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Abstract

This paper aims to evaluate the criticality of strategic metals by (i) investigating

the validity of the Herfindahl-Hirschman Index (HHI) for assessing the supply risk

aspect of criticality and (ii) determining an appropriate threshold for using this

indicator in the context of criticality studies. Relying on a large panel of 33 strategic

metals over the 1995-2021 period, our findings show that the variation of HHI has

more impact on metal prices at lower HHI levels and question the existence of a

threshold that clearly distinguishes high-risk markets from less risky ones based on

their concentration levels. Overall, we show that using the HHI as a supply risk

indicator, especially in conjunction with a threshold, may result in underestimating

risks in less concentrated markets.
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1 Introduction

Over the last decades, the growing number of raw material criticality assessments

reflects the renewed interest in the supply security of these resources, particularly for

countries and companies heavily dependent on international commodity flows.

The first decade of the 21st century witnessed remarkable economic growth and in-

dustrialization, mainly driven by emerging economies such as China, which became a

dominant force in the global marketplace. As China’s demand for metals and minerals

surged, global markets tightened, leading to historic price increases and heightened con-

cerns over potential shortages and scarcity (Schmidt, 2019). The imposition of Chinese

export restrictions on rare earth elements (REE) over the 2009-2011 period—especially

in 20101—further exacerbated these fears, leading highly import-dependent industrialized

countries to develop their criticality assessment methodology in order to secure their raw

material supply chains (Frenzel et al., 2017). More recently, the COVID-19 pandemic and

the war in Ukraine have had significant implications for global supply chains, including

those related to metals and minerals. The pandemic’s disruptive impact on production,

transportation, and distribution of raw materials led to temporary shutdowns of mines

and processing facilities (Gupta et al., 2020). This crisis has also highlighted the exis-

tence of tensions between economic powers, which could lead to non-cooperative trade

policies in the future (Jaravel and Méjean, 2021). As a result, there is a renewed focus on

building more resilient and diversified supply chains to mitigate future risks and ensure a

steady flow of critical resources.2 Moreover, the ongoing global energy transition, aimed

at reducing greenhouse gas emissions and shifting towards low-carbon technologies, has

led to substantial demand for specific metals and minerals. As underlined by the In-

ternational Energy Agency (IEA), such technologies have a higher metal content than

their traditional counterparts and require a greater diversity of metals. Consequently, the

availability of metal and mineral resources has become a central concern in the energy

transition dynamic, as these resources could potentially become limiting factors to net

zero ambition in the future.3

1See Seaman (2019).
2In August 2022, the United States passed the Inflation Reduction Act, which promotes the devel-

opment of more robust supply chains and domestic production of various minerals. In particular, it
introduces the New Advanced Manufacturing Production Credit, a 10% tax credit granted to domestic
producers of specified critical minerals (IEA, 2023). A few months later, the European Commission
proposed the Critical Raw Materials Act, a set of actions aimed to ensure “the EU’s access to a secure,
diversified, affordable and sustainable supply of critical raw material” (European Commission, 2023).

3In March 2022, the Departments of Energy, State, and Defense of the United States collaborated to
integrate minerals that are necessary for a clean energy transition into the National Defense Stockpile of
critical minerals, in addition to those required for defense purposes (IEA, 2022b).
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Within this context, correctly measuring the criticality of minerals and metals is cru-

cial, and this is the aim of the present paper. This is not straightforward since, as

highlighted by Graedel et al. (2015), defining criticality is a difficult task because “criti-

cality depends not only on geological abundance, but on a host of other factors such as

the potential for substitution, the degree to which ore deposits are geopolitically concen-

trated, the state of mining technology, the amount of regulatory oversight, geopolitical

initiatives, governmental instability, and economic policy”.

Originally developed by states to ensure their military-strategic positions and later to

sustain economic growth and contemporary lifestyles, criticality studies are now conducted

by a multitude of actors at different scales (state, industry, company, or even technology

scale) (Schrijvers et al., 2020). As a result, multiple criticality assessment methodologies

have been developed to identify materials of concern and assist decision-making processes,

drawing on the pioneering work of the National Research Council (2008) and the European

Commission (2010). Two key aspects are commonly used as criteria to identify critical

raw materials: (i) their economic and/or strategic importance, and (ii) the likelihood of

supply disruptions, often referred to as ‘supply risk’ (Frenzel et al., 2017). However, the

measurement of these criteria varies from one study to another, from the selection of the

indicators used to the way they are aggregated (Gleich et al., 2013).

The absence of a standardized theoretical framework for criticality measurement and

the proliferation of such studies has led to the emergence of a distinct field in the scientific

literature reviewing the various criticality assessment methods and their relevance (Erd-

mann and Graedel, 2011; Achzet and Helbig, 2013; Glöser et al., 2015; Frenzel et al., 2017;

Hatayama and Tahara, 2018; Schrijvers et al., 2020). It is commonly observed that certain

indicators lack sufficient relevance. Therefore, experts and researchers recommend iden-

tifying best practices (Schrijvers et al., 2020), primarily through acquiring more robust

empirical evidence on widely used indicators (Helbig et al., 2021).

One of the most commonly used indicators for assessing the supply risk of a material

is the country production concentration. Helbig et al. (2021) conduct a thorough review

of different indicators employed to measure supply risk and find that country’s production

concentration appears in about 75% of the 88 assessment analyses presented in their paper

and has been in use since 1977. The rationale behind using such an indicator is that as

the production of a given raw material becomes more concentrated in a few countries, the

likelihood of supply disruptions increases due to various factors, including economic, po-

litical, or environmental considerations (Frenzel et al., 2017).4 Moreover, “in the context
4In recent years, a third important consideration has been added: the environmental implications
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of global studies, ‘production’ is used as a proxy for ‘supply’” (Brown, 2018). Therefore,

world production by country is used to evaluate supply diversity (Thomas et al., 2022),

which is known in the literature as a significant factor in supply resilience and, conse-

quently, supply risk (Sprecher et al., 2015; Sato et al., 2017).5 The Herfindahl–Hirschman

Index (HHI) (Herfindahl, 1950; Hirschman, 1945) is the dominant measure for assessing

this indicator (Helbig et al., 2021; Brown, 2018). The HHI is a widely recognized measure

of market concentration. It was initially developed in the field of industrial organization

to assess market structure and quantify market power and has since been extensively

used, particularly in the field of competition law. The HHI is calculated by summing

the squares of individual firms’ market shares, thereby assigning greater weight to larger

market shares.6 As a result, the HHI approaches zero when a market consists of numerous

firms of relatively equal size, while reaching its maximum value of 10,000 points when a

single firm dominates the market.

In the metal and mineral production sector, various HHIs are available to evaluate

concentration. The HHI can be assessed at different scales, either based on the national

production of countries (referred to as country HHI) or by focusing on the production

of specific firms. Moreover, the HHI can be computed at various points along the value

chain, including ore extraction, smelting, and refining. Indeed, minerals undergo a multi-

stage transformation process before they can be utilized in final applications. Initially, the

raw minerals are extracted from deposits through mining activities, which are classified

as upstream operations. Subsequently, the extracted minerals are transferred to smelters

or refiners, where chemical refining and processing take place, known as midstream op-

erations, transforming the minerals into fine particles with high purity levels, rendering

them suitable for use in the final products. Finally, the refined metals are passed on to

downstream actors who incorporate them into the manufacturing process to create the

end products (Castillo, 2022). Most criticality analyses focus on the country’s concen-

tration of mineral production at the extraction stage, a choice driven primarily by data

availability considerations.

(Graedel et al., 2015).
5In recent years, the study of network resilience has become a significant subfield in network science

(Liu et al., 2022), referring to the ability to withstand and rapidly recover from environmental changes
or disruptions. An essential component of resilience, as highlighted by recent research, is redundancy,
denoting the use of multiple pathways, functions, or components within a system (Kharrazi et al., 2020).
In the context of trade systems, redundancy refers to the diversity of supply, which involves having
multiple suppliers for a specific product, as emphasized by Sprecher et al. (2015) and Kharrazi et al.
(2020).

6According to Le Coq and Paltseva (2009), the HHI emphasis on the larger suppliers, makes it “suited
to reflect the risks, associated with the non-diversified energy portfolio”.
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In many cases, criticality studies are used to identify which minerals are subject to

relatively higher supply risk, thereby distinguishing between different materials and iden-

tifying which markets require more vigilant monitoring. Although supplier diversity is

generally considered in the literature to be a robust indicator of supply risk, it remains

important to determine whether it is effective as a discriminative criterion for classifying

different metals and minerals. This is a recurring observation in the literature review-

ing criticality methodologies, consistently highlighting the lack of empirical evidence for

widely used indicators (Achzet and Helbig, 2013; Frenzel et al., 2017; Helbig et al., 2021).

Only a few studies have highlighted the relevance of the HHI of production in this

context, using different methodologies. Buchholz et al. (2022) focus on the largest mines

for 12 mineral commodities over 1.5 years. They use big data analytics to investigate

how specific risk events disrupt these mines. They analyze the impact of events such

as COVID-19 measures taken by different countries and conclude that a global market

with few suppliers would be more vulnerable to risk than a market with a large supplier

base. However, their conclusion depends largely on their underlying assumption: “the

potential impact has been quantified based on the global share of production from mines

at risk”. Furthermore, the study only looks at 12 raw materials over a relatively short

period of time. Brown (2018), though, shows that assessing supply concentration using

only a snapshot index taken at a single point in time may inadequately measure potential

supply concentration concerns. Therefore, examining the impact of HHI over such a

truncated time period (less than two years) could lead to misleading results. Gleich et al.

(2013) assess the relevance of the indicator by examining its impact on raw material

prices. This methodology is grounded in the efficient market hypothesis, assuming that

prices reflect current and future risks, i.e., economic scarcity, and thus capture a degree of

criticality. This approach offers a more comprehensive perspective, encompassing a larger

set of metals and minerals (42) over an extended period (26 years). However, the study

adopts a time series perspective, considering every material independently. Furthermore,

the authors investigate whether the HHI of a metal’s production has an effect on its price

but do not demonstrate whether it is a relevant indicator for the entirety of metals and

minerals, and thus a suitable means of differentiation.

In the United States, the Federal Trade Commission has established benchmark values,

as outlined in their guidelines, to identify markets of concern (Federal Trade Commission,

2006): markets are categorized into three groups based on the HHI—unconcentrated mar-

kets (HHI below 1500), moderately concentrated markets (HHI between 1500 and 2500),

and highly concentrated markets (HHI above 2500). Mineral criticality studies frequently
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incorporate the thresholds specified in the American Merger Guidelines when utilizing

the HHI to quantify production concentration. This is done in two ways. Firstly, the

thresholds are mentioned in the introduction to the analysis, which creates a framing bias

for the reader but does not directly affect the results (Al Barazi et al., 2021; Buchholz

et al., 2022). Secondly, some studies include these thresholds in their methodology. For

instance, in their paper on supply risk for mineral commodities, Schneider et al. (2014)

set a threshold for each selected indicator, including the HHI of production, above which

supply risk is expected. The supply risk for each resource is then calculated by consid-

ering its proximity to this threshold. For the HHI of production, the threshold is set at

1500, in line with the thresholds defined by the US Department of Justice in the Merger

Guidelines. Similarly, Rosenau-Tornow et al. (2009) use these thresholds to define their

benchmarks for HHI values related to country concentration. However, these thresholds

were established in the context of using the HHI as a proxy for the monopolistic structure

of an industry, rather than for measuring the redundancy of the trading system, which

is a more pertinent criterion in criticality studies. Furthermore, even in the context of

mergers, these thresholds have been criticized for being arbitrary. The arbitrary nature

of thresholds is also emphasized by Brown (2018) within the context of criticality studies.

She highlights that the specific level at which the threshold for defining “high concentra-

tion” is established can significantly influence the interpretation of results in criticality

assessments of minerals.

While the scientific community is generally less inclined towards adopting a sharply

defined threshold value for criticality determination, policymakers tend to employ such

values since they lead to easily understandable outcomes, as in the case of enumerative

inventories of critical raw materials (Schrijvers et al., 2020). Consequently, it is essential

to provide empirical evidence to support the validity of such indicators and the relevance

of the thresholds used (Brown, 2018).

This paper tackles this crucial issue. Specifically, it aims to empirically assess the

validity of a country production concentration indicator for evaluating the supply risk

aspect of criticality and to examine whether a threshold exists within the HHI values to

assign the criticality of specific non-fuel minerals. We go further than the aforementioned

literature since, to the best of our knowledge, no study has assessed the relevance of the

HHI of production as an indicator for distinguishing among various metals and miner-

als, nor has any study empirically attempted to determine an appropriate threshold for

utilizing this indicator in the context of criticality studies. Our paper fills these gaps by

investigating the impact of the production HHI on metal prices from a panel perspective
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and seeking to identify the presence of a threshold. To this end, we adopt the approach

outlined in Gleich et al. (2013), which attempts to assess the validity of certain indicators,

by examining their relationship with raw material prices.

Our results challenge the commonly held assumption that the variation of HHI has

a greater impact on prices at higher HHI levels. Additionally, our findings suggest that

a clear threshold does not exist to distinguish high-risk markets from less risky ones

based on their concentration levels. Therefore, using the HHI as a supply risk indicator,

particularly in conjunction with a threshold, may result in underestimating risks in less

concentrated markets.

The rest of the paper is organized as follows. Section 2 comprehensively describes the

HHI data used in the model while Section 3 outlines our chosen models. The results are

presented and discussed in Section 4. Finally, Section 5 summarizes our main findings

and draws some policy implications.

2 The Herfindahl–Hirschman Index (HHI): calculation

and stylized facts

2.1 HHI calculation

We construct a database that tracks the evolution of the HHI for a set of 63 metals and

minerals that are key to today’s economy (see Table 8 in Appendix A). The database spans

the period from 1994 to 2021 at an annual frequency. To measure these concentrations,

we use country-specific production data for these materials. Our primary sources for

this purpose are the United States Geological Survey (USGS) and the British Geological

Survey (BGS), both recognized as global references for minerals and metals data and

statistics.

The USGS publishes an annual report called The Minerals Yearbook, which reviews

the mineral and metal industries of both the United States and foreign countries. This

yearbook comprises statistical data on various metals and minerals and offers information

on economic and technical trends. First published in 1933, digital versions have been

available on the USGS website since 1996. In the publication for year i, the USGS

provides data of global primary production by country for a wide variety of raw materials

for year i−2. Consequently, we can extract production data from 1994 to 2021. This data

availability defines the period of our study. For most materials listed, the data pertains to
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primary production (extracted from mining operations), while refining data is available

for some metals.

Similarly, the BGS maintains its own database on the production and trade of miner-

als named the World Mineral Statistic Datasets.This data is published annually in three

reports, including World Mineral Production, which contains production statistics, cate-

gorized by country, for a range of economically significant mineral commodities, encom-

passing ferrous and non-ferrous metals, industrial minerals, and hydrocarbons. The first

publication of this dataset dates to 1913. While data for some metals are available before

to 1994, we opt to extract data from 1994 to ensure comparability with the USGS dataset.

While primarily relying on data from the USGS, we use BGS data in cases where

USGS data is missing, and it serves as a robustness check for our HHI calculations. The

HHI for row material m at stage s and year i is defined as follows:

HHIm,s,i =
∑

c ∈ Pm,s

(Sc,m,s,i)
2

where:

- Pm,s is the set of all countries c that produce raw material m at stage s.

- Sc,m,s,i is the share of country c in the global supply of the raw material m at stage

s in the specified year i.

- s corresponds either to mine production, refinery, or smelter activities.

In the USGS reporting, for some raw materials, minor producers are aggregated into

the ‘Other Country’ category, resulting in a combined production denoted as pother. In

this case, we assume that each country within the ‘Other Country’ category produces less

than the country with the lowest production (pmin) among the available data.7 Applying

this methodology, we obtained HHI data for 63 metals and minerals at various stages

of their value chain. Most of these data points represent market concentration at the

extraction level, but for certain metals, we also have data on concentration at the refining

or smelting stages (see Table 8 in Appendix A).

2.2 Stylized facts: trends in HHI over the 1994-2021 period

2.2.1 HHI at the extraction stage

The time evolution of HHI at the extraction stage exhibits diverse patterns across the

studied metals and minerals (Figure 1). Specifically, we observe five distinct categories of
7All the details as well as robustness checks are provided in Appendix A.
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HHI trends. First, certain metals and minerals exhibit continuous HHI growth, indicating

a rising market dominance over time. Second, another group maintains relatively stable

HHI values, pointing a consistent market share throughout the years. Third, some raw

materials experience a decreasing trend in HHI, implying increased competition between

countries within their respective markets. Fourth, there are cases where materials ini-

tially undergo growth before experiencing a subsequent decline. Fifth, conversely, we find

instances where materials exhibit the reverse pattern, initially declining before witnessing

growth.

Figure 1: Evolution of the HHI at the extraction stage over the 1994-2021 period
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In the period under study, most HHI series exhibit an increasing trend (40% of the

analyzed series) indicating a concentration of primary production for a significant number

of metals and minerals over the past two decades. This intensification in concentration

occurs at varying rates, with the HHI for silver increasing only by 13 points per year

on average, while for gallium,8 the rise amounts to over 400 HHI points annually (Table

1). Several factors contribute to this phenomenon, including geological considerations as

countries possess differing mineral endowments and prioritize the extraction of highly con-

centrated ores. For instance, the Democratic Republic of the Congo (DRC) is a prominent

cobalt producer due to its possession of nearly half of the world’s cobalt reserves (USGS,

2023). Economies of scale and expertise are additional drivers of production concentra-

tion. Lastly, environmental, and social regulations (ecological and social dumping) can

also lead to significant concentration in the production of certain metals.

Table 1: Regression coefficients of HHI series

Raw material Regression coefficient Trend Raw material Regression coefficient Trend

tantalum −146.281 decreasing phosphate-rock 45.737 increasing
kaolin −69.571 decreasing lithium 61.131 increasing
platinum −54.949 decreasing fluorspar 62.978 increasing
palladium −32.278 decreasing tungsten 64.060 increasing
zirconium −27.161 decreasing wollastonite 102.845 increasing
talc −22.322 decreasing asbestos 109.864 increasing
gold −20.033 decreasing graphite 129.243 increasing
bentonite −12.414 decreasing cobalt 131.806 increasing
gypsum −6.788 decreasing germanium 142.685 increasing
silver 13.809 increasing yttrium 167.491 increasing
niobium 20.059 increasing silicon 171.143 increasing
manganese 24.751 increasing magnesite 183.807 increasing
iron 29.663 increasing mercury 251.764 increasing
zinc 31.527 increasing magnesium 265.179 increasing
uranium 33.052 increasing gallium 414.387 increasing
vanadium 38.926 increasing

Note: This table presents the linear regression coefficients calculated for the HHI data of raw materials
that exhibit a monotone HHI trend throughout the specified period (Figure 1). Metals and minerals are
arranged in ascending order based on their regression coefficients. Most of these trends show an upward
trajectory, and the rate at which the HHI evolves varies significantly among the different elements studied.

A sustained decrease in HHI over the same period is relatively rare, representing only

16% of the studied series. Notably, this subset comprises gold, palladium, and platinum,

three metals categorized as precious metals.9 This can be attributed to consistently high

prices that make extraction profitable, even when deposits are not highly concentrated.

For instance, artisanal and small-scale gold mining, which contributes to about 20% of
8Gallium data is available only for the period 2007-2021.
9Silver is the only element in the precious metals category within our dataset that does not exhibit a

declining HHI; nevertheless, as previously mentioned, its growth remains sluggish.
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global production and operates in 80 countries (Kumah, 2022), plays a role in lowering the

gold HHI value. Some minerals such as talc, kaolin, bentonite, and gypsum, also exhibit

a sustained decrease in HHI. In these cases, the decreasing trend can be explained by

their large and well-distributed resources among various producing countries, contribut-

ing to a more balanced concentration of production across the globe (USGS, 2023). In

16% of cases, the HHI series display a pattern of growth followed by a subsequent decline

over time. Notably, when we examine the leading producer of these materials at the point

where the HHI reaches its maximum before decreasing, China emerges as the predominant

producer in the majority of cases (Table 2). Also, the decline in HHI is often attributed to

either a governmental decision to reduce production, typically in response to curbing do-

mestic pollution, or a significant natural disaster that necessitated a substantial reduction

in production.

Table 2: HHI peak year and leading producer’s market share

Raw material Year of max HHI First producer country Market share Regression coefficient

REE 2010 China 97.7 −550
antimony 2008 China 91.3 −399
arsenic 2011 China 66.6 −168
barite 2008 China 57.1 −108
beryllium 2014 USA 93.1 −440
copper 2006 Chile 35.5 −32
lead 2013 China 52.8 −114
strontium 2011 China 50.7 −119
tin 2011 China 49.2 −113

Note: The ‘Year of max HHI’ column indicates the specific year when the Herfindahl-Hirschman Index
reaches its highest value before starting to decrease. The ‘Market Share’ represents the proportion of
production held by the leading producer country in that specific year.

Antimony serves as a pertinent case study exhibiting a decreasing HHI from the period

of 2008-2010 onwards. Classified as a metalloid, antimony plays a crucial role as an alloy-

ing element in the production of flame retardants, lead-acid batteries, and semiconductors.

The reduction in HHI for antimony is explicitly linked to China’s pivotal position as the

world’s leading antimony producer since the early 1980s. A government-driven decision

to curtail antimony mining operations in 2010, in response to environmental concerns

and safety issues, significantly contributed to this decline (USGS, 2023). Given China’s

dominance, accounting for nearly 90% of global antimony production at the time, the

production disruptions led to a substantial price surge in 2011. Similarly, the decline in

HHI for lead, tin, REEs, and molybdenum in the 2010s can be attributed to production

curtailments implemented as part of an environmental clean-up initiative led by Beijing

(USGS, 2023). Additionally, the decline in HHI for REEs, starting in 2010, is also linked
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to China’s export restrictions on these elements, justified as a measure to conserve re-

sources and protect the environment. This policy shift resulted in a substantial price

surge for REEs in international markets, sparking increased investments in rare earth de-

velopments outside China. Consequently, despite China’s production rebound from 2016

onwards, the country’s market share declined due to growing exploitation in other regions

of the world, which contributed to the rapid decrease in REE’s HHI since 2010 at a rate

of -550 points per year (Table 2). The reduction in barite’s HHI is also attributed to the

decrease in China’s production, although in this case, it is not due to a governmental

decision but rather the result of extreme climatic conditions that significantly impacted

Chinese production from 2009 to 2011. Coupled with increased fuel costs and robust

global demand for barite, these circumstances led to a sharp increase in prices for Chinese

barite. Consequently, the higher prices encouraged the entry of new players into the barite

mining sector, particularly India, which resulted in a sustained decline in HHI (USGS,

2023).

Figure 2: Global primary resource producers
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Note: The graph presents the number of primary commodities within our panel, for which each country
holds the position of the leading producer at the upstream stage. Only countries leading in at least 3
commodities are individually listed, while all others are grouped under the ‘Other’ category based on
their respective continents. This analysis is based on the raw mineral production data from the USGS
and BGS datasets presented in section 2.1.

Since the 1990s, a select group of countries have emerged as major players in primary

resource production, dominating the supply of essential materials. Notably, China’s role

as a significant producer experienced substantial growth from the 2010s onwards, leading

to a shift in the dynamics at the expense of the United States. By 2009, China had
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claimed the top position as the leading producer of over half of all metals and minerals

in our panel (Figure 2). This shows that we have not only observed an increase in the

concentration of global production for various commodities, but also a significant overall

concentration of resources within China. However, despite China’s continued dominance

as a primary resource producer, there has been a decline in its market share since 2012,

reflecting the impact of environmental policies implemented by the government (Figure

3).10 Also, contextualizing Chinese production in relation to its consumption is essential

as China is both the primary producer of metals and minerals and the largest consumer

of these commodities (Frenzel et al., 2017).

Figure 3: Total maximum market shares by country
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Note: The graph displays the sum of the maximum market shares, representing the market share held
by the first producer of each commodity, for each respective country. This analysis is based on the raw
mineral production data from the USGS and BGS datasets presented in section 2.1.

2.2.2 HHI at the smelting stage

The concentration of smelter production for aluminum, copper, and tin exhibits an

upward trend over the studied period (Figure 4). In all three cases, the rise in HHI can be

attributed to the expanding influence of the Chinese market on total production. China

emerged as the leading player in tin smelting as early as 1993, with its market share

steadily growing over time (Bonnet et al., 2022). Similarly, for aluminum and copper,

China became the top producer in 2001 and 2004, respectively, leading to a noticeable
10The rationalization of industrial activities in China since 2010 should also be mentioned, with a wish

to eliminate small actors for better control activities (Hache, 2019).
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shift in the HHI curves, coinciding with the moment when the country attained the

position of the primary producer with an increasingly dominant market share.

Figure 4: Evolution of the HHI at the smelting stage over the 1994-2021 period
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Note: These graphs illustrate the evolution of the HHI values calculated at the smelting stage using the
USGS and BGS data, as described in section 2.1

2.2.3 HHI at the refinery stage

Likewise, the HHI series at the refinery stage for all metals with available refining data

(metals shown in Figure 5) exhibit an increasing trend. Notably, this upward trajectory

in HHI values is consistently attributed to China’s production activities, signifying its

progressive dominance in the refining processes of these metals.

Figure 5: Evolution of the HHI at the refinery stage over the 1994-2021 period

1995 2000 2005 2010 2015 2020

1000

2000

3000

alumina

1995 2000 2005 2010 2015 2020

500

1000

1500

2000

cadmium

1995 2000 2005 2010 2015 2020

2000

4000

6000

cobalt

1995 2000 2005 2010 2015 2020
500

1000

1500

2000

copper

2000 2010 2020 2030

2000

3000

4000
indium

1995 2000 2005 2010 2015 2020

1000

2000

lead

1995 2000 2005 2010 2015 2020

1000

1500

nickel

1995 2000 2005 2010 2015 2020

1400

1600

1800

2000

2200
selenium

1995 2000 2005 2010 2015 2020

3000

4000

5000
tellurium

Note: These graphs illustrate the evolution of the HHI values calculated at the refinery stage using the
USGS and BGS data, as described in section 2.1
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It is noteworthy to compare the HHI values between the upstream and midstream

stages.11 Taking copper and tin as examples, the concentration of production at the

extraction stage has been decreasing for over 15 years, while the concentration at the

refining stage is increasing. This dynamic is primarily driven by China’s growth in the

refining sector, even though China’s tin extraction is declining. Regarding cobalt, both

the extraction and refining HHIs show a comparable increasing trend, but the primary

producer differs. The DRC dominates cobalt extraction, while China refines over 76% of

global cobalt production in 2021. This reflects China’s determination to secure its supplies

and assert its hegemony in the global resources market. It also underscores its aim to

move up the value chain and capture additional value downstream from ore, a sentiment

echoed by many resource-producing countries. Notably, many countries have begun to

restrict the export of unprocessed minerals. Indonesia banned the export of raw nickel

ore in 2020 and has been followed by several lithium-rich African countries, including

Ghana, Namibia, and Zimbabwe. The primary goal of these nations is to encourage

investments in on-site ore processing, with a long-term objective of developing batteries

within their territories. The Chinese dominance in the permanent magnet market is a

successful example of value chain ascent, spanning from mining to the development of

final technology. In his work, Pitron (2018) describes the Chinese strategy, starting with

establishing a dominant position in rare earth mining and refining, and later assimilating

foreign expertise in permanent magnet production.

2.3 Concentration as a function of total production

When examining the relationship between mining production concentration and to-

tal raw material production within the panel, we observe a negative relationship in the

pooled regression. This implies that as the total quantity of mined mineral increases, its

production concentration decreases. This initial finding suggests that metals or miner-

als produced in larger quantities tend to be shared among a greater number of actors.

However, when we consider the individuality of each metal and conduct a within-panel

regression, the coefficient of regression between HHI and global production is positive

(Figure 6). This aligns with the earlier qualitative analysis, where we observed that the

HHI of metals and minerals extraction generally shows a growing trend over time, while

the production of metals and minerals also generally increases through time. As a result,
11Given the proximity of HHI values between smelting and refining data, we can combine these two

categories in the analysis. Although there is a slight difference for copper and tin, where the refining data
accounts for secondary production, this has a negligible impact on the overall HHI.
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Figure 6: HHI vs log of total production
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production (measured in metric tons of metal or mineral content per year), of metals and minerals in our
panel. 12

we would expect to find a positive relationship between HHI and production.

3 Data and methodology

Our analysis focuses on evaluating the HHI of a country’s production concentration

as a reliable indicator for measuring supply risk, specifically in distinguishing between

different materials. Furthermore, we aim to analyze the presence of a distinct threshold

in the HHI values for assigning the criticality of particular metals. Based on the hypothesis

that metal prices can indicate to some degree their criticality (Gleich et al., 2013), we

rely a panel regression analysis to examine the impact of HHI on metal prices. The use

of a panel data framework provides the significant advantage of working with a sizable

dataset, thereby enhancing the statistical robustness of our findings. Furthermore, it is

necessary to rely on a panel data approach because using a single metal’s HHI values over

time is insufficient for determining a consistent threshold due to their limited variability.
12In this analysis, we have excluded chromium from our panel due to data inconsistency, as its pro-

duction data is expressed in gross weight rather than element content. To ensure consistency, we have
retained only elements with production data expressed in element content.
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3.1 Data

Our dependent variable is the annual price of metals. Metal prices are measured in US

dollars per metric ton and have been sourced from the USGS.13 Note that the prices re-

flect rates in the United States, serving as a representative estimate for the average cost of

these raw materials in the country. As stated in the IRENA report (IRENA, 2023), not all

metals and minerals have a fully global market presence. Nevertheless, after thoroughly

comparing the USGS-derived prices with metal market rates obtained from alternative

sources, a remarkable level of similarity is observed. The differences between these price

series, on a median basis, tend to hover around a modest 3%, and their variations ex-

hibit an even narrower median difference of approximately 0.3%. Detailed statistics are

available in Appendix B (Table 10). Based on this empirical evidence, it is reasonable to

consider the metal prices under examination as indicative of global market prices. How-

ever, this assumption cannot be uniformly applied to minerals such as salt, talc, and

asbestos due to the lack of comprehensive global price data. Consequently, minerals have

been excluded from the subsequent econometric analysis. This choice can also be justified

by the fact that metals are more relevant than minerals in low-carbon technologies which

deserve particular attention.14 Overall, our (unbalanced) panel is composed of 33 metals

over the 1995-2021 period, corresponding to a total of 821 observations (see the list and

descriptive statistics in Appendix C - Table 11). Following the common practice in the

literature that examines commodity prices (Akram, 2009; Issler et al., 2014; Rubaszek

et al., 2020), the metal prices have been transformed into real prices by deflating them

by the US consumer price index (CPI).

The explanatory variable is the country HHI computed at the mine production level,

presented in detail in the previous section.

Turning to the control variables, we use the five variables most found in the literature

that investigates the dynamics of metal prices, and more generally, commodity prices.

First, we consider the real price of Brent crude oil, which exerts its influence on metal

prices through two primary channels.15 On the one hand, oil can be regarded as a proxy

for global economic growth, thus impacting metal prices through its effect on demand.

This relationship is supported by the literature, which indicates that commodities used
13Data sources for all series are provided in Appendix D (Table 12).
14Additionally, none of the parameters obtained from the panel regression exclusively conducted on

mineral data attains statistical significance.
15The Brent crude oil price benchmark was chosen over the WTI because it is the world’s most impor-

tant crude oil benchmark, responsible for pricing nearly 70% of globally traded crude oil (Imsirovic and
Chapman, 2022). As shown in Appendix G, using WTI leads to similar results, illustrating the robustness
of our findings to the choice of the oil price series.
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as inputs in the production process typically escalate during periods of strong global eco-

nomic activity (Erten and Ocampo, 2013). On the other hand, the extraction and refining

processes of metals require a significant amount of energy, predominantly derived from

fossil fuels. Therefore, fluctuations in oil prices have an impact on the production costs

of metals, creating potential cost-push effects on metal prices (Akram, 2009; Lombardi

et al., 2012).

Second, fluctuations in the US dollar can also act as a driver of metal prices. Since

metals are commonly traded in US dollars, a depreciation of the US currency leads to a

lower price for importers. Consequently, importers’ demand for commodities increases,

ultimately resulting in higher prices. Conversely, when the US dollar appreciates, it

becomes costlier for importers to purchase commodities, leading to potentially reduced

demand and lower commodity prices (Akram, 2009). We use the broad US dollar real

effective exchange rate from the FRED database.

Third, metals and minerals are fundamental inputs in industrial production. There-

fore, an increase in industrial production triggers higher consumption of metals and min-

erals, which, in turn, has an impact on their prices. To capture this relationship as an

explanatory variable, several proxies are considered:

- Shipping freight cost (Baltic Dry Index): Reflecting shipping rates for major raw

materials, this index serves as a gauge of global demand for commodities, providing

insights into the overall economic activity.

- Industrial production index of OECD, China, Brazil, India, and Russia: These

indices measure the output of industrial sectors in the respective countries.

- US Real Manufacturing and Trade Industries Sales.

Fourth, commodity prices can also be influenced by short-term interest rates. Frankel

(2008) presents the theoretical link between interest rates and commodity prices, demon-

strating a negative relationship between them. This negative correlation can be attributed

to several factors. Firstly, a lower interest rate encourages a shift in investments from fi-

nancial markets to commodity assets. Then, it increases the incentive to hold inventories

due to reduced carrying costs and diminishing the motivation for early extraction of ex-

haustible commodities. These combined effects lead to an increase in commodity demand

and a decrease in commodity supply, ultimately resulting in higher commodity prices. We

use the US LIBOR rate as a proxy for the US interest rate, as in Akram (2009).

Fifth, the influence of uncertainty on metal prices has been widely explored in the

literature. Uncertainty can impact commodity prices by amplifying the effects of an eco-

nomic recession, as global economic growth is a key driver of commodity prices. Moreover,

19



heightened uncertainty may induce increased risk aversion among investors, leading to a

rise in the desired risk premium, subsequently hampering investment prospects (Byrne

et al., 2013; Chen et al., 2022). The volatility index (VIX) traded in the Chicago Board

Options Exchange can be used to proxy uncertainty, as a measure of the implied volatility

of S&P 500 index options and reflects the uncertainty of the stock market.

Finally, the concentration of minerals is often cited as one of the primary factors in-

fluencing production costs, which, in turn, can ultimately impact metal prices. However,

several studies have shown that there is no direct link between resource scarcity and mar-

ket prices, indicating that current market prices are not reliable indicators of resource

depletion (Seyhan et al., 2012; Henckens et al., 2016). Vidal (2021) explains this phe-

nomenon by highlighting that technological innovation has thus far offset the decline in

mineral concentration. As a result, we do not consider the concentration of minerals in

deposits as an explanatory variable in our model.

With the exception of the interest rate, all series are transformed into first-logarithmic

differences to ensure stationarity.16

3.2 Panel regressions

To address our research questions, we consider four panel regression models:

∆ ln pricei,t =αi + β1∆ lnHHIi,t+

β2∆ ln oilt + β3∆ ln ert + β4 irt + β5∆ ln vixt + β6∆ ln ist + ϵi,t
(1)

∆ ln pricei,t =αi + β11∆ lnHHIi,t + β12 IHHIi,t+

β13∆ lnHHIi,t ∗ IHHIi,t+

β2∆ ln oilt + β3∆ ln ert + β4 irt + β5∆ ln vixt + β6∆ ln ist + ϵi,t

(2)

∆ ln pricei,t =αi + β11∆ lnHHIi,t + β12 I∆lnHHIi,t+

β13∆ lnHHIi,t ∗ I∆lnHHIi,t+

β2∆ ln oilt + β3∆ ln ert + β4 irt + β5∆ ln vixt + β6∆ ln ist + ϵi,t

(3)

16We used the second-generation unit root test for panel data proposed by Demetrescu et al. (2006)
that allows for cross-dependence across the panel units. We applied this test to the price series and
HHI series, which are the only ones that vary according to the N individuals of the panel (metals). The
remaining variables depend solely on the time section of the panel. This test is a modification of Choi’s
inverse-normal combination test that can be used when the N p-values are not independent. The results,
reported in Appendix E Table 13, show that the logged price series cannot be considered stationary, as
the test fails to reject the null at a 10% significance level. The outcomes for the logged HHI series are
dependent on the chosen specification, yet the test never displays significance at the 5% level.
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∆ ln pricei,t =αi + β11∆ lnHHIi,t + β121 IHHIi,t + β122 I∆lnHHIi,t+

β131∆ lnHHIi,t ∗ IHHIi,t + β132∆ lnHHIi,t ∗ I∆lnHHIi,t+

β14∆ lnHHIi,t ∗ IHHIi,t ∗ I∆lnHHIi,t+

β2∆ ln oilt + β3∆ ln ert + β4 irt + β5∆ ln vixt + β6∆ ln ist + ϵi,t

(4)

The variable pricei,t represents the price of metal i at time t, while HHIi,t denotes

the corresponding country HHI computed at the mine production level. The variables

oilt, ert ,vixt, irt and ist represent the oil price, exchange rate, VIX index, interest rate,

and industries sales,17 respectively, at time t, all independent of i. The constant vector

αi reflects the unobserved effects. The random error terms are denoted by ϵi,t. Model 1

simply examines the effect of a change in HHI on the metal price. In the other models,

two dummy variables are introduced: IHHIi,t takes the value of 0 when HHIi,t is below a

certain threshold and 1 otherwise. Similarly, I∆lnHHIi,t is derived from the absolute value

of ∆ lnHHIi,t. Mathematically, this is expressed as:

IHHIi,t =

0 if HHIi,t < tHHI

1 if HHIi,t ≥ tHHI

with tHHI ∈ [0, 10000] (5)

I∆lnHHIi,t =

0 if |∆ lnHHIi,t| < t∆lnHHI

1 if |∆ lnHHIi,t| ≥ t∆lnHHI

with t∆lnHHI ∈ [0, 1] (6)

Incorporating these variables into Equations (2) to (4) enables differentiation of the

effects of an HHI variation on prices based not only on the HHI level but also on the

magnitude of this variation. In Model 2 we include the interaction dummy variable

IHHIi,t alongside ∆ lnHHIi,t, in order to explore the interplay between the level of the

HHI and the fluctuation of the HHI on price changes. Similarly, within Equation (3),

a corresponding investigation is made by including the dummy variable I∆lnHHIi,t . The

latter represents the absolute value of the annual HHI variation and aims to capture the

impact of pronounced HHI fluctuations. In Model 4 , we take into account the interaction

of the three variables: ∆ lnHHIi,t, IHHIi,t , and I∆lnHHIi,t , which enables us to examine how

a metal price responds to changes in HHI, considering the extent of the variation and

HHI’s level. This specification outlines four regimes as detailed in Table 3.

Moreover, the inclusion of the dummy variable IHHIi,t can provide evidence of the
17We have selected the US Real Manufacturing and Trade Industries Sales as the proxy for industrial

production because it exhibits the highest significance in our model.
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Table 3: Metal price fluctuation regimes delineated in Model 4

IHHIi,t HHI level I∆lnHHIi,t HHI variation Model parameters Regime effect

0 low 0 low β11 βlow,low

0 low 1 high β11 + β132 βlow,high

1 high 0 low β11 + β131 βhigh,low

1 high 1 high β11 + β131 + β132 + β14 βhigh,high

Note: Model 4 delineates four regimes based on the levels and variations of HHI. The effect of HHI vari-
ations on prices for each regime is captured by the parameters of Equation (4) in the ‘Model parameters’
column. The overall name for these parameters is provided in the ‘Regime effect’ column.

existence of a threshold within the HHI values. We check all the possible thresholds by

performing a loop over the values of the variable tHHI, ranging from 0 to 10,000. Differences

in the results based on the value of tHHI could be a positive indication of a threshold. The

chosen value would be the one leading to the most empirically significant results The same

method can be used for the dummy variable I∆lnHHIi,t .18

In this analysis, we did not use a dynamic model because the results did not show

significance when incorporating the lagged endogenous variable (see Appendix G). Sim-

ilarly, the outcomes lack significance when accounting for the lagged variable of interest

(∆ lnHHIi,t−1). However, the issue of endogeneity is not a substantial concern within

the scope of our econometric model due to several factors. Mining, the first stage in the

value chain of metal production, depends on external factors unrelated to the price of

raw materials. These factors include the mining endowment of the producing country

and prevailing environmental and social regulations. Moreover, the start of mine opera-

tions is primarily a government decision driven by sovereignty considerations rather than

economic concerns. In addition, although mining investment is highly correlated with

metal prices, its effect on production and, consequently, on the HHI, may take several

years to materialize. According to IEA (2022a), the average lead time from discovery to

production is about 17 years. The period from discovery through exploration to feasibil-

ity accounts for most of this time, with the remaining period (construction planning and

construction to production) averaging about 4.5 years.

4 Empirical results and discussion

Table 4 presents the results of the four regression models considered, estimated for

the thresholds set at tHHI = 2700 and t∆lnHHI = 0.1. In the first panel regression model,
18Although the Panel Smooth Regression Model specification would have been an interesting alternative

approach at a first sight, it cannot be implemented in our context as demonstrated in Appendix H.
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Table 4: Linear estimation results using the fixed effects regression

Model 1 Model 2 Model 3 Model 4

∆ lnHHIi,t −0.04 0.04 −0.38 −0.75∗∗

(0.09) (0.12) (0.24) (0.31)
∆ ln oilt 0.14∗∗ 0.14∗∗ 0.14∗∗ 0.14∗∗

(0.07) (0.07) (0.06) (0.06)
∆ ln ert −1.70∗∗∗ −1.70∗∗∗ −1.69∗∗∗ −1.71∗∗∗

(0.35) (0.36) (0.35) (0.36)
∆ ln is 0.89∗∗∗ 0.88∗∗∗ 0.89∗∗∗ 0.88∗∗∗

(0.31) (0.32) (0.31) (0.31)
∆ ln vixt 0.02 0.01 0.02 0.02

(0.04) (0.04) (0.04) (0.04)
irt −0.00 −0.00 −0.00 −0.00

(0.01) (0.01) (0.01) (0.01)
IHHIi,t −0.01 −0.00

(0.03) (0.04)
∆ lnHHIi,t ∗ IHHIi,t −0.12 0.70

(0.18) (0.48)
I∆lnHHIi,t −0.03 −0.01

(0.02) (0.04)
∆ lnHHIi,t ∗ I∆lnHHIi,t 0.41 0.95∗∗∗

(0.26) (0.34)
IHHIi,t ∗ I∆lnHHIi,t −0.02

(0.05)
∆ lnHHIi,t ∗ IHHIi,t ∗ I∆lnHHIi,t −0.96∗

(0.52)

Num. obs. 821 821 821 821
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The dependent variable is the log differentiated prices of metals ∆ ln price. The variables ∆ ln oil,
∆ ln er, ∆ ln vix, and ∆ ln is denote the variation rate of oil price, exchange rate, VIX index, and Industries
sales, respectively. ir denotes the US interest rate. ∆ lnHHI is the variation rate of the country metal
production concentration and IHHI and I∆ lnHHI are the dummy variables computed for the threshold
values of tHHI = 2700 and t∆ lnHHI = 0.1. These thresholds are chosen according to the methodology
presented in the previous section, and the decision relies on the results presented in Appendix F. To
provide consistent results, we apply the Newey and West robust covariance estimators, the corresponding
standard errors are in parentheses.

the HHI has no impact on price dynamics. This is also the case in Models 2 and 3.

Furthermore, the interaction terms in both models are not significant; a result which

remains consistent regardless of the considered threshold (see Figure 7 and 8 in Appendix

F).19 The most interesting findings concern Model 4. Indeed, the parameters associated
19We obtain the same results (available upon request to the authors) when testing homogeneity against

the Panel Smooth Transition Regression alternative.
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with ∆ lnHHIi,t, ∆ lnHHIi,t ∗ I∆lnHHIi,t , and ∆ lnHHIi,t ∗ IHHIi,t ∗ I∆lnHHIi,t are statistically

significant at conventional confidence levels. Based on this finding, to examine the impact

of metal production concentration on their prices, it is essential to consider both the

HHI level and the extent of HHI variation. In this context, the estimated value of the

parameter β11 related to the variable ∆ lnHHIi,t is negative (-0.75). This implies that

for HHI values below 2700 and for HHI fluctuations below 10%, HHI fluctuations and

commodity price fluctuations have an inverse relationship. The estimated parameter value

associated with the interaction variable ∆ lnHHIi,t ∗ I∆lnHHIi,t is positive and greater than

the absolute value of the preceding parameter (β11 + β132 = 0.2). This suggests that

when the HHI is below 2700 and the HHI variation is above 10%, the HHI variation has

a positive effect on price variation. The estimated parameter value associated with the

interaction variable ∆ lnHHIi,t ∗ IHHIi,t is also positive but lower than the absolute value

of the first parameter (β11 + β131 = −0.05). However, it is not statistically significant

at conventional confidence levels (pvalue = 14%). Finally, the parameter linked with

the variable ∆ lnHHIi,t ∗ IHHIi,t ∗ I∆lnHHIi,t is significant and the overall effect of HHI

variation when the HHI is above 2700 and the HHI variation exceeds 10% is captured by :

β11+β131+β132+ β14 = −0.06. Therefore, in that case, the HHI variation has a negative

impact on price variation. Additionally, we observe that the effect of HHI on prices is

more pronouced for lower HHI levels, where a 1-point HHI variation results in a price

change of either 0.2 points or 0.75 points, depending on the magnitude of the variation.

Table 5 summarizes our main findings. For relatively low concentrations of mining

production (HHI below 2700) and modest concentration variations (< 10%), an increase

in HHI generally leads to a downward effect on prices. However, when the HHI is low

(< 2700) and concentration variation is large (> 10%), the effect is reversed and a rise in

HHI tends to increase commodity prices. Finally, when both the HHI level and the HHI

variation are high, a negative coefficient is observed, indicating that a decrease in HHI

leads to higher prices.20

We have shown that the effect of HHI variation on commodity prices depends on

the magnitude of the HHI change, irrespective of whether we examine high or low HHI

values. If commodity production is diversified, a small change in HHI (less than 10%)

will negatively impact prices. This can be illustrated by commodities characterized by

low HHI values and high prices, such as precious metals, where a price increase induces

even small producers (e.g., gold) to augment production, leading to a reduction in HHI.
20These results hold for other HHI threshold values (see Figures 9 to 12).The threshold 2700 was chosen

as it is the value that gives the most empirically significant results.

24



Table 5: Effect of HHI fluctuations on prices based on HHI level and magnitude of varia-
tion

HHI level low low high high
HHI variation low high low high
parameter βlow,low βlow,high βhigh,low βhigh,high

effect on price -0.75 0.2 -0.05 -0.06

Note: This table summarizes the results of Model 4, with tHHI = 2700 and t∆ lnHHI = 0.1.

In cases of larger HHI variations, the inverse effect is observed.

Within the scope of our analysis, the dummy variable I∆lnHHIi,t can be considered a

proxy for disturbances or shocks to material production. A minor fluctuation in HHI

indicates the absence of market disruption, while a substantial fluctuation signifies mar-

ket disturbance. A significant HHI shift can be traced back to a sudden drop in major

producers’ production or a decline in output from smaller producers, which magnifies the

dominance of the leading producer. Among the six geopolitical risks to the supply of

materials listed by IRENA, five have the potential to cause production disruptions that

could impact HHI. These risks include resource nationalism, mineral cartels, political in-

stability and social unrest, export restrictions, as well as external shocks (IRENA, 2023).21

Consequently, our findings indicate that a disruption in markets with lower concentration

positively affects prices but has a negative effect in markets with higher concentration.

This latter phenomenon can be illustrated by cases such as antimony and REEs, where a

significant decline in HHI can be attributed to a reduction in production by the dominant

producer, leading to shortages in the market. Under the assumption that a major com-

modity producer can more easily reduce the HHI in the short term by lowering production

than increase it, market participants may view a negative impact as riskier. This is due

to the potential increase in prices resulting from the decisions of a few key players. This

underscores the rationale for avoiding excessively concentrated commodity markets.

Nonetheless, disruption has a four-fold greater impact in less concentrated markets

compared to their more concentrated counterparts in absolute terms. This apparently

paradoxical result can be explained by the stabilizing effect on prices provided by cartels’

market power. Thus, while a decrease in redundancy can make a network more vulnerable

to disruptions, in commodity markets, higher production concentration leads to increased

price stability and reduces the material’s criticality. A notable example is Indonesia, a

major producer of tin, which established a commodity exchange, the Indonesia Commod-
21The final risk type is market manipulation, which refers to phenomena like short squeezing, market

cornering, spoofing, and insider trading. However, these risks do not affect production and are thus not
accounted for in our models.
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ity and Derivatives Exchange, in 2013 with the aim of stabilizing the price of tin (Pitron,

2018). Thus, a higher degree of market concentration can lead to greater price stability. A

comparable situation can be observed for other raw materials like oil, where OPEC strives

to maintain prices at a fair level, a phenomenon highlighted in the literature (Brémond

et al., 2012; Pescatori and Nazer, 2022).

5 Conclusion

The Herfindahl–Hirschman Index applied to world production of a given commodity

by country is a fundamental component of most raw material criticality assessments.

This operates on the premise that analyzing mineral supply concentration is crucial since

increased concentration heightens the potential risk of supply disruption.

In the present paper, we rely on a large panel of 33 metals to analyze the influence of

HHI on market prices. Interestingly, our results challenge the commonly held assumption

since they indicate that the variation of HHI has more impact on prices at lower HHI levels.

Furthermore, our findings question the existence of a threshold that clearly distinguishes

high-risk markets from less risky ones based on their concentration levels. Hence, using

the HHI as a supply risk indicator, especially in conjunction with a threshold, may result

in underestimating risks in less concentrated markets. Additionally, our paper highlights

the importance of assessing the potential for fluctuations in production concentration,

since it directly influences the impact of HHI on prices. This variable, which poses a

challenge to measurement, has yet to be included in studies on criticality.

Our paper can be extended in several ways. First, it would be relevant to weight the

HHI measured at the country level by the country’s level of governance, to account for

institutional quality considerations. Second, our study does not consider the recycling of

metals, as it assesses concentration at the mining level. Although recycling rates for many

metals are still low, recycling has the potential to significantly affect the concentration of

metal production (at the refining stage) and provide a measure of sovereignty over these

materials for countries without significant mining resources. Therefore, it would be in-

structive to replicate our study with HHI values calculated at the refining stage, allowing

for the inclusion of recycling data when assessing the impact of concentration on commod-

ity prices. Finally, since all world production may not be available for consumption by

any country (Thomas et al., 2022), it would be interesting to consider market availability

instead of production concentration as a measure of supply diversity. These avenues are

left for future research.
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Appendix A HHI calculation

A.1 USGS ‘Other Country’ category

In the USGS reporting, for some raw materials, minor producers are aggregated into

the ‘Other Country’ category, resulting in a combined production denoted as pother. In

this case, we assume that each country within the ‘Other Country’ category produces less

than the country with the lowest production (pmin) among the available data. To account

for this, we introduce n fictitious countries, each hypothetically producing pmin

2
of the

commodity. The value of n is determined as the floor of the ratio pother/pmin
2

. Employing

the previously mentioned formula, we calculate what we refer to as the ‘HHI Fictitious

Country Adjustment’.

Table 6: HHI statistics with and without HHI adjustment

HHI Adjustment HHI wo Adjustment HHI w Adjustment HHI Adjustment %

mean 11.223 3075.467 3086.690 7.520
std 29.076 2152.209 2146.427 2.119
min 0.000 497.691 517.388 0
25% 0.015 1518.263 1530.770 0.003
50% 1.348 2382.732 2391.428 0.048
75% 7.828 3917.357 3917.382 0.440
max 321.394 9776.956 9776.962 22.022

Note:
- HHI wo Adjustment is the result of the calculation without considering the ‘Other Country’ cate-

gory.
- HHI w Adjustment is the sum of HHI wo Adjustment and HHI Adjustment.
- HHI Adjustment % represents the proportion of the HHI contributed by the fictitious country

adjustment.

The ‘HHI Fictitious Country Adjustment’ has a minimal effect on the overall HHI

calculation, with an average adjustment value of 11.2 and a standard deviation of 29

observed across all materials and throughout the entire period (Table 6). Despite its

seemingly negligible impact, the adjustment retains importance, particularly for certain

metals. Specifically, in cases where the ‘Other Country’ category significantly contributes

to the total production, the fictitious country adjustment can have a more notable influ-

ence on the HHI calculation. Accurately accounting for these smaller producers through

the introduction of fictitious countries becomes essential to preserve the integrity of the

HHI analysis and ensure a comprehensive representation of market concentration. More-

over, in the case of comparable data between the USGS and the BGS, the relative differ-

ence between the datasets is observed to be lower when considering the inclusion of the

‘HHI Fictitious Country Adjustment’, as depicted in Table 7.
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Table 7: Relative differences with and without adjustment

Relative Difference wo Adjustment Relative Difference w Adjustment

mean 10.179 9.657
std 11.739 11.277
min 0.017 0.012
25% 2.609 2.424
50% 6.637 6.022
75% 13.883 13.277
max 143.370 142.242

Note: The Relative Difference represents the percentage difference between USGS and BGS data with
and without considering the HHI Adjustment. Lower relative differences indicate better alignment and
comparability between the datasets when the HHI Adjustment is considered

This suggests that accounting for the fictitious country addition in the HHI calculation

leads to a reduced disparity between USGS and BGS data, enhancing the comparability

and alignment of their results. In this paper, we will refer to the Herfindahl-Hirschman

Index calculation that incorporates the ‘HHI Fictitious Country Adjustment’ simply as

HHI.

A.2 Final data

In total, we obtained HHI data for 63 metals and minerals at various stages of their

value chain. Most of these data points represent market concentration at the extraction

level, but for certain metals, we also have data on concentration at the refining or smelting

stages. By considering both the raw material and the stage of the value chain, we have a

total of 69 HHI series. The distribution of these values between our two sources is shown

in Table 8.

A.3 Robustness checks

The calculations conducted in Table 7 serve as a preliminary assessment of the robust-

ness of the obtained results by comparing the HHIs obtained from the USGS and BGS

sources. Additionally, a third source, the World Mining Data (WMD), an annual publi-

cation of the Federal Ministry Republic of Austria, is used. This publication reports the

productions of 65 minerals and computes the HHI values between 2013 and 2021, utilizing

data from various sources, including the USGS. We analyze the difference between the

HHIs obtained solely from USGS and BGS data and those from WMD over this period.

On average, the difference is approximately 10%, indicating that the calculations based

solely on USGS or BGS data are relatively reliable (Table 9).
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Table 8: Data source by material and stage in the supply chain

Stage USGS BGS

Mine REE, antimony, asbestos, barite, bauxite, ben-
tonite, beryllium, boron, chromium, cobalt, cop-
per, diatomite, feldspar, fluorspar gallium gold,
graphite, gypsum, iron, lead, lithium, magnesite,
magnesium, manganese, mercury, molybdenum,
nickel, niobium, palladium, perlite, phosphate-rock,
platinum, potash, rhenium, salt, silicon, silver,
strontium, sulfur, talc, tantalum, tin, titanium,
tungsten, vanadium, vermiculite, yttrium, zinc.

arsenic, bentonite, gal-
lium, germanium kaolin
sillimanite, uranium, wol-
lastonite zirconium.

Smelting aluminum, copper, tin.
Refinery cadmium, indium, tellurium. alumina, cobalt, copper,

lead, nickel, selenium, tel-
lurium.

Note: Certain metals, namely bentonite, gallium, and tellurium, appear in both the ‘USGS’ and ‘BGS’
columns. This occurrence is due to our data collection process, where for some years, we consider BGS
data when USGS data are either unavailable or deemed non-exploitable.

Table 9: Relative HHI differences with WMD data

Relative difference Relative difference abs

mean −0.019 0.111
std 0.184 0.148
min −1.098 0
25% −0.064 0.024
50% 0.004 0.065
75% 0.067 0.136
max 0.344 1.098

Note: The ‘Relative difference’ represents the percentage difference between final and WMD data.
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Appendix B Price benchmark

Table 10: Relative price differences between USGS and other sources

Metal Source price diff ∆ ln price diff

REE Dysprosium Metal Dy/ TREM=99% Dom. - SMM −0.303 0.014
aluminum Aluminium 99.7% Cash U$/MT - LME 0.084 0.090
antimony Antimony 99.65% CIF NWE U$/MT- Refinitiv 0.046 0.008
arsenic Arsenic Metal =99.5% Domestic – SMM 0.168 0.349
bauxite Bauxite Australia Al:48-50,Si:6-7- SMM 0.740 1.669
bismuth China Bismuth Ingot 99.99% - SMM 0.093 −0.147
cadmium Cadmium 99.99% CIF NWE U$/LB – Refinitiv −0.120 0.610
chromium Chromium =99.2%, Coarse Particle - SMM −36.084 −0.068
cobalt Cobalt Cash - LME 0.076 0.096
copper Copper Grade A Cash U$/MT - LME 0.031 −0.046
gallium Gallium Ingots CIF NWE U$/KG - Refinitiv 0.356 −0.315
germanium Germanium 50ohm CIF NWE U$/KG- Refinitiv 0.053 −0.500
gold Gold Spot - LME 0.007 0.025
graphite Graph spherical 99.9 FOB China - Fastmarket MB −1.039 0.758
indium Indium CIF NWE U$/KG - Refinitiv 0.182 0.460
lead Lead Cash U$/MT - LME 0.240 −3.783
lithium Lithium Metal =99%, Battery Grade - SMM 0.036 0.948
magnesium Magnesium Ingot Shanghai-Wenxi - SMM 0.495 1.310
manganese EMM =99.7% Major Prodctn Region – SMM −422.723 −0.322
mercury China Mercury Metal 99.999% EXW - Bloomberg 0.998 0.216
molybdenum Molybdenum Cash Comp U$/MT - LME 0.051 1.125
nickel Nickel Cash U$/MT - LME −0.001 0.008
selenium Selenium CIF NWE U$/LB - Refinitiv 0.107 −0.449
silicon Silicon Lumps CIF NWE U$/MT- Refinitiv −0.016 0.435
silver Silver, Handy&Harman (NY) U$/Troy OZ - Handy&Harman −0.096 0.066
strontium China Strontium Metal 99% EXW - Bloomberg −76.269 0.681
tantalum China Tantalum Pentoxide 99.5% EXW - Bloomberg −0.163 −1.019
tellurium Tellurium =99.99% Domestic - SMM −0.131 0.149
tin Tin 99.85% Cash U$/MT - LME 0.038 0.130
tungsten Tungsten Ferro CIF NWE U$/KG- Refinitiv −0.108 1.094
yttrium China Yttrium Metal 99.9% - Bloomberg 0.093 0.030
zinc SHG Zinc 99.995% Cash U$/MT - LME 0.074 −0.280
zirconium China Zirconium Carbonate ZrHfO2 40% EXW - Bloomberg −1.533 −1.889

Note: ‘price diff’ and ‘∆ ln price diff’ columns denote the average relative difference between the metal
price data sourced from the USGS and the metal price data obtained from the source indicated in the
‘Source’ column. The differences are calculated respectively on the raw level data and after applying
logarithmic differentiation.
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Appendix C Descriptive statistics

Table 11: Descriptive statistics of panel data

HHI ∆ lnHHI ∆ ln price

Metal mean std min max mean std min max mean std min max

REE 7061 2041 3409 9559 0.004 0.129 −0.418 0.349 0.087 0.439 −0.850 1.229
antimony 6479 1428 3547 8359 −0.018 0.092 −0.229 0.139 0.049 0.317 −0.468 0.834
arsenic 3768 1086 1636 5116 0.028 0.167 −0.360 0.620 −0.009 0.291 −0.535 0.562
bauxite 1795 123 1520 1997 −0.001 0.074 −0.210 0.160 −0.016 0.093 −0.213 0.146
beryllium 6073 1576 3906 8716 0.012 0.141 −0.378 0.458 0.027 0.141 −0.266 0.376
chromium 2560 249 2102 2982 0.008 0.107 −0.149 0.252 −0.007 0.248 −0.404 0.721
cobalt 2590 1207 1361 5268 0.046 0.116 −0.185 0.271 −0.029 0.404 −0.810 0.788
copper 1372 173 1105 1663 0.000 0.054 −0.073 0.145 0.035 0.223 −0.324 0.564
germanium 6898 1587 3321 8923 0.012 0.149 −0.388 0.369 −0.018 0.282 −0.513 0.430
gold 712 177 517 1150 −0.029 0.036 −0.088 0.064 0.035 0.127 −0.182 0.275
graphite 4105 1382 1530 6292 0.032 0.194 −0.531 0.436 0.007 0.177 −0.344 0.463
iron 1888 144 1592 2049 0.014 0.042 −0.060 0.072 0.036 0.153 −0.149 0.394
lead 1941 673 894 3195 0.032 0.082 −0.135 0.159 0.043 0.181 −0.320 0.503
lithium 2785 585 1880 4263 0.018 0.127 −0.208 0.275 0.019 0.234 −0.545 0.529
magnesium 5602 2386 1820 8138 0.039 0.105 −0.121 0.327 −0.002 0.180 −0.311 0.446
manganese 1431 245 1132 2091 0.018 0.067 −0.093 0.219 0.007 0.341 −0.421 1.328
mercury 4940 2252 1718 8533 0.053 0.261 −0.399 0.758 0.032 0.321 −0.518 0.829
molybdenum 2418 241 1967 2846 −0.007 0.074 −0.115 0.227 0.005 0.436 −0.888 1.122
nickel 1157 204 909 1839 0.012 0.106 −0.209 0.246 0.027 0.292 −0.605 0.466
niobium 8046 418 7214 9025 0.004 0.050 −0.122 0.103 0.000 0.205 −0.257 0.253
palladium 3426 311 2932 4017 −0.004 0.044 −0.097 0.059 0.084 0.309 −0.598 0.677
platinum 5866 571 4450 6796 −0.005 0.079 −0.191 0.232 0.016 0.147 −0.275 0.334
rhenium 3134 566 2006 4243 −0.008 0.130 −0.350 0.200 −0.027 0.385 −0.479 1.605
silicon 3293 1486 1125 4997 0.057 0.111 −0.143 0.369 0.028 0.189 −0.408 0.452
silver 952 122 751 1152 0.015 0.058 −0.111 0.122 0.037 0.194 −0.283 0.526
strontium 3132 505 2548 4210 0.007 0.103 −0.251 0.160 0.019 0.207 −0.306 0.802
tantalum 3435 1428 1474 6175 −0.030 0.253 −0.601 0.699 0.015 0.554 −1.810 1.834
tin 2227 450 1508 2983 0.005 0.103 −0.228 0.218 0.046 0.236 −0.304 0.636
tungsten 6456 741 4526 7579 0.017 0.075 −0.135 0.213 0.060 0.268 −0.372 0.979
vanadium 3684 474 3203 4950 0.015 0.070 −0.183 0.193 0.031 0.495 −0.915 0.999
yttrium 8947 1188 4921 9777 0.038 0.110 −0.024 0.455 −0.035 0.334 −0.517 1.080
zinc 1292 290 856 1769 0.020 0.062 −0.112 0.125 0.021 0.249 −0.589 0.830
zirconium 2806 289 2120 3361 −0.013 0.071 −0.231 0.138 0.033 0.312 −0.948 1.025

Note: This table presents descriptive statistics for each individual in the panel. The panel consists
solely of metals and metalloids from the materials described in Figure 1, except for two: bauxite, a
mineral containing alumina and thus representing aluminum (a metal), and graphite, which, although not
classified as a metal, is essential to battery technologies (for which market data is available). Additionally,
the panel excludes four metals, namely boron, uranium, gallium, and titanium, due to limited data
availability.
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Appendix D Sources

Table 12: Sources

Variable Source

Metal and mineral HHI USGS and BGS
Metal price USGS
BRENT crude Oil price FRED - code: POILBREUSDM
Broad US dollar real effective rate FRED – code: RTWEXBGS
Industries sales FRED - code: CMRMTSPL
Baltic dry index Bloomberg
US LIBOR FRED - code: IR3TIB01USM156N
VIX Bloomberg
US consumer price index FRED - code: CPIAUCSL

Appendix E Second-generation stationarity test

Table 13: Panel unit root tests – p values

Variable With linear trend With constant Without constant

ln price 0.17 0.38 0.77
∆ ln price 1.7× 10−5 1.2× 10−6 1.8× 10−8

ln(HHI) 0.71 0.09 1
∆ ln(HHI) 2.3× 10−73 7.19× 10−83 1.95× 10−116

Note: p-values of the second-generation unit root test for panel data proposed by Demetrescu et al.
(2006) applied to price and HHI series. The test is based on the p values from N independent ADF tests.
The number of lags has been set according to AIC. The null hypothesis is the unit root. The columns
correspond to the deterministic kernel used in the test
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Appendix F Empirical results

Figure 7: Parameter estimation of Equation (2) based on dummy variable threshold
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Figure 8: Parameter estimation of Equation (3) based on dummy variable threshold
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Figure 9: Parameter estimation for variable ∆ lnHHI in Equation (4) based on dummy
variable thresholds.
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Note: The rows display the threshold values applied to the IHHI variable, while the columns represent the
threshold values applied to the I∆ lnHHI variable. Each cell signifies the estimated parameter of ∆ lnHHI
variable in the random panel regression for the corresponding thresholds. The color of the cell indicates
the level of significance: blue indicates 10% significance, green indicates 5% significance, and yellow
indicates 1% significance.
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Figure 10: Parameter estimation for variable ∆ lnHHI ∗ IHHI in Equation (4) based on
dummy variable thresholds.
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Note: The rows display the threshold values applied to the IHHI variable, while the columns represent
the threshold values applied to the I∆ lnHHI variable. Each cell signifies the estimated parameter of
∆ lnHHI ∗ IHHI variable in the random panel regression for the corresponding thresholds. The color of
the cell indicates the level of significance: blue indicates 10% significance, green indicates 5% significance,
and yellow indicates 1% significance.
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Figure 11: Parameter estimation for variable ∆ lnHHI ∗ I∆lnHHI in Equation (4) based on
dummy variable thresholds.
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Note: The rows display the threshold values applied to the IHHI variable, while the columns represent
the threshold values applied to the I∆ lnHHI variable. Each cell signifies the estimated parameter of
∆ lnHHI∗ I∆ lnHHI variable in the random panel regression for the corresponding thresholds. The color of
the cell indicates the level of significance: blue indicates 10% significance, green indicates 5% significance,
and yellow indicates 1% significance.
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Figure 12: Parameter estimation for variable ∆ lnHHI ∗ IHHI ∗ I∆lnHHI in Equation (4)
based on dummy variable thresholds.
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Note: The rows display the threshold values applied to the IHHI variable, while the columns represent
the threshold values applied to the I∆ lnHHI variable. Each cell signifies the estimated parameter of
∆ lnHHI ∗ IHHI ∗ I∆ lnHHI variable in the random panel regression for the corresponding thresholds. The
color of the cell indicates the level of significance: blue indicates 10% significance, green indicates 5%
significance, and yellow indicates 1% significance.
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Appendix G Robustness tests

Table 14: Estimations - Robustness tests

difference GMM individual fixed effects

Model 1 lag Model 4 lag Model wo CV Model WTI

∆ ln pricei,t−1 0.01 0.02
(0.06) (0.06)

∆ lnHHIi,t −0.02 −1.04∗∗∗ −0.54 −0.76∗∗

(0.08) (0.39) (0.35) (0.31)
∆ lnHHIi,t−1 0.10 0.10

(0.08) (0.08)
∆ ln oilt 0.17∗∗ 0.17∗∗ 0.11

(0.07) (0.07) (0.07)
∆ ln ert −1.43∗∗∗ −1.54∗∗∗ −1.87∗∗∗

(0.37) (0.36) (0.37)
∆ ln is 1.05∗∗∗ 1.03∗∗∗ 0.92∗∗∗

(0.35) (0.33) (0.31)
∆ ln vixt 0.03 0.04 0.01

(0.04) (0.04) (0.04)
irt −0.00 −0.00 0.00

(0.01) (0.01) (0.00)
IHHIi,t −0.08 −0.00 0.00

(0.07) (0.04) (0.04)
∆ lnHHIi,t ∗ IHHIi,t 1.14∗∗ 0.65 0.71

(0.46) (0.52) (0.48)
I∆lnHHIi,t −0.00 −0.03 −0.01

(0.06) (0.04) (0.04)
∆ lnHHIi,t ∗ I∆lnHHIi,t 1.30∗∗∗ 0.85∗∗ 0.95∗∗∗

(0.42) (0.38) (0.34)
IHHIi,t ∗ I∆lnHHIi,t −0.02 −0.01 −0.02

(0.07) (0.05) (0.05)
∆ lnHHIi,t ∗ IHHIi,t ∗ I∆lnHHIi,t −1.39∗∗∗ −1.06∗ −0.97∗

(0.50) (0.56) (0.52)

Num. obs. 898 898 821 821
Num. obs. used 753 753
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The dependent variable is the log differentiated prices of metals ∆ ln price. The variables ∆ ln oil,
∆ ln er, ∆ ln vix, and ∆ ln is denotes the variation rate of oil price, exchange rate, VIX index, and
Industries sales, respectively. ir denotes the US interest rate. ∆ lnHHI denotes the variation rate of the
country metal production concentration, and IHHI and I∆ lnHHI are the dummy variables computed for
the threshold values of tHHI = 2700 and t∆ lnHHI = 0.1. Model 1 lag and Model 4 lag correspond to the
dynamic form of Model 1 and Model 4, respectively. Model wo CV corresponds to Model 4 without the
control variables, and Model WTI uses the WTI price benchmark for oil instead of Brent in Model 4. To
provide consistent results, we apply the Newey and West robust covariance estimators for the fixed effect
specification, the corresponding standard errors are in parentheses.
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Table 15: Effect of HHI fluctuations on prices based on HHI level and magnitude of
variation - Robustness tests

βlow,low βlow,high βhigh,low βhigh,high

Model 4 lag -1.11 0.31 0.08 -0.05
Model wo CV -0.54 0.32 0.11 -0.10
Model WTI -0.76 0.20 -0.04 -0.05

Note: This table corresponds to Table 5 for the models presented in Table 14.
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Appendix H Panel Smooth Transition Regression (PSTR)

We first considered the possibility of using PSTR models to investigate the likely non-

linear relationship between metal prices and HHI variations. However, our research shows

statistical significance only with the inclusion of two threshold variables—the HHI level

and the magnitude of HHI variations—which is not consistent with a PSTR specification,

as further illustrated.

Within the PSTR framework (Gonzalez, A. et al., 2017), the additive model can

account for two different transition variables. The model specification is presented as

follows:

yit = θ0 xit + θ1 x
′
it G1(s1,it; γ1, c1) + θ2 x

′
it G2(s2,it; γ2, c2)

where :

- yit is the dependent variable

- xit is the vector of explanatory variables

- x′
it is the vector of explanatory variables in the non-linear part

- sk,it is an observable transition variable

- Gk(sk,it; γk, ck) is a transition function bounded between zero and one, where γk is

the slope parameter indicating the speed of transition between the extreme values,

whereas the threshold parameter ck points to where the transition takes place.

If we apply this specification to our data, s1,it corresponds to HHIit and s2,it to |∆ lnHHIi,t|.
Then, our dummy variables correspond to the extreme values of the transition functions

G1(s1,it; γ1, c1) and G2(s2,it; γ2, c2).

Table 16: Parameter correspondence with the PSTR additive model

IHHIi,t/G1 I∆lnHHIi,t /G2 Regime parameter Article parameters PSTR parameters

0 0 β1,low,low β11 θ0
0 1 β1,low,high β11 + β132 θ1
1 0 β1,high,low β11 + β131 θ2
1 1 β1,high,high β11 + β131 + β132 + β14 θ1 + θ2

Hence, through correspondence, employing the additive model necessitates that the

model satisfies the condition:

β11 + β132 + β11 + β131 = β11 + β131 + β132 + β14

β11 = β14
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Conversely, the model with interaction variables developed in the paper gives:

β11 ̸= β14

Using the additive model does not offer sufficient degrees of freedom, making it unsuitable

for our analysis.

This problem of multiple regimes has been addressed in a time series context in van

Dijk and Franses (1999). The authors develop a Multiple Regime Smooth Transition

AutoRegressive (MRSTAR) model that allows the definition of a four-regime model.22

yt =[ϕ1xt(1−G1(s1,t; γ1, c1)) + ϕ2xtG1(s1,t; γ1, c1)][1−G2(s2,t; γ2, c2)]

+ [ϕ3xt(1−G1(s1,t; γ1, c1)) + ϕ4xtG1(s1,t; γ1, c1)]G2(s2,t; γ2, c2)

Table 17: Parameter correspondence with the MRSTAR additive model

IHHIi,t/G1 I∆lnHHIi,t /G2 Regime parameter Article parameters MRSTAR parameters

0 0 β1,low,low β11 ϕ1

0 1 β1,low,high β11 + β132 ϕ2 − ϕ1

1 0 β1,high,low β11 + β131 ϕ3 − ϕ1

1 1 β1,high,high β11 + β131 + β132 + β14 ϕ4 − ϕ1

The MRSTAR model could be adapted to our problem, though it has not yet been

extended to panel data.

22Obtained by ‘encapsulating’ two different two-regime LSTAR models
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