather defined over a probability disctribution, the EMP is defined as a summation of P over the

joint probability h(b, c) density of those costs.

Applied to credit scoring, Verbraken showed that (14) can be expressed as :
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EMP = ∫
1

0
P (T,λ,ROI)h(λ)dλ (16)

with P (t, λ,ROI) = λπ1F1(t) − ROIπ0F0(t), ROI the expected Return On Investment on

the considered loan portfolio, and λ the expected recovery rate distribution over that portfolio.

In this study, we decided to compute the EMP over the subsample of our test set containing

only SMEs with long-term borrowings, which let us with 104 343 observations ( 28.6% of our

original dataset ), with a failure rate of π1 = 0.48%. We assumed from the author company’s

experience that λ obeys to a probability of complete recovery of 0.55, a probability of complete

loss of 0.1, and the leftover density being uniformly distributed in ]0,1[. We fixed the ROI’s

value at 1.67%.6 Results, reported on table 5, indicates that all three ensemble methods, and

especially LightGBM, outperform Support Vector Machine and Logistic Regression in terms of

economical accuracy.

Table 5: Economic performance measures of algorithms evaluated on SMEs with long-
term borrowings

Algorithm Expected Maximum Profit (%)
LightGBM 0.05827
CatBoost 0.05188
XGBoost 0.04962

SVM 0.03379
Logistic Regression 0.02747

5 Conclusion

In this study we introduced a 12-month credit scoring methodology providing theory-proven

explainability to highly predictive GBDT models. We therefore propose a viable solution to the

black-box issue, which has plagued the class of complex machine learning algorithms for years and

prevented them from widespread adoption. Our method could meet the regulators’ expectations

and favor the use of a new generation of automated credit scoring models in the lending activity

sector. Better performing credit scoring abilities based on publicly available data is one of the

answers to the anti-selection process fuelled by information asymetry and uncertainty. These

techniques could be used to reduce the cost of credit for low-risk borrowing SMEs identified

as such, which would help them grow their businesses and positively impact the fabric of the

economy.

6Information gathered from Banque de France’s December 2017 report ”Crédits par taille d’entreprises”,
available at https://www.banque-france.fr/statistiques/credits-par-taille-dentreprises-dec-2017
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In practice, our best model outperforms those currently used in the sector on predicting busi-

ness failure over a highly unbalanced dataset of more than 360 000 observations and 450 features.

We showed that LightGBM seems the best GBDT implementation in terms of statistical perfor-

mance, training speed, as well as economical accuracy. We submitted balance sheets dataset to

our model at a national scale and gained the most concise knowledge over the studied population

characteristics, while limiting the effects of potential sampling bias that have been reported in

previous studies.

We then successfully applied the SHapley Additive exPlanation method to these models and

improved their interpretability, providing a robust solution to address the “black box” issue

that prevented complex models to be accepted by regulators. This method provides a coherent

quantification of feature influence over the final risk scoring, both globally and for each individual

observation. The global explanation allowed us to identify the financial ratios with the highest

predictive power, which are consistent with traditional literature results. Applied to a single

company, the individual SHAP explanation allows us to identify the factors that best explain its

estimated probability of default.

However, although our methodology takes into account the dynamics of their close economical

environment, it doesn’t consider the interactions with neighboring companies. Indeed, other

recent studies highlighted the importance of including neighbor risk transmission within the

scope of exogenous risk factors [Fernandes - 2016 ; Calabrese - 2019]. Future work will consist

in refining our methodology to take into account those effects whilst keeping our independence

from any form of sampling bias.
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validation empirique.” Communication aux Premières Journées G. Doriot (2006).

[70] Verbraken, T., Bravo, C., Weber, R., & Baesens, B. (2014). Development and application of

consumer credit scoring models using profit-based classification measures. European Journal

of Operational Research, 238 (2), 505-513.

[71] Zadrozny, Bianca, and Charles Elkan. ”Transforming classifier scores into accurate multiclass

probability estimates.” Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining. 2002.

[72] Zhang, L., Hu, H., & Zhang, D. (2015). A credit risk assessment model based on SVM for

small and medium enterprises in supply chain finance. Financial Innovation, 1(1), 14.

[73] Ziegler, T., Shneor, R., Garvey, K., Wenzlaff, K., Yerolemou, N., Rui, H., & Zhang, B.

(2018). Expanding horizons: The 3rd European alternative finance industry report. Available

at SSRN 3106911

35

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

