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Abstract

This article examines the persistent impact of zombie papers, i.e., retracted or destined-

for-retraction publications that continue to in�uence academic discourse through ongoing

citations despite their discredited status. Relying on a large sample of 25,480 retracted

research articles over the 1923-2023 period, we introduce an original methodological frame-

work combining survival analysis with the innovative Zombie Population Decay Dynamics

(ZPDD) model, a theoretical approach designed to simulate the long-term persistence and

decay of zombie papers under various editorial interventions. We identify key factors af-

fecting retraction timing and zombie paper persistence. Serious misconduct, such as data

fabrication, signi�cantly delays retractions, while geographic disparities exacerbate in-

e�ciencies, with certain regions facing prolonged processes. Journal practices, such as

open-access versus subscription-based models, also in�uence retraction dynamics, with

subscription-based journals exhibiting faster corrective actions. Developing a mathemati-

cal optimization framework derived from our ZPDD model, we determine the most e�ec-

tive mix of editorial policies while balancing practical feasibility and intervention intensity.

The �ndings highlight data transparency as the most impactful intervention for reducing

zombie paper persistence, followed by enhanced plagiarism detection and reproducibility

measures, such as pre-registration and replication studies. Overall, a well-balanced combi-

nation of targeted editorial interventions can substantially accelerate retraction processes

and limit the detrimental in�uence of zombie papers on academic discourse.
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1 Introduction

Scienti�c progress depends on the reliability and validity of published research. However, the

rise in retractions due to scienti�c misconduct or honest errors threatens the integrity of the

academia. Retractions correct the scienti�c record but often come too late to prevent signi�-

cant damage. Flawed knowledge from retracted studies can undermine the foundations of new

research (Furman et al. (2012)), distort scholarly understanding (Necker (2014)), and a�ect

the rate and direction of scienti�c exploration, shifting researchers' positions in intellectual

space (Azoulay et al. (2015)). Alarmingly, erroneous �ndings can persist in academic discourse

for years, compounding their detrimental e�ects (Houghton (2022)).

The underlying causes of research misconduct are deeply rooted in systemic academic pres-

sures. The �publish or perish� culture compels some researchers to prioritize productivity over

integrity, leading to data fabrication, falsi�cation, and other forms of malpractice (see Karabag

& Berggren (2012), Necker (2016), Cox et al. (2018), and Le Maux et al. (2019)). Although an

increasing number of top-ranked academic journals are beginning to publish replication stud-

ies, the majority still do not, which reduces the risk of exposure and lowers the cost of engaging

in fraudulent research (Anderson et al. (2008), Bergh et al. (2017), Pérignon et al. (2024)).

Despite the seriousness of these challenges, quantifying scienti�c misbehavior is di�cult due

to researchers' strong incentives to hide misconduct (Necker (2014)). Although retractions

act as a vital self-corrective mechanism, their timing is critical:1 prolonged delays allow false

science to proliferate, in�uencing citations and future research direction (Fang et al. (2012),

Azoulay et al. (2015)). Yet, retraction frequency re�ects detection e�ciency more than the

true prevalence of misconduct (Hesselmann et al. (2017)), underscoring the need for improved

systems.

Among the most insidious consequences of delayed retractions is the phenomenon of �zombie

papers�, i.e., the fact that publications that have been retracted or warrant retraction yet

continue to in�uence academic discourse through ongoing citations, despite their discredited

status.2 These papers challenge the core function of science as a cumulative endeavor and raise

questions about the e�ciency of editorial and institutional safeguards. Existing literature has

identi�ed critical factors a�ecting retraction dynamics, including journal characteristics, geo-

graphical disparities, and misconduct types (Fang et al. (2012), Horbach & Hal�man (2019)).

However, gaps remain in understanding how these factors interact over time and how editorial

policies could be optimized to mitigate the persistence of zombie papers.

The present study tackles these issues and addresses four key gaps in the literature. First, it

provides a detailed empirical analysis of the factors in�uencing retraction timing, including

1According to the Committee on Publication Ethics (COPE) guidelines (see COPE (2022)), retractions

should be initiated for data fabrication, duplication, plagiarism, and ethical violations.
2A striking example is the article by Mehra et al. (2020), published in May 2020 and retracted in June

2020, which had been cited 1,872 times as of February 6, 2025.
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journal characteristics, geographical disparities, and the type of misconduct. Our approach

integrates multiple research domains, o�ering a global perspective beyond the scope of prior

discipline-speci�c studies. Second, we quantify the marginal e�ects of these characteristics

on retraction times, contextualizing their impact on academic publishing. Third, building

on these insights, we develop a theoretical model, the Zombie Population Decay Dynamics

(ZPDD), to simulate the long-term e�ects of various editorial policy interventions on zombies.

Finally, we derive the optimal mix of policy interventions to minimize the persistence of zom-

bie papers, balancing e�ciency with feasibility.

The main innovation of this paper lies in its integration of survival analysis and theoretical

modeling to examine the interplay between retraction timing and the persistence of zombie

papers. By emphasizing the importance of timely retractions, we highlight the critical role

of institutional e�ciency in maintaining the integrity of the scienti�c record. Additionally,

we develop a mathematical optimization framework derived from our ZPDD model to deter-

mine the most e�ective combination of editorial policies while balancing practical feasibility

and intervention intensity. In doing so, we o�er actionable policy recommendations to miti-

gate the detrimental e�ects of false science. In particular, to the best of our knowledge, our

study is the �rst to develop a theoretical model of zombie paper dynamics grounded in empiri-

cal facts, enabling the simulation of targeted editorial policy interventions and their outcomes.

Relying on a large sample of 25,480 retracted research articles over the 1923-2023 period and

using survival analysis and theoretical modeling, we identify key factors in�uencing retraction

timing, including journal domains, geographical and institutional disparities, and reasons for

retraction. Speci�cally, our main results can be summarized as follows. We �nd an average

retraction time of approximately 1,045 days, with signi�cant variability across disciplines and

regions�systemic challenges characterizing certain regions leading to prolonged retraction

times. The type of misconduct signi�cantly in�uences retraction timing, with serious issues

such as data falsi�cation causing longer delays. By introducing the ZPDD model, we simulate

the long-term impact of editorial policies, highlighting the potential of targeted measures such

as enhanced data transparency and improved results' replication to reduce the persistence of

zombie papers and the systemic propagation of erroneous knowledge. Speci�cally, by devel-

oping a mathematical optimization framework based on our ZPDD model, we identify the

optimal combination of editorial policies that e�ectively balance practical feasibility and in-

tervention intensity. Our �ndings reveal that data transparency is the most e�ective strategy

for minimizing the persistence of zombie papers, followed by enhanced plagiarism detection

and reproducibility initiatives, such as pre-registration and replication studies. Ultimately, a

carefully calibrated mix of targeted editorial interventions can signi�cantly expedite the re-

traction process and mitigate the harmful impact of zombie papers on scholarly discourse.

The remainder of this paper is organized as follows. Section 2 describes the data and method-

ology, including survival analysis models. Section 3 presents the empirical �ndings, emphasiz-

ing factors in�uencing retraction timing and zombie paper persistence. Section 4 develops the
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ZPDD model to simulate editorial interventions and derive an optimal policy mix. Section 5

provides policy recommendations to enhance research integrity and minimize the persistence

of zombie papers. Finally, Section 6 concludes the paper.

2 Data and empirical methodology: Hunting the undead

This section presents the database of retracted papers and key computed variables, highlights

the characteristics of these retractions, and discusses preliminary �ndings. It then introduces

the empirical models used in the survival analysis to examine the main factors in�uencing the

time to retraction of zombie papers.

2.1 Zombies' database

To analyze zombie papers, we use the Retraction Watch Database (RWD), a comprehensive

online repository of retracted scienti�c publications across disciplines. Covering the period

from 1923 to 2023, the database includes over 48,824 records of retractions, spanning research

articles, case studies, meta-analyses, books, chapters, and conference abstracts. Our analysis

focuses on 25,480 retracted research articles, the most prominent form of academic commu-

nication, with each record's retraction status veri�ed using Google Scholar. Metadata such

as titles, journal names, publication and retraction dates, publishers, authors, institutions,

countries, and retraction reasons were collected via the Crossref API. These data facilitate

the construction of key variables, including time to retraction and explanatory factors such

as journal domains, geographical zones, and retraction causes (see Table A.1 in Appendix A).

The RWD's utility is further underscored by its ability to capture the dynamics of retrac-

tion dissemination through uno�cial information channels, such as blogs and social media.

As noted by Xu et al. (2023), these channels often achieve a broader reach than traditional,

o�cial sources, serving as intermediaries between journals and researchers. Uno�cial chan-

nels, de�ned as platforms where content is not directly released by authorities, have several

advantages: they aggregate information from multiple sources (Bushee et al. (2010)), provide

enriched details about articles and authors (Drake et al. (2014)), and create new insights

about scienti�c misconduct. By complementing traditional sources with uno�cial channels,

the RWD ensures a comprehensive and nuanced perspective on retraction events, making it

an ideal resource for our study.

From the original database, we constructed our set of endogenous (time to retraction) and

exogenous variables. To measure the time to retraction of zombie papers, we computed the

di�erence in days between the retraction date and the publication date for each research article

over the period from 1923 to 2023. As illustrated in Figure 1, the graph provides a snapshot

of the time to retraction across publication years, showing a pronounced initial peak followed

by a general decline and stabilization over the years. This trend suggests an improvement

in retraction practices and/or possibly changes in publication standards over time. Table 1

presents descriptive statistics of retraction times, showing that the average time to retraction

is approximately 1,045 days (nearly 3 years), but there is signi�cant variability, with a stan-
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Figure 1: Average time to retraction by publication year

Note: This �gure displays the average time to retraction (in days) for each year of publication, highlighting

temporal trends in retraction speed.

dard deviation of 1,225 days. While 25% of papers are retracted within 285 days, 75% are

retracted within 1,387 days, and the median retraction time is 640 days, meaning that half

of the papers are retracted within two years. However, some extreme cases take much longer,

with the longest retraction occurring 81 years after publication. The high kurtosis (28.4) and

positive skewness (3.3) indicate a distribution with many quick retractions but a long tail of

outliers with signi�cantly delayed retractions (see also Azoulay et al. (2015)). The time to

retraction is critical in research development, as delays in retractions can have detrimental

e�ects on the direction of scienti�c progress. Papers that are later retracted may continue to

be cited, leading to the perpetuation of incorrect or unreliable �ndings, which can mislead

future research e�orts and waste valuable resources (Fang et al. (2012) and Azoulay et al.

(2015)).

To analyze the intrinsic factors related to retraction times of zombie papers, several explana-

tory variables were created based on the original database. The construction of these variables

is consistent with previous literature that highlights the importance of publication character-

istics, author demographics, journal domains, and reasons for retraction in in�uencing retrac-

tion times (Fang et al. (2012), Azoulay et al. (2015), and Horbach & Hal�man (2019)). For

instance, the publication year has been shown to correlate with retraction timing due to in-
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Table 1: Descriptive statistics of retraction times for zombie papers

Note: This table presents basic descriptive statistics of retraction times for zombie papers.

creasing scrutiny over time and evolving publication standards (Steen (2011) and Fang et al.

(2012)). This growing scrutiny over time justi�es the inclusion of publication year as a key

variable in our analysis of retraction times.

For journal characteristics, we created several dummy variables capturing the domain of each

journal. This approach is supported by research showing that retraction rates and times

can vary signi�cantly across scienti�c disciplines (Budd et al. (1998)). Using resources from

both Web of Science and Scimago, we matched journals with key domains, covering 24 areas,

each represented by a dummy variable (see Table A.2 in Appendix A for the list of domains

and occurrences). Some of the major domains include �Medicine� (17.1%), �Biochemistry,

Genetics, and Molecular Biology� (19.6%), and �Computer Science, Data Science, Information

Systems, and Robotics� (11.1%). Other areas, such as �Geography� (0.02%) and �Political

Science� (0.2%), have signi�cantly fewer occurrences, re�ecting the diversity in journal domain

representation. The inclusion of these areas allows us to capture domain-speci�c e�ects on

retraction rates and patterns.3 We thus de�ne the following variable:

Areai =

{
1 if the zombie paper z is published by journals in domain i for i = 1, ..., 24

0 otherwise.

where Areai denotes the domain i among the list of journal domains reported in Table A.2 in

Appendix A. As the relationship between time to retraction and journal impact factor is mod-

est, we decided not to consider impact factor as an exogenous variable (see Fang et al. (2012)).

For country characteristics of the authors, prior studies have demonstrated that geographic

location can in�uence retraction outcomes, re�ecting di�erences in research oversight, insti-

tutional practices, and integrity (Horbach & Hal�man (2019)). Using Web of Science, we

identi�ed the corresponding author (or the �rst author) and extracted the country location

3As a robustness check, we also applied clustering methods to con�rm our domain classi�cation.
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of their institution as referenced in the retracted paper. We then created 12 dummy vari-

ables covering di�erent geographical locations, capturing the diversity in author locations and

their potential in�uence on retraction patterns. The most represented regions include Asia

(60.4%), North America (10.1%), and East Europe (9.2%), while regions such as Central

America (0.7%) and Oceania (1.4%) have notably fewer occurrences. This geographical clas-

si�cation, supported by Wagner et al. (2017), enables a nuanced analysis of how institutional

and geographical factors in�uence research quality and retraction likelihood across distinct

regions. Speci�cally, we consider the following variable:

Geok =

{
1 if z is published by authors from geographical location k for k = 1, ..., 12

0 otherwise.

where Geok denotes the geographical location k from the list reported in Table A.3 in Ap-

pendix A. We also captured whether journals were subscription-based (841) or open-access

(24,659) using a paywalled dummy variable, as access type may in�uence both publication

speed and retraction timing (Tennant et al. (2016)).

To account for the possibility that co-authors may come from di�erent locations, we created a

dummy variable to measure international collaboration. This re�ects the growing signi�cance

of cross-border research and its impact on research quality and integrity (Cummings & Kiesler

(2005), Wagner et al. (2017)). As collaboration increases, the dynamics of retraction can shift.

Fanelli (2009) and Bozeman & Boardman (2014) highlight that larger, geographically diverse

teams often face greater scrutiny, which can in�uence the likelihood of retraction. Addition-

ally, we capture the number of authors for each zombie paper, as collaboration has been shown

to a�ect both research transparency and the probability of retraction (Fanelli (2009)).

From publisher information, we created two dummy variables. First, we identi�ed whether

the publisher is among the top 10 largest in the world, as large publishers often follow di�erent

retraction practices. The list of the top 10 publishers is available in Table A.4 in Appendix

A, with 2022 as the reference year.4 Second, given the signi�cant attention to predatory pub-

lishers, who tend to bypass proper peer review and quality control (Beall (2013), and Moher

et al. (2017)), we merged information from Beall's List and Predatory Journals Reports to

create a dummy variable indicating whether a publisher is predatory.5

With regard to retraction reasons, it is widely acknowledged that not all retraction causes

have an equivalent impact on scienti�c knowledge. Fabrication (the invention of data or

cases), falsi�cation (the distortion of data and/or results), and plagiarism are generally rec-

ognized by many institutions as serious forms of scienti�c misconduct (LaFollette (2000),

Smith (2000), and Fanelli (2009)). Plagiarism, however, di�ers qualitatively from fabrication

and falsi�cation. While it does not distort scienti�c knowledge itself, it still has signi�cant

4The information is sourced from https://www.peeref.com.
5Sources: https://beallslist.net and https://predatoryjournals.org/the-list. The full list of predatory pub-

lishers included in our database is available upon request.
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consequences for the careers of those involved and ultimately impacts the integrity of the

scienti�c enterprise (Steneck (2006)). To systematically capture these distinctions, we created

ten dummy variables, grouping related terms as recommended by Retraction Watch's taxon-

omy.6 These categories include: �data issues� (11,556 occurrences), �results issues� (8,411),

�authorship issues� (1,882), �peer review/editorial issues� (7,030), �duplication/plagiarism is-

sues� (6,913), �referencing issues� (2,787), �withdrawal� (1,125), �miscommunication� (1,983),

�non-reportable� (2,572), and �various ethical violations� (4,251) (refer to Tables A.1 and A.5

in Appendix A for further details). Additionally, we created two dummy variables to indicate

whether a post-publication investigation was conducted by the publisher/journal (10,013 in-

stances) or by an external organization, such as a company, institution, or third party (6,197

instances).

The database spans publications from 1923 to 2023, including 5,755 journals, 1,281 publishers,

82,226 authors, and 164 countries, providing a comprehensive view of retracted articles over

time. The full list of variables is detailed in Table A.5 in Appendix A.

2.2 Survival times and empirical methodology

To model the survival time of zombie papers, we employed a range of approaches, includ-

ing non-parametric, semi-parametric, and parametric models, to determine the most e�ective

method for analyzing time to retraction. As a preliminary step, for descriptive purposes and

to approximate the distribution of retraction times, we applied the Kaplan-Meier (KM) non-

parametric method (see Kaplan & Meier (1958)). This method does not assume any speci�c

model or distribution for survival times and does not account for covariates. Although lim-

ited in its application to our context, the KM approach provides valuable initial insights that

inform the development of more sophisticated models. Figure 2 illustrates the estimated sur-

vival function using the KM method. The curve shows a steady decline in survival probability

over time, suggesting that the likelihood of a paper remaining unretracted decreases as time

passes. The steep drop in the early stages indicates that a signi�cant number of retractions

occur within the �rst few years following publication. After this initial decline, the curve �at-

tens but continues to decrease, re�ecting a slower retraction rate over time. This preliminary

analysis highlights that most zombie papers are retracted relatively early in their lifespan, but

a subset persists for much longer periods before being retracted.

Since our primary goal is to identify the factors in�uencing the time to retraction, we go

beyond the KM approach and explore two commonly used classes of models: proportional

hazards models and non-proportional alternatives. We �rst implement the semi-parametric

Cox proportional hazards model (Cox (1972)), which expresses the hazard rate as a function

of covariates:

6The complete list of retraction reasons can be found at https://retractionwatch.com/retraction-watch-

database-user-guide/retraction-watch-database-user-guide-appendix-b-reasons/. More details on our catego-

rization process are available upon request.
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Figure 2: Survival time of zombie papers: Non-parametric Kaplan-Meier method

Note: This �gure presents the survival time of zombie papers using the Kaplan-Meier non-parametric method.

h(t|X) = h0(t) exp(β1X1 + β2X2 + ...+ βpXp) (1)

where h(t|X) represents the hazard function of time to retraction, conditional on the covari-

ates X, which are discussed in Section 2.1 and detailed in Appendix A. The term h0(t) is the

baseline hazard function, and βj (j = 1, ..., p) denotes the vector of coe�cients corresponding

to the covariates X.

The Cox model assumes proportional hazards, meaning that the hazard ratios between groups

remain constant over time. However, as shown in Table B.1 in Appendix B, this assumption

does not hold for our dataset of zombie papers. To address this issue while maintaining the

Cox model framework, we employed the weighted Cox proportional hazards model, which

is speci�cally designed to handle non-proportional hazards. This model accounts for time-

varying e�ects by applying weights to the covariates, o�ering greater �exibility in estimating

hazard ratios without the need for interaction terms. It produces unbiased average hazard

ratios even when the proportional hazards assumption is violated. Compared to models with

complex interaction terms, the weighted Cox model remains computationally e�cient and

provides a robust alternative for managing non-proportional covariates (see Schemper et al.

(2009); Dunkler et al. (2018)). Given the large number of covariates in our analysis, it o�ers

a more feasible and interpretable solution.

Another well-established alternative, which departs from the proportional hazards framework,
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is the Accelerated Failure Time (AFT) parametric model (see Wei (1992)). The AFT model

directly estimates survival time, rather than hazard rates, within a non-proportional frame-

work. The AFT model is de�ned as:

log(t) = β0 + β1X1 + β2X2 + ...+ βpXp + σϵ (2)

In this equation, log(t) represents the log-transformed survival time, β0 is the intercept, βj
(j = 1, ..., p) are the covariate coe�cients, σ is the scale parameter, and ϵ is an error term

which follows a speci�c distribution (Weibull, Log-Normal, or Gaussian, in our analysis).

To account for potential non-linear relationships between covariates and survival times, we

also implemented a random forest survival model, a machine learning technique capable of

capturing complex interactions. Additionally, to address unobserved heterogeneity or random

e�ects, we estimated Cox frailty models (see Therneau et al. (1990), and Wienke (2010)),

which incorporate random e�ects into the Cox model to better account for clustering or un-

measured covariates.

After excluding outliers to ensure the robustness of our analysis, resulting in a �nal sample

of 24,332 observations, we set �Area23: Geography�, �Withdrawn�, and �Central America�

dummies as reference categories.7 Multicollinearity was checked (see Figure A.1 in Appendix

A), and we compared the following models: standard Cox, Cox-Frailty, weighted Cox, AFT-

Weibull, AFT-Log Normal, AFT-Gaussian, and random forest. A detailed comparison and

sensitivity analysis (see Table B.2 in Appendix B) evaluated the models using key metrics: (i)

Bayesian Information Criterion (BIC), (ii) Concordance Index (C-index, Harrell et al. (1982)),

(iii) Brier Score (Brier (1950)), (iv) Integrated Absolute Error (IAE, Graf et al. (1999)), and

(v) Integrated Squared Error (ISE, Graf et al. (1999)). The results consistently show that

the AFT-Weibull model outperforms the others in accurately capturing the survival time of

zombie papers, establishing it as the core model of this study.

3 Empirical results: The clock ticks on the zombies

This section begins by presenting the empirical results of the AFT-Weibull model across all

retractions, disaggregated by total, early-stage (under 2 years), mid-stage (2 to 5 years),

and late-stage (over 5 years) retractions. These �ndings provide an overview of how di�erent

covariates in�uence the retraction timing across various stages. Following this, we examine the

marginal e�ects, o�ering a practical interpretation of the AFT-Weibull model coe�cients. The

marginal e�ects shed light on the relative impact of each covariate on the retraction timing,

allowing for a clearer contextualization of how speci�c factors accelerate or delay retraction

at di�erent stages.

7These dummies were chosen as baseline categories due to their smaller representation in the sample. All

results should be interpreted as di�erences relative to these baselines.
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3.1 Survival times of zombies

We model the survival time of zombie papers using the AFT model, where the error term ϵ

in Equation (2) follows a Weibull distribution, and the scale parameter is de�ned as σ = 1/λ.

λ plays a critical role in interpreting survival times: if λ < 1, survival times are compressed,

indicating faster retractions, while λ > 1 suggests stretched survival times, or slower retrac-

tions. Although our primary focus is on the total sample, previous studies have highlighted

distinct retraction patterns across di�erent time periods due to variations in editorial prac-

tices and external pressures (e.g., Steen (2011), Fang et al. (2012), Azoulay et al. (2015)).

Accordingly, we examine early, mid, and late-stage retractions, de�ned as less than 2 years,

between 2 and 5 years, and more than 5 years, respectively. The results of the AFT-Weibull

model are presented in Table 2.8 To facilitate interpretation, all coe�cients (excluding the

intercept) are presented in exponential form and should be understood as percentage changes,

calculated as (expβj −1) × 100. A coe�cient less than 1 indicates a percentage decrease in

time to retraction, while a coe�cient greater than 1 refers to an increase.

In our total model (�rst column), the estimated scale parameter λ is 0.913, which is less than

1. This suggests that retractions of zombie papers tend to occur more rapidly over time, re-

�ecting an increasing hazard rate. This acceleration may be attributed to enhanced scrutiny

enabled by digital archives and systematic reviews of historical publications. Additionally, the

proactive e�orts of journals and organizations such as Retraction Watch have improved the

detection and publicity of misconduct or errors, increasing the likelihood of retractions even

for older publications. The baseline (intercept) coe�cient of 152 days implies that, on average,

a zombie paper in the �Geography� journal domain, authored by a corresponding author from

�Central America� and retracted for �Withdraw,� is retracted after 152 days. This result is

statistically signi�cant at the 1% level and serves as the reference point for interpreting the

e�ects of other covariates.

Regarding publication year, the coe�cient of 0.930 (< 1) indicates that more recently pub-

lished papers are retracted faster, corresponding to a 7% reduction in time to retraction per

additional year. This �nding is highly signi�cant (p < 0.001) and aligns with previous research

(Fang et al. (2012), Azoulay et al. (2015)) attributing this trend to heightened scrutiny, the

rise of post-publication peer review, and evolving journal standards. These results extend

across all domains of science, re�ecting increased vigilance within the academic community in

addressing problematic publications.

The journal characteristics reveal interesting patterns. Papers published in paywalled journals

have a coe�cient of 0.708, indicating they are retracted 29.2% faster than those in open-access

journals. This �nding aligns with studies (Tennant et al. (2016)) suggesting that subscription-

based journals often impose stricter editorial standards and have better mechanisms to detect

errors early. However, no statistically signi�cant di�erences are observed across journal do-

8Our �ndings remain robust, as demonstrated through the bootstrap AFT-Weibull estimates presented in

Table B.3 in Appendix B.
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mains compared to the baseline, suggesting that retraction times are more in�uenced by

editorial policies than by disciplinary di�erences (Horbach & Hal�man (2017)).

Signi�cant regional e�ects are evident. Papers from Asia (0.985), South America (0.708),

North Europe (0.762), and Central Europe (0.737) are retracted faster than the baseline re-

gion (Central America), with time reductions up to 29.2%. These di�erences likely re�ect

variations in institutional oversight, research integrity practices, and journal quality, consis-

tent with prior studies (Fang et al. (2012), Horbach & Hal�man (2017)). In contrast, papers

from Eastern Europe (1.506) take 50.6% longer to retract, possibly due to weaker institu-

tional frameworks or less stringent journal policies. The coe�cient for the log of the number

of authors (1.086) indicates that papers with more authors take approximately 8.6% longer

to retract. This delay likely arises from the complexities of coordinating investigations and

resolving disputes among larger author teams, often involving multiple institutions, which can

slow the retraction process.

The coe�cient for predatory publishers (0.762) indicates that papers in such journals are

retracted approximately 23.8% faster than those in reputable venues. While this may seem

counterintuitive, predatory journals often publish papers with evident de�ciencies that are

more easily detectable by external parties, such as watchdog organizations or institutions,

leading to quicker retractions when misconduct is identi�ed. Additionally, the lack of formal

editorial procedures in predatory journals may result in a less structured and faster retraction

process (Beall (2013), and Moher et al. (2017)).

Retraction reasons exhibit distinct patterns in terms of their impact on retraction timelines.

Papers retracted for �Data Issues� (1.509) and �Plagiarism� (1.125) take signi�cantly longer to

retract than those withdrawn for unspeci�ed reasons (�Withdraw�), increasing retraction times

by 50.9% and 12.5%, respectively. This delay re�ects the complexity of investigating these

cases, as they often involve verifying raw data, replicating analyses, or con�rming instances

of misconduct. �Results Issues� (1.038) and �Miscommunication� (1.033) result in a moder-

ate (3.8% and 3.3%, respectively) increase in retraction time, possibly due to the need for

detailed reviews of analytical errors or incorrect conclusions for the former, and because such

cases are often procedural and easier to address administratively for the latter. Procedural

issues like �Peer Review Problems� (0.969) and �Referencing Errors� (0.834) are resolved more

quickly, with reductions in retraction times of 3.1% and 16.6%, respectively, re�ecting their

less investigative nature. Papers retracted with no speci�c reason provided (�None�, 0.644) are

resolved 35.6% faster than the baseline, likely due to the absence of complex or contentious

disputes. These patterns suggest that the severity and complexity of the retraction reason

play a signi�cant role in determining the time to resolution.

Investigations conducted by journals or publishers (1.159) signi�cantly increase retraction

times, as these processes often involve detailed fact-�nding and institutional collaboration

(Steen et al. (2013)). These �ndings underscore the complexity of the retraction process when
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formal investigations are initiated.

Overall, the AFT-Weibull model con�rms established trends in the literature, such as faster

retractions for administrative or technical errors and slower retractions for misconduct cases.

However, our study extends the analysis by systematically examining the impact of geograph-

ical regions, journal types, and retraction reasons on retraction times. These �ndings under-

score the role of editorial policies and institutional practices in shaping the retraction process

and provide a foundation for exploring potential editorial interventions in subsequent sections.

In addition to the total model, we conducted a sensitivity analysis by segmenting the data

into three retraction time windows: less than 2 years (second column), 2 to 5 years (third

column), and more than 5 years (fourth column). This segmentation allows us to observe

how retraction dynamics evolve over time and identify time-speci�c patterns. The analysis

reveals important temporal di�erences and similarities when compared to the total column,

o�ering deeper insights into retraction behavior over time. The scale parameter (λ) highlights

the periods of 2 to 5 years and more than 5 years as having the highest speed of retraction,

with values of 0.230 and 0.168, respectively, compared to the total model (0.913). This indi-

cates that these periods experience accelerated retractions, possibly due to improved detection

mechanisms and growing pressure on journals to retract problematic papers as they become

more scrutinized over time.

While the publication year coe�cient remains consistent across all time periods indicating

faster retractions for recently published papers, results for journal domains reveal signi�cant

deviations in the segmented periods compared to the total column. For example, �Computer

Science; Data Science; Information Systems; and Robotics� exhibits signi�cantly slower retrac-

tions in the 2 to 5 years window, with a 63.9% longer retraction time compared to �Geography.�

Similarly, �Dentistry� shows a 19.7% longer retraction time in the more than 5 years period.

These results contrast with the total column, where journal domains were largely insigni�cant,

suggesting that disciplinary di�erences in addressing older or mid-aged publications become

more pronounced over time. The geographical location appears less in�uential overall in the

segmented models, with fewer signi�cant regional e�ects compared to the total column. How-

ever, papers from Eastern Europe consistently take longer to retract, with signi�cant delays

in both the 2 years (+47.8%) and 2 to 5 years (+11.1%) periods. This persistent trend un-

derscores systemic challenges in retraction practices within the region, particularly for more

recent publications. The reasons for retraction exhibit relative consistency across time peri-

ods. Serious scienti�c misconduct, such as �Data Issues�, �Results Issues�, and �Plagiarism�,

continues to result in signi�cantly longer retraction times, re�ecting the complexity of inves-

tigations. For example, �Data Issues� increase retraction times by 10.3% within the 2 years

window and 4.1% in the more than 5 years period, while �Results Issues� shows signi�cant

delays of 5.8% in 2 years. These �ndings align with the total column, con�rming that the

severity of the issue plays a critical role in determining retraction timelines.
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Overall, while some patterns�such as the e�ect of publication year and reasons for retraction�

remain stable over time, signi�cant di�erences emerge in journal domains and geographical

regions, particularly for older publications. This temporal analysis sheds light on the evolving

dynamics of retraction processes, emphasizing the need to account for time-speci�c factors

when assessing retraction practices.

3.2 Marginal e�ects of zombie papers

To contextualize our estimated coe�cients from the AFT-Weibull model, we compute the

marginal e�ects of selected covariates on the time to retraction of zombie papers. This allows

us to quantify how changes in each covariate a�ect retraction times in academic publishing,

highlighting the magnitude of these impacts. Figures 3 and 4 display the marginal e�ects

of retraction issues over time across di�erent geographical regions and journal domains, re-

spectively, for various retraction stages: total sample, early-stage (2 years), mid-stage (2 to

5 years), and late stage (over 5 years). For simplicity, we focus on serious forms of scienti�c

misconduct, including data fabrication, results falsi�cation, and plagiarism, as emphasized by

LaFollette (2000), Smith (2000), and Fanelli (2009). Additional results for other variables are

available upon request.

Figure 3 illustrates how data, results, and plagiarism issues a�ect predicted retraction times

across signi�cant regions, including �South America�, �Eastern Europe�, and the �Middle East�,

over various time frames. Across these regions, a consistent pattern emerges between 1980

and 2020, with retraction times generally decreasing over the decades, likely re�ecting grad-

ual improvements in editorial standards and retraction processes. However, the presence of

retraction issues (blue lines) leads to consistently higher predicted retraction times compared

to the absence of issues (red lines), with the magnitude of these e�ects varying by region and

issue type. In regions such as �Eastern Europe� and the �Middle East�, retraction times remain

substantially higher when data fabrication and plagiarism issues are present. This suggests

that in regions where retraction processes are historically slower, these types of misconduct

contribute to prolonged retraction delays. For example, in Eastern Europe, the gap between

retractions with and without issues persists over time, indicating that improvements in re-

traction speed may not fully mitigate the e�ects of serious misconduct. Conversely, �South

America� exhibits a pronounced downward trend in retraction times, suggesting notable ad-

vancements in editorial standards and response mechanisms. However, the presence of issues

still leads to a delay, particularly in the early and mid-stages, underscoring the importance of

early detection mechanisms in regions where editorial robustness is evolving.

Taking the example of �Economics, Finance, Econometrics�, Figure 4 presents the marginal

e�ects of retraction issues within speci�c journal domains over the mid-range retraction period

(2 to 5 years).9 In domains where empirical rigor and data integrity are critical, such as in

9Results for other journal domains are available upon request to the authors.
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Table 2: Survival time of zombie papers: AFT-Weibull model

Note: This table presents the estimated coe�cients in exponential form for the covariates a�ecting the time

to retraction of zombie papers across the total sample, as well as early, mid, and late stages of retraction. ***,

**, and * indicate signi�cance at the 1%, 5%, and 10% levels, respectively.
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Economics and Finance, data fabrication and results falsi�cation (blue lines) lead to signif-

icantly longer retraction times compared to cases without these issues (red lines), as shown

by the wider con�dence intervals. This e�ect is especially pronounced in �elds heavily reliant

on quantitative data, suggesting that these domains face unique challenges when addressing

retraction-worthy misconduct. The gap between retraction times with and without issues in

Economics and Finance indicates persistent delays when dealing with severe problems, em-

phasizing the need for more stringent checks and faster responses in these �elds.

In summary, these marginal e�ects plots provide a nuanced view of how retraction issues

and regional or domain characteristics in�uence retraction times over the years. The steady

decline in retraction times between 1980 and 2020 across most regions and domains suggests

that editorial practices and retraction mechanisms have improved globally. However, the

impact of serious issues like data fabrication and plagiarism remains signi�cant, particularly in

regions and domains with speci�c vulnerabilities. This analysis supports the development of a

theoretical model by identifying key areas where policy interventions could be most e�ective in

reducing retraction times. In particular, �elds and regions where issues such as data fabrication

and plagiarism are prevalent would bene�t from targeted policies focused on early detection

and rapid response mechanisms. By integrating these empirical insights, the theoretical model

can simulate editorial interventions to reduce the persistence of zombie papers, addressing

both immediate retraction needs and longer-term improvements in publication standards.

These empirical �ndings lay the groundwork for our theoretical model, detailed in Section 4,

which explores the dynamics of zombie paper persistence and decay under various editorial

interventions.

4 Theoretical model and simulation: Turning back the clock on

the zombies

This section introduces a theoretical population framework to model the dynamics of the

entire zombie paper population. Additionally, it presents a series of simulated experiments to

assess the impact of editorial interventions on the persistence of zombie papers.

4.1 Theoretical model: Zombies Population Decay Dynamics (ZPDD)

To simulate the long-term e�ects of editorial policy interventions on the persistence and decay

of zombie papers, we adopt a theoretical population dynamics framework, traditionally used

in ecological modeling, and apply it to the context of science and research integrity. This ap-

proach, which we term Zombie Population Decay Dynamics (ZPDD), conceptualizes the body

of zombie papers as a population subject to external pressures, speci�cally, editorial policies.

In doing so, we can analyze how these interventions in�uence the broader scienti�c ecosys-

tem, capturing not only individual retraction events (akin to the marginal e�ects discussed in

the previous section) but also the system-wide evolution of scienti�c knowledge. Population

dynamics models are widely employed in both ecological and social sciences to examine how
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Figure 3: Marginal e�ects of retraction issues by geographical region

Note: This �gure presents the marginal e�ects of various retraction issues�such as data, results, and

plagiarism�over time across signi�cant geographical regions. Results are shown for di�erent time scales

(total, 2 years, 2 to 5 years, and over 5 years). The absence of the issue (red) is compared with its presence

(blue), with 95% con�dence bands included.
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Figure 4: Marginal e�ects of retraction issues by journal domain

Note: This �gure shows the marginal e�ects of various retraction issues�such as data, results, and plagiarism�

over time for the �Economics, Finance and Econometrics� domain. Results are presented for the mid-range

retraction period (2 to 5 years). The absence of each issue (red) is compared with its presence (blue), with

95% con�dence bands provided.

populations respond to varying external pressures and interventions (Tilman et al. (2014),

Bruch & Atwell (2015)), and some studies indicate that such models can also provide valuable

insights into the dynamics of scienti�c knowledge and research retractions (Bettencourt et al.

(2008), Vitanov & Ausloos (2012)). The derivation and illustration of the model is provided

in Appendix C.1.

The KM survival analysis (see Figure 2) supports our choice of a negative logistic model for

decay as illustrated by Figure C.1 in Appendix C. The survival curve indicates a sharp initial

drop in the survival probability of zombie papers, as many retractions occur within the �rst

few years following publication. This rapid initial decay is followed by a long, gradual decline,

suggesting that some papers persist for signi�cantly extended periods before being retracted.

This pattern re�ects a two-phase decay process, where a proportion of zombie papers are

quickly identi�ed and retracted, while others persist in the literature, resistant to retraction

pressures. The negative logistic model is well suited to capture this dynamic, as it allows for

an initial high decay rate that slows over time, re�ecting diminishing returns as only the most

entrenched zombie papers remain in circulation.

Our model is therefore based on a negative logistic decay framework, where the decay of zombie

papers is driven by retraction rates derived from the AFT-Weibull model (discussed in Section

3) and a carrying capacity representing unretracted papers that remain in the literature. The

use of population dynamics in scienti�c modeling is well-established for understanding sys-

temic behaviors such as knowledge growth, obsolescence, and correction processes (see, e.g.,

Bettencourt et al. (2008) and Vitanov & Ausloos (2012)). By simulating these processes, we

can evaluate the impact of editorial interventions on the persistence of retracted papers.
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Let Z(t) represent the number of zombie papers at time t, r the retraction rate�derived as

the inverse of the expected time to retraction T (from Equation (2) estimated using the AFT-

Weibull model)�and K the carrying capacity, which accounts for papers that will likely never

be retracted due to limited scrutiny or missed detection, or be retracted after a very long time.

The di�erential equation governing the decay of zombie papers is given by:

dZ

dt
= −r × (Z −K) (3)

where (Z − K) represents the number of retractable zombie papers at any given time, with

r being the intensity of retraction e�orts. The carrying capacity K sets a lower bound for

the persistent population, accounting for practical limitations like unreported or unde�ned

misconduct, unsystematic reviews, or insu�cient editorial resources (Smith (2000)).

As previously discussed, the retraction rate r is determined by the expected time to retraction

T , which is calculated using the covariates from the AFT-Weibull model. Speci�cally:

r =
1

T
(4)

where T can be derived from the AFT model under baseline conditions or adjusted to re�ect

di�erent policy interventions. By simulating changes in retraction rates resulting from policies

such as enhanced data transparency, replicability and reproducibility, as well as plagiarism

detection, we model their e�ects on the long-term decay of zombie papers in the scienti�c

body of knowledge.

To account for the long-term persistence of zombie papers, we de�ne the carrying capacity K

based on observed time-to-retraction data from our dataset, re�ecting that a small proportion

of papers take an extended time to be scrutinized (or never be scrutinized). Speci�cally, we

calculate the 95th percentile of time to retraction (in days) and determine the proportion

of observations that exceed this threshold. This approach estimates K as 5% of the initial

number of zombie papers, Z0, as follows:

K = 0.05× Z0 (5)

The carrying capacity, K, ensures that over time the number of zombie papers asymptotically

approaches this limit, simulating a scenario where some papers take an extended time to be

retracted, e�ectively impacting science as if they were never retracted.

Substituting expressions (4) and (5) into Equation (3), we obtain the �nal form of the ZPDD

model:

dZ

dt
= − 1

T
× (Z − (0.05× Z0)) (6)

In the following section, we simulate the dynamics of the zombie paper population over a

period of 5000 days, equivalent to roughly 13.7 years. This extended timeframe is chosen to
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capture the long-term e�ects of retraction dynamics and policy interventions, allowing us to

observe how the population of zombie papers approaches the carrying capacity over a realistic

editorial timescale. Given that retraction processes in academia often span multiple years, a

5000-day horizon provides a comprehensive view of both the initial impact and the diminishing

returns of retraction e�orts as the population stabilizes.

4.2 Editorial policy interventions and zombies

To explore how the scienti�c community might implement mechanisms to strengthen research

integrity and mitigate the impact of retracted papers on scienti�c knowledge, we use our ZPDD

model (Equation (6)) to assess a range of (non-exhaustive) potential editorial policy interven-

tions and their counterfactual impacts on the evolution of the zombie paper population. For

each policy intervention, we simulate a change in speci�c covariates from the baseline (i.e., no

policy change) as follows:

1. Adjust the relevant covariates according to the speci�c policy intervention

2. Recalculate T in Equation (6) based on the adjusted covariates, yielding Tpolicy

3. De�ne the retraction rate under the policy intervention as: rpolicy = 1
Tpolicy

4. Solve the ZPDD model using r = rpolicy.

This framework allows us to evaluate the impact of speci�c policies on the persistence and

decay of zombie papers within the scienti�c record. These editorial interventions are listed

in Table 3 and address critical forms of research misconduct, including enhancing data trans-

parency, improving reproducibility and replicability, and strengthening plagiarism detection

(as highlighted by COPE). Each intervention is modeled to simulate a 30% reduction in its

targeted issue, providing a concrete illustration of its potential impact on the zombie paper

population. While these policies are widely recognized as pivotal for safeguarding research in-

tegrity (e.g., Miguel et al. (2014), Nosek et al. (2015), Christensen & Miguel (2018), Pérignon

et al. (2024)), their implementation across the scienti�c ecosystem remains incomplete. To

identify the unique contributions of each intervention, the simulation of single-policy strategies

provides valuable insights. These �ndings can inform actionable editorial recommendations,

such as:

� Mandating public sharing of raw datasets and analysis codes at the submission stage to

enhance transparency.

� Requiring pre-registration of study designs to ensure methodological rigor and mitigate

selective reporting.

� Implementing advanced plagiarism detection tools during peer review to strengthen orig-

inality checks.
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Table 3: Editorial policy interventions tools

Note: This table presents the simulated editorial policy interventions, including the associated variable names,

implemented changes, and descriptions of each intervention's intended impact.

� Encouraging the publication of replication studies to validate key �ndings.10

� Creating dedicated editorial committees to e�ciently handle misconduct allegations.

Combining interventions�such as pairing data-sharing mandates with pre-registration requirements�

can amplify their e�ectiveness. Integrated approaches have the potential to signi�cantly reduce

zombie paper persistence, expediting their removal from the scienti�c record.

The e�ectiveness of these editorial interventions is evaluated across multiple dimensions,

including publication year, geographical region, and journal �eld. We examine �ve time

periods�1980, 1990, 2000, 2010, and 2020�to provide insights into the evolution of retraction

practices. To facilitate interpretation, geographical zones have been grouped into four regions:

America (North and South), Europe (Northern, Southern, Western, Central, and Eastern),

Asia and Oceania, and Africa and the Middle East (see Table A.3 in Appendix A, excluding

Central America). For journal �elds, we have simpli�ed the classi�cation into four major do-

mains: �Quantitative and Empirical Research�, �Life and Applied Sciences�, �Humanities and

Social Sciences�, and �Interdisciplinary and Multidisciplinary� (see Table A.2 in Appendix A,

excluding Geography). Each domain group represents distinctive research characteristics that

in�uence retraction dynamics.

Figure 5 and the attached table illustrate the decay of zombie papers across di�erent time

periods, along with key metrics such as the number of zombies remaining after 1,000 days,

as well as the average and peak decay speed (calculated as dZ
dt = Zt+1−Zt

tt+1−tt
) for each consid-

ered year.11 The �gure reveals a clear trend of increasing e�ciency in zombie paper decay

10Reproducibility rates in �elds like economics and �nance remain surprisingly low, underscoring the need

for such measures (Chang & Li (2017), Gertler et al. (2018), Herbert et al. (2021)).
11In research contexts, a period of 1,000 days (approximately 3 years) is a meaningful timeframe for assessing

the retraction of problematic papers, balancing timely correction with maintaining scienti�c integrity.
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over the years, with 2020 showing the most rapid and sustained decline. This is evidenced

by the signi�cantly higher decay speed in 2020, indicating that recent editorial practices have

become more e�ective in curtailing the persistence of zombie papers in the academic literature.

Figure 6 and the accompanying table illustrate the e�ects of various policy interventions�

each targeting a 30% reduction in a speci�c retraction issue�on the decay of zombie papers

in 2020. The modeled interventions include enhancing data transparency, improving repro-

ducibility and replicability, and strengthening plagiarism detection. Each intervention is com-

pared to a baseline scenario (without policy changes) across key metrics: time to reach 50%

and 75% reduction, maximum decay rate, and survival rate at 1,000 days. The results show

that improving data transparency is the most e�ective intervention, achieving the fastest re-

duction in paper counts and the highest peak decay rate, followed by strengthening plagiarism

detection and enhancing reproducibility and replicability. Each intervention accelerates the

decay of zombie papers compared to the baseline, underscoring the potential of targeted policy

changes to reduce the persistence of problematic publications. These higher decay rates and

lower survival rates at 1,000 days re�ect the e�ectiveness of these interventions in fostering a

more responsive and rigorous editorial environment, emphasizing the role of policy in enhanc-

ing academic integrity and minimizing the prevalence of zombie papers.

Figures 7 and 8 along with their accompanying tables break down the decay trends of zombie

papers across speci�c regions: America and Europe in Figure 7, and Asia, Oceania, Africa,

and the Middle East in Figure 8. In America and Europe, zombie paper reduction under the

baseline scenario progresses at a relatively slower rate; however, targeted editorial interven-

tions signi�cantly accelerate this decay. For instance, in America, the implementation of data

transparency reduces the time needed to reach a 50% reduction from 645 days to 570 days.

Similar acceleration is observed with interventions focused on reproducibility and plagiarism

detection. In Europe, the baseline decay rate is already comparatively higher than in other

regions, and all interventions further enhance this process, with data transparency yielding

the most pronounced e�ect, shortening the time to 50% reduction from 197 days to 174 days.

In contrast, baseline decay rates in Asia, Oceania, Africa, and the Middle East are slower than

those observed in Europe but faster than those in America. Here, editorial interventions, par-

ticularly reproducibility and plagiarism detection improvements, show notable impacts, albeit

to a slightly lesser extent than in Europe. The accompanying tables underscore these �ndings

by presenting key metrics, including time to 50% and 75% decay, maximum decay rates, and

survival rates at 1,000 days for each region and intervention type. These metrics illustrate

a consistent reduction in decay time across all interventions, with minor regional variations

in maximum decay rates and long-term survival rates. Overall, while each intervention con-

tributes to the reduction of zombie papers, their relative e�ectiveness varies by region. Data

transparency consistently emerges as the most impactful intervention across regions, demon-

strating its broad utility in accelerating the decay of zombie papers.

Figures 9 and 10 disentangle the e�ect of editorial policy interventions across research �elds,
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Figure 5: Decay of zombie papers over time

Note: This �gure shows the decay trend of zombie papers over time, including characteristics such as the

number of zombie papers remaining after 1000 days and the average and peak decay rates for the years 1980,

1990, 2000, 2010, and 2020.
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Figure 6: Decay of zombie papers across editorial policy interventions

Note: This �gure illustrates the decay trend of zombie papers, along with characteristics under various editorial

policy interventions, including improvements in data transparency, reproducibility, replicability, and plagiarism

detection.
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Figure 7: Decay of zombie papers across editorial policy interventions in America and Europe

Note: This �gure illustrates the decay trend of zombie papers, with characteristics shown for America (top) and

Europe (bottom) under various editorial policy interventions, including enhancements in data transparency,

reproducibility, replicability, and plagiarism detection.
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Figure 8: Decay of zombie papers across editorial policy interventions in Asia, Oceania, Africa

and Middle East

Note: This �gure illustrates the decay trend of zombie papers, with characteristics shown for Asia and Oceania

(top) and Africa and Middle East (bottom) under various editorial policy interventions, including enhancements

in data transparency, reproducibility, replicability, and plagiarism detection.
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speci�cally �Quantitative and Empirical Research�, �Life and Applied Sciences� (in Figure 9),

and �Humanities and Social Sciences�, as well as �Interdisciplinary and Multidisciplinary Do-

mains� (in Figure 10).

In �Quantitative and Empirical Research�, the baseline decay rate is moderate, with zombie

papers reaching a 50% reduction in 1,619 days. Data transparency signi�cantly accelerates

this, bringing the time down to 1,431 days, indicating the importance of transparent data

practices in �elds heavily reliant on empirical evidence. Maximum decay rate increases from

0.438 to 0.496 papers per day with this intervention, while the survival rate at 1,000 days de-

creases from 64.87% to 61.34%. Reproducibility and plagiarism detection also have bene�cial

e�ects but to a lesser extent, suggesting that transparency addresses a core issue in quan-

titative disciplines by reducing opacity in data use and enhancing accountability. For �Life

and Applied Sciences�, decay rates are faster, with a baseline time to 50% reduction at 1,224

days, re�ecting the �eld's rapid research turnover. Data transparency further accelerates this

to 1,081 days, with the maximum decay rate rising from 0.579 to 0.656 papers per day, and

the survival rate at 1,000 days falling from 56.58% to 52.60%. These results highlight the

crucial role of data integrity in a fast-moving �eld where outdated or �awed studies quickly

lose relevance. The interventions amplify this natural decay, making zombie papers less viable

as the �eld advances.

In �Humanities and Social Sciences�, the decay is considerably slower, with a baseline time to

50% reduction of 2,204 days, underscoring the persistence of papers in these areas. This slow

decay may result from the longevity of theoretical and qualitative contributions, coupled with

less frequent replication. Data transparency reduces this decay time to 1,948 days, with the

maximum decay rate increasing from 0.322 to 0.364 papers per day and the survival rate at

1,000 days slightly dropping from 72.68% to 69.73%. This relatively limited impact re�ects

the challenge of enforcing rapid decay in a �eld less dependent on data-driven research, though

transparency and reproducibility still provide noticeable improvements. �Interdisciplinary and

Multidisciplinary Domains� display faster decay rates than �Humanities and Social Sciences�,

with a baseline time of 834 days to reach a 50% reduction. Data transparency again proves

highly e�ective, lowering this to 737 days, increasing the maximum decay rate from 0.851 to

0.962 papers per day, and reducing the survival rate at 1,000 days from 43.76% to 39.45%.

The faster baseline decay suggests a higher likelihood of cross-veri�cation and scrutiny from

multiple disciplines, making zombie papers less sustainable. The interventions reinforce this

fast decay, indicating that the interdisciplinary nature, involving diverse perspectives, makes

these papers more resilient to obsolescence, with transparency amplifying this e�ect.

In summary, data transparency consistently emerges as the most impactful intervention across

all �elds, though its e�ectiveness varies by discipline. Quantitative, empirical, and applied

sciences, where data integrity is foundational, respond most strongly to this intervention,

bene�ting from increased decay rates and reduced survival of zombie papers. �Humanities

and Social Sciences�, with their slower pace of knowledge turnover, also bene�t, but decay
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rates increase more modestly, re�ecting traditional norms less focused on data scrutiny. In-

terdisciplinary �elds naturally exhibit rapid decay, with interventions like data transparency

reinforcing this resilience by supporting cross-disciplinary validation. Reproducibility and pla-

giarism detection also positively impact decay rates across �elds but have a less pronounced

e�ect than data transparency. This suggests that foundational improvements in data practices

could yield substantial reductions in zombie papers, particularly in �elds where empirical data

is central to research validity.

4.3 Optimizing editorial policy interventions to minimize zombie paper

persistence

To provide an e�ective mix of editorial policy interventions aimed at minimizing zombie pa-

per persistence, we develop a mathematical optimization framework that determines optimal

intervention levels across key retraction issues: data transparency, replicability and repro-

ducibility, and plagiarism detection. This framework is grounded in the ZPDD model, where

the retraction rate is inversely related to the predicted retraction time T , which itself de-

creases as editorial interventions increase. The objective of the optimization is to minimize

the number of zombie papers at a speci�c future time horizon (e.g., 1,000 days) by reducing T

through well-targeted policy interventions. To prevent unrealistically high levels of interven-

tion, a penalty term is included in the optimization, designed to balance the trade-o� between

intervention intensity and practical feasibility. The penalty, which grows quadratically with

each intervention level, discourages excessive intervention e�orts unless they yield substan-

tial reductions in the zombie paper population. This formulation ensures that the resulting

intervention levels are both impactful and resource-e�cient. By simulating and quantifying

the e�ects of various policy mixes, this optimization provides editorial boards with actionable

insights to enhance research integrity and reduce zombie paper persistence (see Appendix C.2

for the full mathematical formulation).

Figure 11 presents the optimization results across three critical dimensions. The top-left panel

illustrates the relationship between editorial policy interventions and penalties. As the penalty

parameter (θ) increases, the optimal levels for each intervention (Data Transparency, Results

Replicability/Reproducibility, and Plagiarism Detection) decline. This trend demonstrates

a trade-o�: higher penalties discourage intensive interventions. Data Transparency consis-

tently maintains the highest intervention level, followed by Plagiarism Detection and Results

Reproducibility, emphasizing its key role in reducing zombie papers within this model. The

top-right panel shows the impact of penalties on the zombie population at 1,000 days. As

θ increases, the zombie population rises and approaches an asymptote. The optimal penalty

point is marked at θ = 1, where the zombie population reaches its minimum under the penalty

constraint. Beyond this threshold, diminishing returns set in as further penalty increases lead

to a higher zombie population due to scaled-back intervention levels. The bottom panel high-

lights the optimal intervention mix that achieves the minimum zombie population given the

penalty constraint. The optimal mix comprises a Data Transparency intervention level of
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Figure 9: Decay of zombie papers across editorial policy interventions by journal area

Note: This �gure illustrates the decay trend of zombie papers, with characteristics shown for �Quantitative

and Empirical Research� (top) and �Life and Applied Sciences� (bottom) under various editorial policy inter-

ventions, including enhancements in data transparency, reproducibility, replicability, and plagiarism detection.
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Figure 10: Decay of zombie papers across editorial policy interventions by journal area (con't)

Note: This �gure illustrates the decay trend of zombie papers, with characteristics shown for �Humanities and

Social Sciences� (top) and �Interdisciplinary and Multidisciplinary Domains� (bottom) under various editorial

policy interventions, including enhancements in data transparency, reproducibility, replicability, and plagiarism

detection.
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Figure 11: Optimal mix of editorial policy interventions for the decay of zombie papers at

1,000 days

Note: This �gure reports the results of the optimization calculus showing (i) the editorial policy interventions

with respect to penalty; (ii) the zombie population at 1,000 days with respect to penalty; and (iii) the optimal

mix of editorial policy interventions with respect to the zombie population at 1,000 days.

0.1012 (equivalent to a 10.12% reduction), Plagiarism Detection at 0.0291 (2.91% reduction),

and Results Reproducibility at 0.0092 (0.92% reduction). With this con�guration, the mini-

mum achievable zombie population at 1,000 days is approximately 240.75 papers. This �gure

e�ectively captures the balance between intervention intensity and penalty, demonstrating

the optimal mix needed to minimize the zombie population over time while managing penalty

trade-o�s.

5 Discussion and editorial policy recommendations

Our �ndings underscore several key implications for editorial policies that can enhance the

e�ciency and transparency of the retraction process while reducing the persistence and in�u-

ence of zombie papers. A central theme emerging from our results is the need for proactive

strategies and systemic reforms to address both the persistence of �awed research and the

disparities in retraction practices.
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One key recommendation is the enhancement of data transparency. We �nd that open access

to raw datasets and analysis codes signi�cantly reduces the time required to detect errors or

misconduct, facilitating faster retractions. To this end, academic journals should systemat-

ically mandate the submission of datasets, analysis codes, and supplementary materials at

the time of manuscript submission. Establishing open-access repositories linked to published

articles would further support transparency and replicability.

The results also highlight the importance of promoting reproducibility, replicability, and

methodological rigor. The persistence of zombie papers reveals a lack of robust reproduc-

tion and replication e�orts across disciplines. Policies encouraging pre-registration of study

designs, adherence to reporting standards, and prioritization of reproducible and replication

studies can address this gap. Academic journals could dedicate speci�c sections or platforms

to reproducible and replication studies and null results, reinforcing the emphasis on method-

ological integrity.

Another point emphasized by our investigation is the need for advanced plagiarism detection

and improved misconduct monitoring. Prolonged retraction timelines in cases of severe mis-

conduct suggest that journals must invest in state-of-the-art plagiarism detection tools and

provide targeted training for editors and reviewers. Specialized review boards for misconduct

investigations could enhance the capacity to address complex cases e�ciently.

The visibility of retraction notices is another crucial area for improvement. Low awareness of

retracted articles contributes to their continued citation. Journals should ensure that retracted

articles are prominently marked and linked to their retraction notices in citation databases

and journal platforms. Clear noti�cations in reference indexes such as PubMed and CrossRef

would further minimize the propagation of �awed research.

Geographic and institutional disparities in retraction practices also require attention. Our

�ndings reveal ine�ciencies in under-resourced regions, emphasizing the need for standard-

ized global retraction guidelines. Capacity-building e�orts and collaborative initiatives be-

tween journals and institutions can help bridge these gaps, ensuring equitable enforcement of

research integrity standards.

A broader cultural shift is necessary to prioritize ethical practices in research. The current

�publish or perish� culture often incentivizes misconduct and delays its detection. Institutions

and journals should reward ethical behavior through recognition programs and dedicated

funding while incorporating ethics training into researcher and editorial sta� development.

Finally, leveraging technology o�ers promising solutions for addressing the issue of zombie

papers. Arti�cial intelligence-driven tools could monitor citation networks in real time, �ag

unusual citation patterns, and track the impact of retracted studies. Cross-disciplinary col-

laboration in editorial boards and oversight committees could further enhance the detection

and prevention of research misconduct.
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Adopting these measures can strengthen the integrity of the scienti�c record, mitigate the

impact and persistence of zombie papers, and foster a research environment centered on trans-

parency, accountability, and quality.

6 Conclusion

This paper addresses the critical issue of zombie papers, i.e., retracted or destined-for-retraction

publications that continue to in�uence academic discourse despite their discredited status.

These papers represent a signi�cant challenge to the self-correcting mechanisms of science, as

their �awed �ndings propagate through citations, distorting knowledge production and divert-

ing future research e�orts. Through a comprehensive analysis combining survival models and

a novel theoretical framework�the Zombie Population Decay Dynamics (ZPDD) model�we

shed light on the factors driving zombie paper persistence and propose actionable editorial

strategies to mitigate their impact.

Our �ndings reveal that the time taken to retract papers varies signi�cantly depending on the

nature of the misconduct, with serious issues such as data falsi�cation or fabrication requiring

more extended investigation and resolution periods. Geographic and institutional disparities

also play a crucial role, with systemic ine�ciencies in under-resourced regions, such as parts

of Eastern Europe, contributing to prolonged retraction processes. Furthermore, the analysis

highlights that editorial policies, including journal characteristics, signi�cantly in�uence the

persistence of zombie papers. Subscription-based journals, for instance, demonstrate faster

retraction times than open-access journals, likely due to stricter oversight and more robust

editorial resources.

Based on these �ndings, our study proposes several policy recommendations to accelerate re-

tractions and reduce the in�uence of �awed research. Mandating greater data transparency,

such as requiring the public sharing of raw datasets and analysis codes, can enhance the

replicability of research and facilitate the identi�cation of errors. Similarly, promoting repro-

ducibility through pre-registration of study designs and the publication of replication studies

can mitigate the propagation of �awed research. Enhancing plagiarism detection with ad-

vanced tools during the peer review process and increasing the accessibility and visibility of

retraction notices are also critical for minimizing the impact of zombie papers. Addressing

institutional and geographic disparities through standardized global practices and targeted

initiatives for under-resourced regions is essential for ensuring equitable enforcement of re-

search integrity standards worldwide.

In addition to these practical measures, our paper underscores the need for a cultural shift

in the academic community to prioritize quality and transparency over quantity. This would

involve creating or reinforcing an environment where transparency, reproducibility, and ac-

countability are integral to the publication process. Leveraging technological advancements,

33



such as arti�cial intelligence for misconduct detection and automated citation monitoring, can

further streamline retraction processes and reduce the in�uence of zombie papers.

Although our paper lays a strong foundation for understanding the dynamics of zombie paper

persistence, it also opens avenues for future research. Speci�cally, it would be interesting

to build on our �ndings to explore the long-term e�ects of speci�c editorial interventions

on retraction dynamics and examine how policy changes and technologies such as arti�cial

intelligence may in�uence the behavior of researchers and institutions. Additionally, assessing

zombie papers' economic and reputational costs on the broader scienti�c community could

provide a deeper understanding of their systemic impact. Finally, evaluating the e�ectiveness

of coordinated global e�orts to standardize editorial practices and ensure equitable access to

resources for addressing retractions would be a promising research avenue. Overall, addressing

zombie paper persistence requires a multifaceted approach that combines dedicated editorial

policies, technological innovations, and global cooperation.
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Appendix

A Dataset and variables

Table A.1: Zombie papers database

Note: This table reports the main variables of our zombie papers database sourced from the Retraction Watch

Database (RWD), along with key insights and occurrences. The reasons for retraction have been simpli�ed by

grouping certain categories together according to the RWD taxonomy. For the full list of retraction reasons,

please refer to: https://retractionwatch.com/retraction-watch-database-user-guide/retraction-watch-database-

user-guide-appendix-b-reasons/.
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Table A.2: Main research domains of journals

Note: This table reports the main research domains of journals based onWeb of Science and Scimago categories.

The occurrences of each domain in the database are also provided.
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Table A.3: Main geographical locations of authors

Note: This table reports the main geographical locations of the corresponding (or �rst) author. The occurrences

of each location in the database are also provided.

Table A.4: Top 10 largest publishers

Note: This table lists the top 10 largest publishers by the number of managed journals. The occurrences of

each publisher in the database are also provided.
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Table A.5: List of endogenous and exogenous variables

Note: This table presents the full list of variables used in our paper, including their names, types, and detailed

descriptions.
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Figure A.1: Heatmap of variable correlations

Note: This �gure depicts the correlation matrix for the variables included in our model. The intensity of the

color represents the strength of the correlation, with darker shades indicating stronger relationships.

B Robustness checks and sensitivity analysis

This section presents the robustness checks and sensitivity analysis of our approach as dis-

cussed in the main body of the paper. Speci�cally, we conduct: (i) a test of proportional

hazards; (ii) model comparisons; and (iii) a bootstrap variant of the AFT-Weibull estimation.

B.1 Tests of proportional hazards assumption

The Cox regression model relies on the proportional hazards (PH) assumption, which states

that covariates have a multiplicative and time-invariant e�ect on the hazard. Violations of

this assumption can result in biased inferences. Table B.1 reports the results of the Schoenfeld
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residual test, which evaluates the correlation between scaled Schoenfeld residuals and time.

Non-signi�cant results indicate that the PH assumption holds, while signi�cant results suggest

a violation, implying time-dependent covariate e�ects.

We reject the null hypothesis of proportional hazards both globally and for individual covari-

ates, except for �Sociology; Anthropology; Ethnology� and �Multidisciplinary� domains.
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Table B.1: Test for proportional hazards assumption

Note: This table reports the results of the Schoenfeld residual test for the proportional hazards assumption.

***, **, and * indicate signi�cance at the 1%, 5%, and 10% levels, respectively, and signify rejection of the

proportional hazards assumption.
44



B.2 Model comparisons

In Table B.2, we compare the performance of the various models employed in our analysis.

The evaluation is based on several key metrics, including: (i) Bayesian Information Criterion

(BIC), which measures the trade-o� between model �t and complexity; (ii) Concordance

Index (C-index), which assesses the model's ability to correctly rank survival times; (iii) Brier

Score, which quanti�es the accuracy of probabilistic predictions; (iv) Integrated Absolute Error

(IAE), and (v) Integrated Squared Error (ISE), both of which measure the overall prediction

error across the survival time. Based on the results, the AFT-Weibull model demonstrates

the best overall performance, with the lowest BIC and strong predictive accuracy as re�ected

by the C-index. Additionally, the model consistently shows lower error rates in terms of Brier

Score, IAE, and ISE, further con�rming its robustness in modeling the survival time of zombie

papers.

Table B.2: Model performance comparison

Note: This table compares the performance of the models using (i) Bayesian Information Criterion (BIC),

(ii) Concordance Index (C-index), (iii) Brier Score, (iv) Integrated Absolute Error (IAE), and (v) Integrated

Squared Error (ISE).

B.3 Bootstrap AFT-Weibull estimation

To account for potential estimation uncertainty, we implemented a bootstrap-based AFT-

Weibull model. Table B.3 presents the results derived from 5,000 replications, reinforcing the

robustness of our main �ndings.
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Table B.3: Boostrap results of AFT-Weibull model

Note: This table reports the estimated coe�cients (in exponential form) from the bootstrap AFT-Weibull

model applied to the full sample, as well as to early, mid, and late stages of retraction. The results are based

on 5,000 bootstrap replications. Statistical signi�cance is denoted by ***, **, and * for the 1%, 5%, and 10%

levels, respectively.
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C Zombies Population Decay Dynamics (ZPDD)

C.1 Derivation and illustration of ZPDD

To model the evolution of the zombie paper population over time and the e�ect of retraction

e�orts on its dynamics, we choose a negative logistic decay model from ecology, adapted to

our context with a retraction rate derived from the predicted time to retraction T (from the

AFT model). This model demonstrates how the population of zombie papers decays over time

toward a carrying capacity K.

The model is de�ned as:

dZ

dt
= −r × (Z −K) (C.1)

where (Z − K) represents the number of retractable zombie papers at any given time, as-

suming that K papers are resistant to retraction. The negative sign (unlike in a traditional

logistic growth model) indicates decay rather than growth, as our goal is to reduce Z over time.

Substituting r = 1
T into the model:

dZ

dt
= − 1

T
× (Z −K) (C.2)

indicates that the rate of decay of Z is proportional to the number of retractable zombie pa-

pers (Z −K), with the e�ectiveness of retraction e�orts represented by 1
T . Smaller T values

(faster retraction) result in a higher rate of decay.

Rewriting the previous equation as:

dZ

Z −K
= − 1

T
dt (C.3)

and integrating both sides with respect to Z and t:∫
1

Z −K
dZ =

∫
− 1

T
dt (C.4)

yields

ln | Z −K | = − t

T
+ C (C.5)

where C is the constant of integration, allowing the solution to match initial conditions, such

as the initial zombie population Z0 at t = 0 in our context.

To solve for Z, we exponentiate both sides of the previous equation:

eln |Z−K| = e−
t
T
+C (C.6)

Simplifying this expression, and letting C ′ = eC , we have:

| Z −K |= C ′.e−
t
T (C.7)
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Assuming the initial condition Z(0) = Z0 at t = 0, we �nd:

Z0 −K = C ′.e0 = C ′ (C.8)

Substituting C ′ = Z0 − K back into Equation (C.7) gives the �nal solution describing the

decay of zombie papers over time:

Z(t) = K + (Z0 −K).e−
t
T (C.9)

where Z0 is the initial population of zombie papers, T is the predicted time to retraction (from

the AFT-Weibull model) controlling the rate of decay, and K is the carrying capacity (the

minimum achievable level of zombie papers).

Figure C.1 illustrates the theoretical decay of zombie papers over time for di�erent time-to-

retraction values T (100, 500, and 1000 days) using the ZPDD model described above. These

values simulate the impact of editorial policies on reducing T , which in turn increases the re-

traction rate r = 1
T . A lower T (e.g., T = 100 days, shown in red) represents a more e�ective

editorial environment, resulting in a higher retraction rate and faster decay. In contrast, a

higher T (e.g., T = 1000 days, shown in blue) re�ects a less e�ective editorial environment,

leading to slower decay. The dashed red line at K = 50 represents the minimum population

level, or �carrying capacity� of zombie papers�those that are highly resistant to retraction,

even under strong editorial e�orts. As Z approaches K, the decay rate decreases, illustrating

the diminishing returns in retraction e�orts as only the most entrenched zombie papers remain.

This model provides a robust framework for understanding the decay of zombie papers and

evaluating the impact of various editorial policy environments. The decay rate is directly

in�uenced by the predicted time to retraction T , derived from the empirical AFT model, thus

aligning the theoretical model with empirical �ndings. By adjusting T , we simulate the e�ects

of di�erent editorial policies on retraction dynamics, as discussed in Section 2.2. A lower

T represents more e�ective policy environments, resulting in faster decay of zombie papers,

while higher values of T indicate less e�ective policies, leading to slower decay. The model

incorporates a minimum population threshold K, representing zombie papers that are resis-

tant to retraction. As Z (the population of zombie papers) approaches K, the decay rate

further decreases, re�ecting the diminishing returns often observed in retraction e�orts for

deeply entrenched papers. This decay dynamic aligns with principles in population dynamics,

where populations asymptotically approach a limit, making the model intuitive and suitable

for analyzing retraction challenges. By capturing both immediate and long-term e�ects of

editorial policies, this model serves as a �exible tool for evaluating policy e�ectiveness and

understanding the persistence of zombie papers over time.
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Figure C.1: Theoretical decay of Zombies over time

Note: This �gure presents the theoretical decay of zombie papers over time with respect to di�erent time to

retraction scenarios, respectively for T = 100, 500, and 1000 days. Initial population Z0 = 1000 and carrying

capacity K = 0.05× Z0.

C.2 Zombie paper persistence and optimal mix of editorial policy inter-

ventions

To e�ectively reduce the number of zombie papers by a speci�c future time horizon, we de�ne

an optimization problem where the objective function represents the zombie paper population

Z(Tmax) at the target time Tmax. The aim is to minimize this population by adjusting the

levels of editorial policy interventions that target key retraction issues, balancing intervention

e�ectiveness with cost.

The objective function is de�ned as:

min
p1,p2,p3

∫ Tmax

0
Z(t)dt+ θ(p1 + p2 + p3) (C.10)

where p1, p2, and p3 denote intervention levels aimed at improving data transparency, result

reproducibility, and plagiarism detection, respectively. Tmax is the duration over which we

seek to minimize the zombie paper population (1,000 days in our context), and Z(t) is gov-

erned by ZPDD model. θ(p1 + p2 + p3) is the quadratic penalty term that discourages high

intervention levels unless they yield substantial reductions in Z(Tmax), with θ representing the

penalty weight. This quadratic penalty term rises steeply as each pi (i = 1, 2, 3) approaches
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its upper limit, promoting resource-e�cient intervention levels.

We express the retraction time T as a function of the intervention levels p1, p2, and p3:

T = T0 − α1p1 − α2p2 − α3p3 (C.11)

where T0 is the baseline retraction time with no interventions, and α1, α2, and α3 are positive

coe�cients that quantify the e�ectiveness of each intervention in reducing T .

Each intervention level is constrained between 0 (no intervention) and 1 (maximum feasible

intervention):

0 ≤ p1, p2, p3 ≤ 1 (C.12)

This constraint keeps interventions within realistic and feasible bounds.

To determine the optimal mix of interventions, we employ a numerical simulation approach.

For each combination of intervention levels (p1, p2, and p3), the model adjusts the retraction

time T according to the speci�ed e�ectiveness parameters, then simulates the zombie paper

population Z(t) over the de�ned period. The objective is to minimize the zombie population

at a speci�c future time point Tmax, by iteratively re�ning the intervention levels. At each

iteration, the model recalculates T and Z(t), while also incorporating a penalty term that

discourages excessive interventions unless they yield substantial reductions in Z(Tmax). This

process continues until the objective function, de�ned as Z(tmax) plus the penalty term,

reaches its minimum value. The resulting intervention levels represent the optimal, cost-

e�ective policy mix for minimizing the zombie paper population at the target time horizon.
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