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Abstract

This paper studies the firms’ capital accumulation process in a vintage capital
model with embodied technological change. We take into account that depreciation
is endogenous and in particular associated with vintage specific maintenance expen-
diture. We prove that maintenance is a local substitute for investment as soon as the
marginal cost of maintenance is strictly increasing. We show that maintenance and
investment in new capital goods appear as complements with respect to the changes
in some exogenous factors such as productivity, cost of maintenance, fixed cost of
operation, efficiency of maintenance services and appear as substitutes with respect
to the price of new machines. Allowing for investment in old vintages, we establish
that investment in old machines appears as a substitute of both investments in new
machines and maintenance services. We end up by analyzing the effects of techno-
logical progress on optimal plans and prove that a negative anticipation effect can
occur even without any market imperfections.
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1 Introduction

The need to introduce heterogeneity in the capital-accumulation process and to differ-
entiate capital goods by their vintage or productivity have been widely recognized since
the seminal work of Solow [37]. Together with embodied technological progress, the most
crucial aspect of the vintage capital models is that capital goods of later date are more
productive, or make products of higher quality (see [28], [38], [2] and [7]). Accordingly,
recent studies (see among others, [40], [16], [1], [17]) take into account the fact that firms
not only have to decide on the volume of the capital goods but also on the optimal age
distribution of them, and have been centered around the questions posed by Chari and
Hopenhayn [12]: Why are new technologies often adopted so slowly? Why do people of-
ten invest in old technologies even when apparantly superior technologies are available?
How are decisions to adopt new technologies affected by the prospect that even better
technologies will arrive in the future?

Vintage capital models are able to generate different properties and dynamics from the
classical capital accumulation models. The so-called “vintage effect”, i.e. the productivity
differential between successive vintages of capital due to embodied technological progress,
plays a crucial role on the firm’s optimal plans. Such a productivity differential creates an
advantage in investments in younger machines. Younger machines are not only endowed
with a superior technology but have also a longer lifetime than the older ones (see [5]).
However, they have also the disadvantage that the older machines are cheaper and the
costs of depreciation and discounting are less. With the presence of these latter effects,
[16] provides an explanation for why new technologies are often adopted on a large scale
only after a long period of time. Taking into account the vintage effect, [16] analyzes
in what way a perfectly competitive firm adjusts current investments to the predictions
of technological progress. As current investments do not affect the profitability of in-
vestments in future technologies in a perfectly competitive market, predictions of higher
technological progress in the future do not influence the current investments. However,
considering market power, [17] shows that a ”negative anticipation effect” occurs. Since
current investments increase output which decreases the price, this creates a negative ef-
fect on the profitability of future investments, so that the anticipated technology shocks
will be preceded by declines of investment. This will be followed by a period of higher
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growth where new capital goods can be purchased without reducing the output price too
much.

A common assumption in these studies and also in most of the macroeconomic literature
is that the depreciation rate is either exogenously fixed or acts as a residual (depreciation-
in-use hypothesis) independent of maintenance activities. However, empirical (see among
others, [23], [32], [30], [25]) and theoretical (see [20], [33], [9]) findings state that depreci-
ation rate is neither constant, as it increases with the ageing of the capital stock, nor a
residual variable as it can be controlled by the economic agents by choosing appropriate
levels of maintenance expenditures. Indeed, many firms have in mind the maintenance
implications of their adoption decisions. Even a firm can disregard the adoption of a new
technology if it anticipates a costly pace of maintenance costs. As argued by McGrattan
and Schmitz [30], maintenance expenditures are too important to be neglected even at
the aggregate level and hence, become inevitable when analyzing how the firms set their
optimal plans. The endogenous nature of depreciation rate depending on maintenance ex-
penditure also highlights the trade-offs between new investment and higher maintenance
expenditures and induces the following questions to emerge in order to reach a better
understanding of the firm’s capital accumulation process:

i) Under what conditions do maintenance and investment appear as substitutes or com-
plements?

ii) What is the optimal allocation of investment and maintenance across vintages?

iii) How do maintenance and investment decisions shift in response to an exogenous
change in the rate of technological progress?

iv) Can there be a negative anticipation effect even under non-monopolistic settings?

The economic literature devoted to the role of maintenance in the economy is mostly
composed of empirical or computational studies concerned with the cyclical properties
of maintenance and its implications for the business cycle (see among others [29] and
[14]. Among very few theoretical contributions, [6] studies the optimal allocation of labor
resources to production, technology adoption or capital maintenance in a one-hoss-shay
vintage capital model and points out that though capital maintenance deepens the tech-
nological gap by diverting labor resources from adoption, it generally increases the long
run output level at equilibrium. In a very recent study, how technological progress both
embodied and disembodied affects the life-time of capital have been analyzed by [4]. Apart
from these studies concerned with the economic performances at the aggregate level, there
is no accompanying theoretical contribution in a vintage capital framework at the firm
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level. [26] and [9] investigate the demand for maintenance services in some typical firms’
investment problems with a deliberate microeconomic approach. However, both studies
do not take into consideration the ageing of the capital stock and can not attempt to
answer the questions (ii) and (iv).

This paper provides the needed analysis of the firm’s capital accumulation process taking
into account that depreciation is endogenous and in particular associated with vintage
specific maintenance expenditure. We present precise answers to the questions (i)-(iv)
with a detailed analysis of the substitutability between investment and maintenance ser-
vices. We provide an intrinsic definition of complementarity vesus substitutability and
prove that maintenance is a local substitute for investment as soon as the marginal cost
of maintenance is strictly increasing. We show that maintenance and investment in new
capital goods appear as complements with respect to the changes in productivity, cost of
maintenance, fixed cost of operation and the efficiency of maintenance services. We also
find that investment in new capital goods and maintenance services are substitutes in
the traditional sense: when the price of new machines changes, the demands for capital
goods and for maintenance respond in the opposite direction. We analyze the effects of
technological progress on the firm’s optimal plans and prove that a negative anticipation
effect can occur even without any market imperfections. Our set up allows for an exten-
sion where investments in the old vintages are possible. We show that investment in old
machines appears as a substitute of both investments in new machines and maintenance
services.

A remarkable feature of our analysis is that it does not rely on particular parameterizations
of the exogenous functions involved in the model, rather, it uses only general and plausible
qualitative properties. Therefore the obtained results are robust.

The paper is organized as follows. Section 2 describes the model. Section 3 presents the
optimality conditions and the main assumptions of the analysis. In Section 4 we conduct
comparative economic analysis and aim to answer whether investments and maintenance
appear as complements or substitutes with respect to the variations in different exogenous
factors. We also make the analysis under an intrinsic definition of substitutability. Sec-
tion 5 analyzes the negative anticipation effect of the technological progress and presents
numerical illustrations. Section 6 extends the model to allow for invests in old machines
and discusses its implications. Some more technical proofs are given in Appendix.

2 The Model

In this section we present our model, which has the form of an age-structured PDE optimal
control system with the main dynamic equation similar to that introduced in [1]. The time
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is continuous, and for convenience we consider a finite (but “large”) horizon [0, T ]. For
any time t, we denote by K(t, a), the number of machines1 of age a which are in use by
the firm. Each machine has a fixed maximal lifetime ω. The productivity of the machines
build at time t is f(t), where it is assumed that due to embodied technological progress,
the new generations of machines are more productive than the old ones, that is, f is
increasing. Following [16], the total output produced at time t by the firm is defined as

Q(t) =

∫ ω

0

f(t− a)K(t, a) da,

where f(t − a) is the productivity of the machines that at time t are of age a, that is,
the productivity of the machines of technology vintage t− a. The firm’s revenue, is then
pQ(t), where p is the output price2.

When describing the evolution of the capital stock we take into account the dependence
of the capital depreciation on age and on maintenence. The depreciation is typically
larger for old capital goods (see for example, [8], [17]). Moreover, it is far from convincing
that the capital depreciation rate is exogenous, especially at the firm level (see [30], [9]).
Firms typically control the depreciation rate of capital by choosing an appropriate level
of vintage-specific maintenance services. Therefore we consider the level of maintenance
services that the firm chooses for the machines of age a at time t, denoted by m(t, a), as
a control variable. It is clear that the more are the resources devoted to maintenance, the
less will be the depreciation rate. With these in mind, the evolution law of capital stock
is described by

Kt + Ka = −δ(a,m(t, a))K(t, a), K(0, a) = K0(a), K(t, 0) = I(t),

where the subscripts denote the partial differentiation, I(t) is the inflow of new machines
that the firm purchases at time t, K0(a) is the given initial data for the firm’s capital, and δ
is the physical depreciation rate, depending on the maintenance level. In the present basic
version of the model we do not include the possibility to invest in non-frontier vintages,
for the sake of simplicity. Section 6 discusses some consequences of this possibility. The
strict meaning of the solution of the above equation is given e.g. in [19] or [42].

We denote by C(I) the total (acquisition and implementation) cost of installing I new ma-
chines. Although typically C(I) is a linear-quadratic function, in our analysis it may have

1Here “number” is a colloquial term. Strictly speaking, K(t, ·) is a (non-probabilistic) density, so that∫ a2

a1
K(t, a) da is the number of machines of age between a1 and a2.

2An output-dependent price p = p(Q(t)) could also be investigated in the same framework, following
[17]. However, in this paper we assume perfect competition in order to focus on the effects caused by the
maintenance, rather than of the output dependence of price, which is investigated in the abovementioned
paper.
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a rather general form. Notice that C(I) is assumed independent of time, which means that
although the newer machines become more productive due to the technological progress,
the acquisition cost remains the same. A typical example is the computer industry (see
[27]).

The cost of maintenance services is represented by D(M) where M accounts for the total
maintenance services at time t,

M(t) =

∫ ω

0

(m0 + m(t, a))K(t, a) da.

under the fact that as long as a machine is in operation it requires a fixed maintenance
(or operation) cost, m0 ≥ 0, in addition to the controlled maintenance level m(t, a) which
is a matter of the firm’s choice.

The firm maximizes the discounted value of the cash flow over the planning horizon
[0, T ]. Denoting the discount factor by r, we obtain the following age-specific dynamic
optimization model of the firm:

max
I,m

∫ T

0

e−rt [pQ(t)− C(I(t))−D(M(t))] dt (1)

subject to

Kt + Ka = −δ(a,m(t, a))K(t, a), K(0, a) = K0(a), K(t, 0) = I(t), (2)

Q(t) =

∫ ω

0

f(t− a)K(t, a) da, (3)

M(t) =

∫ ω

0

(m0 + m(t, a))K(t, a) da, (4)

m(t, a) ≥ 0, (5)

I(t) ≥ 0. (6)

Standing assumptions:

(i) C, D : [0,∞] 7→ [0,∞] have continuous second derivatives, and C(0) = 0, C ′(I) > 0,
C ′′(I) ≥ γC > 0, D(0) = 0, D′(M) ≥ γD > 0, D′′(M) ≥ 0;

(ii) δ : [0, ω] × [0,∞] 7→ [0,∞] is twice differentiable in m with Lipschitz continuous δ′m
and δ′′mm, and δ′m(a,m) < 0, δ′′mm > 0;

(iii) f : [−ω, T ] 7→ (0,∞) is piecewise continuous and non-decreasing;
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(iv) K0 : [0, ω] 7→ [0,∞) is continuous, m0 ≥ 0, r ≥ 0, p > 0.

We stress that the principle assumptions, namely that C and δ are strongly convex (the
second one with respect to m) are plausible. The first one is standard, while the second
means that the marginal efficiency of maintenance decreases. For the function

δ(a,m) = δ̄(a) +
1

α + βm
, α, β > 0, (7)

considered in [9], for example, assumption (ii) is apparently fulfilled. Here δ̄(a) (presum-
ably increasing) is the lower bound for the depreciation rate at age a, while δ̄(a) + 1/α is
the depreciation rate without maintenance.

Proposition 1 The problem (1)–(6) has a solution.

The proof (which is not obvious) is sketched in Appendix. We stress that the solution for
m need not be unique. Indeed, if for some t and a it happens that the optimal K(t, a) = 0
then the value of m(t, a) does not matter. At such points (if any) we set m(t, a) = 0.

3 Optimality Conditions

In order to solve the problem (1)–(6) we apply the maximum principle for general age-
structured optimal control problems obtained in [19]. We mention that the earlier opti-
mality conditions (see [10]) do not fit to the problem due to the presence of the control
m in both the differential equation (2) and the integral expression (4). The maximum
principle in [19] implies the following.

Proposition 2 Let I, m, K, Q, M be an optimal solution of problem (1)–(6). Then the
adjoint equation

ξt + ξa = (r + δ(a,m(t, a)))ξ − pf(t− a) + D′(M(t))(m0 + m(t, a)), (8)

ξ(t, ω) = 0, ξ(T, a) = 0

has a unique solution ξ, and

ξ(t, 0)I(t)− C(I(t)) = max
I≥0

{ξ(t, 0)I − C(I)} for almost all (t, a), (9)

ξ(t, a)δ(a,m(t, a)) + D′(M(t))m(t, a) = min
m≥0

{ξ(t, a)δ(a,m) + D′(M(t))m} (10)

for almost all (t, a) for which K(t, a) 6= 0.
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Since the optimal solution in the interval [0, ω] strongly depends on the initial data K0(a)
(which are in a sense arbitrary), and in the interval [T −ω, T ] is strongly distorted by the
forthcoming end of the planing horizon, the economically meaningful analysis in the next
section will be restricted to the time interval [ω, T − ω].

The following assumption and lemma allow to give a more explicit representation of the
optimal controls from the maximum principle.

Regularity assumption:
The following inequality is fulfilled for the optimal maintenance costs:

pf(t− ω) > D′(M(t))m0 for all t ∈ [0, T ]. (11)

Inequality (11) means that the marginal revenue obtained from the oldest machines in use
exceeds the marginal expenditure of maintaining the machines at the minimal required
level.

Lemma 1 For the solution ξ of the adjoint equation (8) it holds that ξ(t, a) > 0 for every
t ∈ (ω, T ) and a ∈ [0, ω).

Thanks to the above lemma the optimality conditions (9) and (10) can be rewritten in
the following more convenient form. Define the functions

(C ′)−1
+ (y) =

{
(C ′)−1(y) if y ≥ C ′(0),
0 else,

(δ′m)−1
+ (a, y) =

{
(δ′m)−1(a, y) if y ≥ δ′m(a, 0),
0 else,

where (C ′)−1 and (δ′m)−1 denote the inverse functions of the corresponding derivatives
(with respect to m for δ′m). Then the optimal investment and maintenance can be ex-
pressed from (9) and (10) as

I(t) = (C ′)−1
+ (ξ(t, 0)), m(t, a) = (δ′m)−1

+

(
a,−D′(M(t))

ξ(t, a)

)
. (12)

Remark 1 It is useful to notice that in (12) (C ′)−1
+ is increasing with respect to ξ(t, 0)

and (δ′m)−1
+ is increasing with respect to ξ(t, a). The assumptions for C, D, and δ imply

that at points where I (resp. m) is positive, the increase is strict.
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Let us denote

m̂(a,M, ξ) = (δ′m)−1
+

(
a,−D′(M)

ξ

)
. (13)

With this feed-back low the adjoint equation becomes

ξt + ξa = (r + δ(a, m̂(a,M(t), ξ)))ξ − pf(t− a) + D′(M(t))(m0 + m̂(a,M(t), ξ)). (14)

The right-hand side is well-defined and Lipschitz continuous in ξ ≥ 0. Indeed, if ξ is close
to zero, then −D′(M)

ξ
< δ′m(a, 0) due to the assumption that D′(M) ≥ γD > 0, hence

m̂(a,M, ξ) = 0. The other points of non-differentiability of m̂ in ξ are caused by the
operation of maximum involved in (δ′m)−1

+ , which does not spoil the Lipschitz continuity.
In particular, (14) has a unique solution, which necessarily coincides with the one of (8).

4 Comparative economic analysis

In this section we investigate how the optimal investment and maintenance depend on
different exogenous factors involved in the model. In some of the considerations below
we assume that the maintenance cost, D(M), depends linearly on the total maintenance
and operation services, that is D(M) = dM (d > 0 is a constant). This is a substantial
simplification, since in this case the adjoint equation (14) completely decouples from the
state equation and can be investigated separately. Namely, it takes the form

ξt+ξa = (r+δ(a, m̂(a, ξ)))ξ−pf(t−a)+d(m0+m̂(a, ξ)), ξ(t, ω) = 0, ξ(T, a) = 0, (15)

where now we skip the argument M(t) in the notation m̂(a,M, ξ), since the latter is
independent of M . As Remark 3 shows, the assumption for linearity of the maintenance
cost is essential for the validity of the next proposition. However, the two most interesting
statements below are proved in the case of a general nonlinear maintenance cost function.
In what follows it is supposed that the standing and the regularity assumptions hold for
the sets of data involved in the considerations. Also the linearity condition D(M) = dM
is assumed in this section, unless an alternative condition is specifically formulated.

Proposition 3 Consider two technology functions f1 and f2 for which f1(t) < f2(t) at a
time t ∈ [0, T − ω]. Then for the corresponding optimal solutions, (I1,m1) and (I2,m2),
it holds that

I1(t) ≤ I2(t), m1(t + a, a) ≤ m2(t + a, a) for every a ∈ [0, ω].

Moreover, each of the inequalities is strict, unless I1(t) = I2(t) = 0 or m1(t, a) =
m2(t, a) = 0, respectively.
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According to this proposition, investment and maintenance appear as complements with
respect to the productivity. It is optimal for a firm to invest more in technologies of higher
productivity and also to maintain more these vintages.

The proof of the above proposition is simple, therefore we present it in the main text.

Proof of Proposition 3. On every characteristic line starting at the point (t, 0) (that
is on the segment {(t + s, s) : s ∈ [0, ω]}) the solution ξ of the adjoint equation (15)
satisfies an ordinary differential equation. Namely, η(s) = ξ(t + s, s) satisfies

η′(s) = (r + δ(s, m̂(s, η(s)))η(s)− pf(t) + d(m0 + m̂(s, η(s))), (16)

with η(ω) = 0. We have to compare the solutions η1 and η2 of this equation with f1 and
f2 substituted for f . If η1 = η2, then the difference of the right-hand sides is

η′2 − η′1 = −p(f2(t)− f1(t)) < 0.

Since η1(ω) = η2(ω) = 0, this implies that η2(s) > η1(s) for s ∈ [0, ω). Then the formulas
in (12) and Remark 1 imply the claims of the proposition. Q.E.D.

Corollary 1 Let āi(t) (i = 1, 2) be the maximal age of maintaining machines at time t
for the technology function fi, that is, mi(t, a) = 0 for a ≥ āi(t), but mi(t, a − ε) > 0.
Assume that ā2(t) > 0. Then

ā1(t) < ā2(t).

The maximal age of the machines to be maintained would be higher for the more produc-
tive technologies. Even if it may be technologically feasible to maintain a machine till the
end of its maximal life-time, it ceases to make economic sense at some point because the
upkeep ultimately becomes more expensive compared with the cost of a new and superior
machine (see [24]). This sheds some light on the rapid disappearance of early models in
the computer industry. As pointed out by [21], at an age of one year, the RAM of a
used computer is 48 percent below the median RAM of a new computer, its speed is 36
percent slower and its hard disk is 52 percent smaller. For older ages, the decline is rapid
and continues to fall but the oldest ages. The new computer models are typically more
productive, therefore they are maintained more relative to the older ones.

Proposition 4 Consider two prices of maintenance, d1 < d2. Then for the corresponding
optimal solutions, (I1,m1) and (I2,m2), it holds that

I1(t) ≥ I2(t), m1(t, a) ≥ m2(t, a) for every a ∈ [0, ω].
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Moreover, each of the inequalities is strict, unless I1(t) = I2(t) = 0 or m1(t, a) =
m2(t, a) = 0, respectively.

The proof of this proposition uses exactly the same argument as the previous one (ex-
cepting the case m0 = 0, which requires some more routine work), therefore we skip
it.

Corollary 1 applies also to Propositions 4. Exactly the same claim as in Proposition 4
holds for the dependence of the optimal solution on the fixed cost of operation, m0.

Investment and maintenance appear as complements with respect to the price of main-
tenance and with respect to the fixed costs of operation. Remembering the empirical
assesment of the economy-wide importance of the maintenance costs in [30] (around 6%
of the Canadian GDP), this proposition becomes vital in exploring the firm’s optimal
plans analytically. An increase in the price of maintenance services leads firms to lower
their demand for both investment goods and maintenance services. Thus, in accordance
with [9], instead of finding that maintenance is a substitute for investment expenditures,
we found that investment and maintenance behave as gross complements. This confirms
the empirical findings of [31] that the investment has a positive and statistically signif-
icant impact on the maintenance spending. The interpretation is that investment acts
as a proxy for demand conditions that exert a direct impact on the desire to maintain
existing stock. An increase in the price of maintenance leads to a decrease in both the
maintenance and the investment activities due to an income effect and leads to a decrease
in the maximal age of the machines to be maintained due to a substitution effect. These
results reinforce the empirical findings of [34] that puts forward the increase in the relative
cost of maintenance as the source of rising scrapping rates between 1947 and 1969 on the
domestically produced post-war vintage automobiles in United States.

According to Proposition 4, investment and maintenance appear as complements also with
respect to the fixed costs of operation. Accordingly, the maximal age of the machines to
be maintained decreases with the increasing fixed costs of operation and with the price
of maintenance. It is important to note that the maintenance is lower when the cost of
operation is higher. The fixed cost assumption is motivated by empirical observations.
For instance, the increase in demand for IT positions is a clear indication of the need to
backup computer investments with outlays on maintenance and support. Indeed, research
by Gartner Group (1999), a private consulting firm shows that, as of 1998, for every $1
that firm spent on computers there was another $2.30 spent on wages for IT employees and
consultants (see [43]). The fixed cost of operation induces the phenomenon of obsolescence.
Once the marginal productivity of a machine falls behind the fixed cost of operation the
firm will choose not to maintain the machine anymore. These results allow to explain why
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older models disappear more rapidly from the market in computer industry especially in
comparison with the auto industry. One car for $50 000 is operated by one person, one PC
for $1 000 - by one person. If the salary of the two workers are about the same which are
included in the cost of operation, then m0 for computers is 50 times larger than that for
cars (per input price) leading to a lower level of maintenance and thus higher depreciation
rates for the computers.

Proposition 5 Consider two depreciation functions δ1 and δ2 for which the standing
assumptions hold, and additionally δ1 and δ2 are related in the following way: for every
a ∈ [0, ω] and m ≥ 0 (i) δ1(a,m) ≤ δ2(a,m); (ii) δ′1,m(a, 0) ≤ δ′2,m(a, 0), where δ′i,m is the
derivative of δi with respect to m. Then for the corresponding optimal solutions, (I1,m1)
and (I2,m2), it holds that

I1(t) ≥ I2(t), m1(t, a) ≥ m2(t, a) for every a ∈ [0, ω]. (17)

Moreover, if the inequality in (i) is strict for a > 0, then each of the inequalities (17) is
also strict, unless I1(t) = I2(t) = 0 or m1(t, a) = m2(t, a) = 0, respectively.

The proof uses once again a comparison argument for equation (16), but requires some
more technical arguments, therefore it is presented in Appendix.

Investment and maintenance appear to be complements also with respect to the efficiency
of maintenance. This means that higher depreciation rate for the same maintenance level
leads to less investment and maintenance. However, the situation is different for the de-
pendence of the optimal investment and maintenance on the acquisition cost of machines.

Proposition 6 Consider two costs functions for new capital, C1 and C2, where C ′
1(I) <

C ′
2(I) for all I > 0. Then for the corresponding optimal solutions, (I1,m1) and (I2,m2),

it holds that
I1(t) ≥ I2(t), m1(t, a) = m2(t, a) for every a ∈ [0, ω].

Moreover, the inequality is strict, unless I1(t) = I2(t) = 0.

For a proof it is enough to notice that the adjoint equation (15) does not depend on the
function C, therefore the formulae for I and m in (12) imply the claim.

Remark 2 The independence of the maintenance on the price of the new machines is
heavily bind with the assumption of linearity of the maintenance cost. If for the cost-of-
maintenance function, D(M), it holds that D′′(M) ≥ ρ > 0 for every M ≥ 0, then

m1(t, a) < m2(t, a) for some (t, a) ∈ [ω, T − ω]× [0, ω],
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provided that m2(t, a) is not identically zero. The proof of this claim is much more involved
and we do not present it.

The decision on whether to maintain an existing machine or letting it scrap has to be made
using the marginal costs of new machines. This issue has been the subject of many em-
pirical studies (see, among others, [36], [35], [3], [32]). In a recent paper, [25] disentangles
the source of the dramatic increase in the longevity of automobiles over the past 25 years
and concludes that with the increase in the new car prices and the decrease in the expense
of auto maintenance, it is optimal to increase the maintenance to an older age. However,
being among the very few analytical contributions, [9] with a homogeneous stock of capi-
tal goods assumption, mentions that maintenance and investment act as complementary
even with respect to the acquisition cost of machines. In this respect, Proposition 6 to-
gether with Remark 2 analytically confirm the empirical findings and prove to be crucial
in identifying the effect of the acquisition costs of machines on the scrapping rates and the
link between investment and maintenance. In contrast to [9], allowing for differentiation
of capital goods, our model confirms that maintenance and investment appear to be sub-
stitutes with respect to the acquisition cost of machines when one assumes a convex cost
of maintenance services. Accordingly, the increase in the price of new machines should
lead firms to delay replacement and to increase maintenance, thus reducing the rate of
depreciation.

In order to make the further analysis clearer we show that under an additional natural
assumption (which, however is not used in Proposition 7 below) the maintenance of ma-
chines of certain vintage decreases with the age.

Lemma 2 Assume that the productivity function f is differentiable, that the depreciation
function δ(a,m) is differentiable in a, that δm is independent of a, and that δ′a(a,m) ≥ 0
(alder machines depreciate faster). Then for the optimal maintenance m and every t ∈
[0, T − ω] and a ∈ (0, ω) for which m(t, a) > 0 it holds that

∂m

∂a
(t, a) ≤ 0.

The proof is given in Appendix. Notice that the particular function δ defined in (7)
apparently satisfies the assumptions of the lemma if δ̄ is differentiable and increasing.

Now we investigate the impact of the rate of the technological progress on the drop of
maintenance with age. In order to filter out the role of the other factors, in particular of
the productivity level, we consider two identical firms, differing only in the rate of the
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technological progress of the equipment they use. For the corresponding (differentiable)
technology functions, f1 and f2 we assume that at a time t∗ ∈ [0, T − ω] it holds that
f1(t

∗) = f2(t
∗) (that is, the firms are competitive), while f ′1(t

∗) < f ′2(t
∗). Denote by m1

and m2 the corresponding optimal maintenance functions.

Proposition 7 For every a ∈ (0, ω) for which m1(t
∗ + a, a) > 0 it holds that

∂m1

∂a
(t∗ + a, a) >

∂m2

∂a
(t∗ + a, a). (18)

To avoid misunderstanding we stress that the functions m1 and m2 are first differentiated
in their second argument, a, and then the derivatives are evaluated at (t∗ + a, a). The
proof of the proposition indicates how the above inequality can be interpreted if some of
the derivatives in (18) does not exist.

Proof. Consider ages a1 = a − h and a2 = a + h, where h > 0 is a small increment.
Due to the assumptions that f1(t

∗) = f2(t
∗) and that f ′1(t

∗) < f ′2(t
∗) we have that f1(t

∗−
h) > f2(t

∗ − h) for small h > 0. Similarly, f1(t
∗ + h) < f2(t

∗ + h). Then, according to
Proposition 3, for any a ∈ (0, ω) it holds that

m1(t
∗+a, a+h) = m1((t

∗−h)+(a+h), a+h) > m2((t
∗−h)+(a+h), a+h) = m2(t

∗+a, a+h)

and similarly m1(t
∗ + a, a− h) < m2(t

∗ + a, a− h) (the inequalities are strict where some
of the m-s are positive). Then

m1(t
∗ + a, a + h)−m1(t

∗ + a, a− h) > m2(t
∗ + a, a + h)−m2(t

∗ + a, a− h).

Dividing by h and passing to the limit (where we should notice that the strict inequality
is uniform in h) we complete the proof. Q.E.D.

Embodied technological progress is both quantitatively and qualitatively one of the most
important features of investment dynamics (see [22]). As mentioned in [4], a technological
acceleration induces two opposite effects: an incentive to reduce maintenance and scrap
earlier in order to profit from the increased efficiency of new vintages but also an incen-
tive to increase maintenance and delay scrapping due to a drop in the profitability of
investment. The above proposition resolves this trade-off analytically so that the mainte-
nance appears to be a substitute of technological growth. Accordingly, depreciation rate
is an increasing function of embodied technological progress and this implies a strong
mechanism through which embodiment affects capital depreciation. In particular, one can
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put forward technological acceleration as the main source of rapid disappearance of early
models in the computer industry. It is well known that the surge in computer investment
has come as a direct result of rapid price declines which themselves have been due to
rapid technological progress (see among others [43], [44], [21]). Trying to explain how
durables with high depreciation rates may have more volatile expenditures, [39] presents
that car bodies are redesigned every 4-5 years and new generations of Intel processors
appear on average 2-3 years and computers have higher depreciation rates compared to
autos. Indeed, [15] measures that the quality adjusted price has been falling at an average
rate of 23% for computers and 2.5% for autos a year during 1960-2000. In confirmation
with these, as the technological progress in computer industry has been much more rapid,
it is clear from Proposition 7 that the resources devoted to maintenance would be lower
leading to higher scrapping rates.

So far we investigated whether investments and maintenance appear as complements or
substitutes with respect to variations in different exogenous factors. Now we give an
intrinsic definition of complementarity versus substitutability, which is related to the
terminology in [30]. In contrast to the previous contributions which are mainly empirical,
we present a full analytical characterization aiming to find out to what extent maintenance
can be a substitute for investment.

Definition 1 Let I and m be the optimal investment and maintenance functions in
problem (1)–(6), and let V (I, m) be the corresponding objective value. Maintenance is
called a local intrinsic substitute (complement) of investment, if for any smaller investment
function Ĩ(t) ≤ I(t), t ∈ [0, T ] (where the inequality is strict whenever I(t) > 0), it holds
that for every maintenance function m̃ for which m̃(t, a) > m(t, a) (m̃(t, a) < m(t, a),
respectively) whenever m(t, a) > 0, it holds that

V (Ĩ , m + h(m̃−m)) > V (Ĩ , m)

for all sufficiently small h > 0.

Thus m is a local substitute for I, if for any down-ward shifted investment function Ĩ
(clearly V (Ĩ , m) ≤ V (I, m)), it holds that each sufficiently small up-ward shift of m
improves the objective value. Certainly it may happen that maintenance is neither a
substitute nor a complement of investment. However, under natural conditions it could
be argued that m cannot be both substitute and complement for I (in particular, this
follows from the proof of the next proposition).

Proposition 8 Assume that I(t) > 0 for every t ∈ [0, T − ω), and that m(t, a) is not
identically zero. Assume also that the marginal cost of maintenance is strictly increasing,
that is D′′(M) ≥ ρ > 0. Then maintenance is a local intrinsic substitute for investment.
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The proof is given in Appendix.

5 Anticipation effects of the technological progress

Our aim in this section is to contribute to the answer of the following question formulated
by [12]: How are decisions to adopt new technologies affected by the prospect that even
better technologies will arrive in the future? This question is increasingly important if one
has in mind the recent dynamics in the computer industry. Following from Figure 5 in [39],
it is clear that the general pattern seems to be one-year expenditure spikes (in 1982, 86,
91 and 95) followed by several years of falling investment rates. Apparently, investments
are optimally synchronized with the arrival of the each new operating system. Although
many similar examples from different sectors can be found, the theoretical analysis of
such an anticipation effect and the conditions under which it exists are limited in the
literature.

In a perfectly competitive environment, [16] have shown that the future technological de-
velopments have no effect on current investment. The firm is assumed to be too small to
influence output prices implying that the revenues of different machines do not influence
each other so that current investments do not affect the profitability of investments in
future technologies. On the contrary, as shown in [17], the situation changes if the firm
has a market power. A negative anticipation effect occurs so that current investments in
recent generations of capital goods decline when faster technological progress is expected
to take place in the future. In addition to this, it is also proven in [18] that a negative
anticipation effect of the technological progress can prevail due to imperfect financial mar-
kets. However, all of these studies assume an exogenous rate of depreciation and neglect
the importance of the maintenance activities. With these in mind, a natural question
arises: can an anticipation effect take place even in a perfectly competitive environment
without imperfections, by taking into account the endogenous nature of the age-specific
depreciation rate?

Our goal is to analytically investigate how an expected technological breakthrough influ-
ences the optimal investment and maintenance of a firm. Following [17] we consider the
following two technology functions f :

f(s) = f1, ∀s ∈ [0, T ], (19)

and

f̄(s) =

{
f1 for s ≤ t̄,
f2 for s > t̄,

(20)
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where t̄ ∈ (ω, T − ω) is a time of a technological breakthrough3, thus f2 > f1.

We shall compare the optimal behavior of two identical firms assuming that one of the
firms anticipates the technological breakthrough at time t̄ from the very beginning of the
planning horizon (thus it solves its optimization problem with the technology function
(19)), while the second firm learns about the technology shock when it occurs (thus its
behaviour before time t̄ is determined by the technology function (20)).

Denote by I, m, K, Q, M the solution of optimization problem (1)–(6) for the non-
anticipating firm (with technology function f(s) = f1), and by Ī , m̄, K̄, Q̄, M̄ – the
optimal solution for the anticipating firm (with technology function f̄).

Our main result in this section is preceded by two lemmas which are essential for the
proof but also are of economic interest.

The first one claims continuity of the maintenance costs M̄(t) and M(t). We mention that
the continuity is not an obvious fact, since, as it will be seen in the second lemma, the
investment, Ī, and the maintenance services, m̄, of the anticipating firm are discontinuous
if f2 > f1.

Lemma 3 The functions M̄ and Q̄ are Lipschitz continuous.

Lemma 4 (i) The optimal investment, Ī, is Lipschitz continuous on [ω, T −ω], excepting
the moment t = t̄ where Ī has an upward jump of magnitude at least c.(f2 − f1) (c is a
positive constant independent of f1 < f2, with a bounded f2).
(ii) The optimal maintenance, m̄, is Lipschitz continuous, excepting the segment {(t̄+s, s),
s ∈ [0, ω)}, where it has an upward jump of magnitude at least c.(ω − s).(f2 − f1) (for
those s for which m̄(t̄ + s− 0, s− 0) > 0).

The next proposition claims that the presence of maintenance costs leads to a decrease
in the investments (negative anticipation effect) before an expected technological break-
through. To simplify the proof we assume that the maintenance level m(t, a) ≥ 0 is fixed
and the optimization in (1)–(6) is carried out only with respect to the investments I(t).

Proposition 9 Assume that the fixed operation cost, m0, is positive, and that the main-
tenance cost function is marginally increasing: D′′(M) ≥ ρ > 0. Then Ī(t) < I(t) in some
interval contained in (t̄− 2ω, t̄).

3As before, we exclude from the consideration the initial and the final intervals of length ω since the
behaviour of the firm in these intervals is strongly influenced by the initial data and by the end of the
planning horizon, respectively.
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The proofs of the above lemmas and proposition are technical and are presented in Ap-
pendix.

Our analysis shows that a negative anticipation effect occurs even for a perfectly compet-
itive firm operating in a perfect financial market if the firm has the freedom to chose the
level of maintenance of its machines (hence the scrapping time), under the assumption
that the maintenance costs are marginally increasing. As the next experiments show, the
negative anticipation effect holds not only for the investment, but also for the mainte-
nance (if used as a second control variable): the anticipating firm maintains the machines
produced before the technological breakthrough less than the non-anticipating one, and
this drop in maintenance begins even before the breakthrough.

Figures 1 and 2 represent the optimal investment and maintenance for the anticipating
firm with the following data specifications, which are economically plausible4:

p = 1;
ω = 10;
r = 0.003;
m0 = 0.6;
C(I) = bI + 0.5cI2, with b = 5, c = 1;
D(M) = bmM + 0.5cmM2, with bm = 0.6, cm = 0.03;
δ(a,m) = δ̄ + 1/(α + βm), δ̄ = 0.02, α = 2, β = 8;
f̄(t) - given by (20) with t̄ = 30, f1 = 20, f2 = 30.

[Figure 1 about here.]

[Figure 2 about here.]

Figure 1 shows the drop of investments before the technological breakthrough at time
t̄ = 30 and the jump up at t̄. The solid line corresponds to the investment level of
the non-anticipating firm before t̄. Just before the technological break-through the firm
reduces the investments in new machines in order to invest more after the break-through
as it becomes more profitable to wait for the new generations endowed with more efficient
technologies. It should be noted as well that the steady level of investment after the
shock is higher than that before the shock. The same result applies to the maintenance
activities as well, reinvoking the importance of Propositions 3–5. Figure 2 represents the

4The numerical solution of the of the problem (1)–(6) and of the extended problem considered in the
next section are obtained by the general solver developed by the second author, which is presented in
[13, 41].
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maintenance services, which also decrease for machines of the old technology even before
t̄, and jump up for the machines of the new technology (produced after t̄). It is optimal
for the firm to reduce maintenance and let the older vintages scrap earlier just before the
shock in order to be able to devote these resources for maintaining the new generations
of superior machines after the shock. It is also clear from Figure 2 that maintenance of
machines of certain vintage decreases with the age (cf. Lemma 2). It is remarkable that the
machines of the superior technology are maintained more shortly after the technological
shock than later. In fact, as also the investments shortly after t̄ overshot the long run
equilibrium corresponding to f2, thus investment and maintenance appear once more as
complements.

Remark 3 Clearly, f̄(t) ≥ f(t) for every t. However, as the above numerical results
show (as it is claimed also by Proposition 9 for the investments) that Ī(t) < I(t) and
m̄(t, a) < m(t, a) for some t and a. This implies that the assumption of linearity of the
maintenance cost is essential for the claim of Proposition 3.

6 Investments in old technologies

In the previous considerations we assumed that the firm can invest only in the newest
currently available technology. In this section we allow for investments in old machines,
denoted by J(t, a), where a indicates the age of the technology. The possibility to invest
in old machines leads to the following changes in the basic model (1)–(6). The equation
of the dynamics of the capital becomes

Kt + Ka = −δ(a,m(t, a))K(t, a) + J(t, a), K(0, a) = K0(a), K(t, 0) = I(t).

The objective function includes the cost of investment in old machines:

max

∫ T

0

e−rt

[
pQ(t)− C(I(t))−D(M(t))−

∫ ω

0

Cold(a, J(t, a)) da

]
dt,

where Cold(a, J) is the cost of installation of J machines of age a.

The adjoint equation (8) remains the same as in the case of investments in new machines
only. The maximal principle from [19] implies that

J(t, a) = ((Cold)′)−1(ξ(t, a)), (21)
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where now J(t, a) is allowed to be also negative. Therefore a state constraint K(t, a) ≥
0 should be added to the model, in principle, but in the numerical results below it is
automatically fulfilled.

A remarkable feauture of the analysis is that propositions 3–5 are still valid also in the
case of investment in old machines.

Below we investigate numerically (see footnote 4) what is the impact of the possibility to
invest in old machines on the optimal investment and maintenance. We consider a firm
with the same parameters as in Section 5 with the additional specification

Cold(a, J) = bold(a)J + 0.5coldJ2, with bold(a) = b ∗ (1− a/ω), cold = c.

Figures 3, 4, and 5 represent the optimal investments in new machines, the optimal in-
vestment in old machines, and the optimal maintenance, respectively. Comparing with
figures 1 and 2 we see that the investment in old machines appears as a substitute of
both investments in new machines and maintenance. It is remarkable that the relative
drop of investment in new machines before the technological shock at t̄ = 30 is larger if
investments in old machines are allowed. The reason is, that a part of the investments in
new machines shortly before the technological breakthrough at time t̄ (see Figure 1) are
replaced by investments in old machines, which will be scrapped shortly after t̄ so that
they also can be replaced by the superior machines. This leads to a second anticipation
effect, namely, that there will be more scrapping due to maximal age, ω, soon after t̄, com-
pared with the case of J(t, a) = 0, hence the still existing machines will be maintained
more. This is clearly seen on Figure 5: the peak of m(t, a) for t̄ < t − a < t̄ + 3 is much
higher than the one on Figure 2, both in relative and in absolute terms.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

7 Appendix

Proof of Proposition 1. (A sketch.) First of al, it is not difficult to argue that any
minimizing sequence {(Ik,mk)} is bounded in L∞: for I, due to the strong convexity of
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C, and for m – due to the finite life time of the physical capital and D′(M) ≥ γD > 0.
Then the main argument is standard, in principle: the L2-weak lower semi-continuity of
integral functionals with convex integrands.

The function C(I) is supposed convex and I enters linearly in the (boundary condition
of) differential equation (2). The function D(m) is also supposed convex, but the main
trouble is caused by the nonlinearity of (2) with respect to m. However, the solution of
equation (2) has an explicit (Cauchy-type, along the characteristics) representation, where
δ is comfortably integrated. This makes it possible to use the convexity of δ to prove that
the weak limit of {mk} gives an objective value that is not worse than the limit of the
objective values provided by mk. We skip the details of this proof. Q.E.D.

Proof of Lemma 1. On every characteristic line starting at a point (t, 0) (that is on
the segment {(t + s, s) : s ∈ [0, ω]}) the solution ξ of the adjoint equation (8) satisfies an
ordinary differential equation. Namely, η(s) = ξ(t + s, s) satisfies

η′(s) = (r + δ(s,m(t + s, s)))η(s) + pf(t)−D′(M(t + s))(m0 + m(t + s, s)), (22)

with η(ω) = 0. For η = 0 the right-hand side is

η′ = pf(t)−D′(M(t + s))(m0 + m(t + s, s)).

If it happens that K(t+ s, s) = 0, then m(t+ s, s) = 0 due to the convention made at the
end of Section 2. Otherwise, we also have m(t + s, s) = 0 due to (10) and the assumption
that D′(M(t + s)) ≥ γD. Thus we have

η′ = pf(t)−D′(M(t + s))m0 ≤ pf(t + s)−D′(M(t + s))m0 < 0,

due to the monotonicity of f and the regularity assumption. Thus the region η ≥ 0 is
invariant with respect to (22) backward in time, and its boundary strictly repels the
trajectories. Q.E.D.

Proof of Proposition 5. We employ again a comparison argument for the solutions
η1 and η2 of equation (16), corresponding to the two functions δ1 and δ2. For any fixed
t ∈ [0, T−ω] we have to prove that η1(s) ≥ η2(s) for every s ∈ [0, ω]. Then the claim of the
proposition would follow from Remark 1. That is, we have to prove that if η1 = η2 = η > 0
at some point s, then η′1 ≤ η′2, which is equivalent to

δ1(s, m̂1(s, η))η + dm̂1(s, η) ≤ δ2(s, m̂2(s, η))η + dm̂2(s, η),
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where

m̂i(s, η)) = (δ′i,m)−1
+

(
s,−d

η

)
.

Substituting y = −d/η, we see that we have to prove that

δ1(s, (δ
′
1,m)−1

+ (s, y))− (δ′1,m)−1
+ (s, y)y ≤ δ2(s, (δ

′
2,m)−1

+ (s, y))− (δ′2,m)−1
+ (s, y)y (23)

for every y < 0. To do this we consider three cases.

1. Let y ≤ δ′1,m(s, 0). Then, according to condition (ii) also y ≤ δ′2,m(s, 0). Then

(δ′1,m)−1
+ (s, y) = (δ′2,m)−1

+ (s, y) = 0,

and (23) is implied by δ1(s, 0) ≤ δ2(s, 0).

2. Let δ′1,m(s, 0) < y < δ′2,m(s, 0). Then substituting mi(s, y) = (δ′i,m)−1
+ (s, y) and taking

into account that y = δ′1,m(s,m1(s, y))) we have

δ1(s, (δ
′
1,m)−1

+ (s, y))− (δ′1,m)−1
+ (s, y)y = δ1(s, (δ

′
1,m)−1(s, y))− (δ′1,m)−1(s, y)y

= δ1(s,m1(s, y))− δ′1,m(s, m1(s, y)))m1(s, y) ≤ δ1(s, 0)

≤ δ2(s, 0) = δ2(s, (δ
′
2,m)−1

+ (s, y))− (δ′2,m)−1
+ (s, y)y,

where the inequality in the second last line follows from the convexity of δ1 with respect
to m. This verifies (23) also in this case.

3. Let δ′1,m(s, 0) ≤ δ′2,m(s, 0) < y. In this case inequality (23) can be equivalently rewrit-
ten without the “+” subscripts. Using again the notation mi(s, y) (where now the “+”
subscript is omitted), we represent (23) in the following way:

δ1(s,m1(s, y))− ym1(s, y) ≤ δ2(s,m2(s, y))− ym2(s, y),

where y = δ′1,m(s,m1(s, y))) = δ′2,m(s,m2(s, y))). Then the proposition follows from the
following claim.

Claim. Let for two differentiable convex functions g1 and g2, defined on [0,∞), it hold that
g1(m) ≤ g2(m) for every m ≥ 0. Let m1 and m2 be two points such that g′1(m1) = g′2(m2).
Then

g1(m1)− g′1(m1)m1 ≤ g2(m2)− g′2(m2)m2.

The proof is straightforward:

g2(m2) ≥ g1(m2) ≥ g1(m1) + g′1(m1)(m2 −m1)
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= g1(m1) + g′1(m1)m2 − g′1(m1)m1 = g1(m1) + g′2(m2)m2 − g′1(m1)m1,

where the first inequality follows from the convexity of g1. This implies the claim, hence,
completes the first statement of the proposition.

To prove the second statement of the proposition one should just reconsider the above
inequalities having in mind the additional assumptions. Q.E.D.

Proof of Lemma 2. Since δm is independent of a, m̂ is also independent of a, therefore
below we skip the argument a of m̂.

If m(t, a) > 0 we have
ma(t, a) = m̂ξ(ξ(t, a))ξa(t, a).

Having in mind the definition of the function m̂ in (13) and applying standard calculus
one obtains that

m̂ξ(ξ(t, a)) = [δ′′mm(m̂(ξ))]
−1 d

ξ2
> 0,

where the inequality is due to the standing assumption (ii). Differentiating the adjoint
equation (15) in a we obtain for ν(t, a) = ξa(t, a) the equation

νt + νa = [...]ν(t, a) + δa(a, m̂(ξ(t, a)))ξ(t, a) + pf ′(t− a), ν(t, ω) ≤ 0,

where the term in the brackets is of no importance, and the inequality ν(t, ω) ≤ 0 follows
from ξ(t, ω) = 0, ξ(t, a) ≥ 0. Since f ′ ≥ 0, δa ≥ 0, and ξ(t, a) ≥ 0 (according to
Lemma 1), the solution ν(t, a) is non-positive, by the same argument used in the proof of
Proposition 3. Q.E.D.

Proof of Proposition 8. We remind that we consider the control variables I and m as
elements of the spaces L∞([0, T ]) and L∞([0, T ] × [0, ω]), respectively. The proof of the
maximum principle in [19] (see also Proposition 1 in [41]) implies that the functional m −→
V (Ĩ , m) is Gâteaux differentiable and its derivative dmV has a functional representation,
namely (compare with the derivative with respect to m of the expression in the right-hand
side of (10))

dmV (Ĩ , m)(t, a) = [ξ̃(t, a)δ′m(a,m(t, a))−D′(M̃(t))]K̃(t, a),

where K̃ and M̃ correspond to the control pair (Ĩ , m), and ξ̃ is the corresponding solution
of the adjoint equation (8). Clearly, to prove the proposition it is enough to show that
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dmV (Ĩ , m)(t, a) ≥ 0, for all (t, a) ∈ [0, T −ω]× [0, ω) and the inequality is strict whenever
m(t, a) > 0.

Due to the assumption that I(t) > 0 for all t < T , for Ĩ as in Definition 1 we have
Ĩ(t) > 0, hence K̃(t, a) > 0 for all t ∈ [ω, T ) and a ∈ (0, ω]. Then it remains to prove that

ξ̃(t, a)δ′m(a,m(t, a))−D′(M̃(t)) ≥ 0, for (t, a) ∈ [0, T − ω]× [0, ω)

and the inequality is strict whenever m(t, a) > 0.

According to the maximum principle, for (t, a) for which m(t, a) > 0 we have that

ξ(t, a)δ′m(a,m(t, a))−D′(M(t)) = 0,

hence it suffices to prove the follow two inequalities:

ξ̃(t, a) ≥ ξ(t, a), D′(M̃(t)) ≤ D′(M(t)), (24)

where the latter one is strict for those t ∈ [ω, T ) for which m(t, a) > 0 on a set of positive
measure. Clearly, for t ∈ [ω, T ]

M̃(t) =

∫ ω

0

(m0 + m(t, a))K̃(t, a) da <

∫ ω

0

(m0 + m(t, a))K(t, a) da = M(t),

since obviously K̃(t, a) < K(t, a) for all t ∈ [ω, T ) and a ∈ (0, ω]. Then the condition for D
implies D′(M(t)) ≥ D′(M̃(t)) + ρ(M(t)− M̃(t)) > D′(M̃(t)). The first inequality in (24)
follows from the comparison argument for the solutions of the adjoint equation used several
times above. Here the equations for ξ̃ and ξ differ only in the term D′(M̃(t)) ≤ D′(M(t)),
which implies the desired inequality. Q.E.D.

Proof of Lemma 3. The proof does not use the particular forms of f given by (19)
and (20), therefore we skip the bars in the notations M̄ , Q̄, etc. First we remind that the

function (δ′m)−1
+ is Lipschitz continuous, and the function ξ −→ (δ′m)−1

+

(
a,−D

ξ

)
is also

Lipschitz continuous in [0, +∞). Moreover, below we use that (δ′m)−1
+ (a, y) is monotone

increasing in its second argument, and also that the adjoint function ξ is Lipschitz con-
tinuous along every characteristic line {(t + a, a) : a ∈ [0, ω]}.

Consider t′, t′′ ∈ [0, T − ω] and let t′′ = t′ + ε, where |ε| is a sufficiently small number, so
that the manipulations below make sense. Without any restriction we assume that

M(t′) ≤ M(t′′). (25)
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Further, c1, c2, . . . denote constants that are independent of t′ and t′′. We have

m(t′, a) = (δ′m)−1
+

(
a,−D′(M(t′))

ξ(t′, a)

)
≥ (δ′m)−1

+

(
a,−D′(M(t′′))

ξ(t′, a)

)

≥ (δ′m)−1
+

(
a,−D′(M(t′′))

ξ(t′′, a + ε)

)
− c1|ε| ≥ (δ′m)−1

+

(
a + ε,−D′(M(t′′))

ξ(t′′, a + ε)

)
− c2|ε|

= m(t′′, a + ε)− c2|ε|.

Using this inequality and the Lipschitz continuity of K along every characteristic line
{(t + a, a) : a ∈ [0, ω]}, we obtain that

M(t′′) =

∫ ω

0

m0K(t′′, a) da +

∫ ω

0

m(t′′, a)K(t′′, a) da

≤
∫ ω−ε

ε

m0K(t′′, a) da +

∫ ω−ε

ε

m(t′′, a)K(t′′, a) da + c3|ε|

=

∫ ω−ε

ε

m0K(t′ + ε, a) da +

∫ ω−2ε

0

m(t′′, a + ε)K(t′′, a + ε) da + c3|ε|

≤
∫ ω−ε

ε

m0K(t′, a− ε) da +

∫ ω−2ε

0

(m(t′, a) + c2|ε|)K(t′, a) da + c4|ε|

≤
∫ ω−2ε

0

m0K(t′, a) da +

∫ ω−2ε

0

m(t′, a)K(t′, a) da + c5|ε|
≤ M(t′) + c6|ε|.

Taking into account (25) we obtain that

|M(t′′)−M(t′)| ≤ c6|t′ − t′′|,

which proves the first claim of the lemma.

To prove the Lipschitz continuity of Q it is enough to use again the Lipschitz continuity
of K along the characteristic lines. Indeed, with the standard use of O(h) we have for any
sufficiently small h that

Q(t + h) =

∫ ω

0

f(t + h− a)K(t + h, a) da =

∫ ω

0

f(t− (a− h)))K(t, a− h) da + O(h)

∫ ω−h

−h

f(t− a))K(t, a) da + O(h) =

∫ ω

0

f(t− a)K(t, a) da + O(h) = Q(t) + O(h).

This completes the proof of the lemma. Q.E.D.
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It is useful to note that the Lipschitz constants are uniform in f when f is bounded.

Proof of Lemma 4. We consider again the function η(s) = ξ(t+s, s) (where t is fixed),
which satisfies equation (22) with η(ω) = 0. ¿From the maximum principle we have that

m(t + s, s) = (δ′m)−1
+

(
s,−D′(M(t + s))

η(s)

)
:= µ(t + s, s, η(s)).

Thus η satisfies also the equation

η′(s) = (r + δ(s, µ(t + s, s, η(s))))η(s)− pf(t) + D′(M(t + s))(m0 + µ(t + s, s, η(s))),

Now we fix two different values t = t1 < t̄ and t = t2 > t̄ and denote by η1 and η2

the corresponding solutions of the above equation. Notice that we have f(t1) = f1 and
f(t2) = f2.

Now we shall estimate the difference η̇2(s)− η̇1(s) for those s for which η2(s) ≥ η1(s). In
the estimation we use that µ is Lipschitz and monotone increasing with respect to η (see
end of Section 3), that M is Lipschitz (see Lemma 3), and that, as a consequence of the
latter, µ is Lipschitz with respect to t. Then

η̇2(s)− η̇1(s)

= [(r + δ(s, µ(t2 + s, s, η2(s)))η2(s)− (r + δ(s, µ(t1 + s, s, η2(s)))η2(s)]− p(f2 − f1)

+[D′(M(t2 + s))(m0 + µ(t2 + s, s, η2(s)))−D′(M(t1 + s))(m0 + µ(t1 + s, s, η1(s)))]

≤ [r + δ(s, µ(t1 + s, s, η1(s)))](η2 − η1)

+[δ(s, µ(t1 + s, s, η2(s)))− δ(s, µ(t1 + s, s, η1(s)))]η2(s) + c1(t2 − t1)− p(f2 − f1)

+D′(M(t1 + s))[µ(t1 + s, s, η2(s)))− µ(t1 + s, s, η1(s)))] + c2(t2 − t1),

where c1, c2, . . . are independent of t1, t2, f1 and f2 (for f1 ≤ f2 faking values in a compact
interval). Using that µ is increasing in η and δ is decreasing in m we observe that the
expression in the second brackets is non-positive, while the one in the last brackets is
non-negative. Then due to the monotonicity and Lipschitz continuity of µ

η̇2(s)− η̇1(s) ≤ [r + δ(s, µ(t1 + s, s, η1(s)))](η2− η1)− p(f2− f1) + c4(η2− η1) + c3(t2− t1).

Since δ is positive and bounded we obtain that for s for which η2(s) ≥ η1(s) it holds

η̇2(s)− η̇1(s) ≤ c5(η2(s)− η1(s))− p(f2 − f1) + c3(t2 − t1),

Since η1(ω) = η2(ω) = 0, and since p(f2−f1) > c3(t2− t1) for t1 and t2 sufficiently close to
t̄ we conclude that η2(s) > η1(s) for every s ∈ [0, ω). Moreover, from the Cauchy formula,

η2(s)−η1(s) ≥ [p(f2−f1)− c3(t2− t1)]

∫ ω

s

e−c5(θ−s) ds ≥ c6[p(f2−f1)− c3(t2− t1)](ω−s).
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Then the claims of the lemma follow from the representations of the optimal controls by
the formulas (12). Q.E.D.

Proof Proposition 9. Since we know that Ī and I are continuous in (t̄ − 2ω, t̄), it is
enough to prove that Ī(t) < I(t) for some t. Assume that Ī(t) ≥ I(t) for all t from this
interval. Then (due to the assumption that m̄ = m) K̄(t + a, a) ≥ K(t + a, a) for all
t ∈ (t̄− ω, t̄] and a ∈ [0, ω]. This implies

M̄(t) ≥ M(t) for t ∈ [t̄− ω, t̄],

and also
K̄(t, a) ≥ K(t, a) for t ∈ [t̄, t̄ + ω], a ∈ [t− t̄, ω]. (26)

On the other hand, according to lemmas 3 and 4 we have for for t > t̄

Ī(t) ≥ Ī(t̄ + 0)− c1(t− t̄) ≥ I(t̄− 0) + c2(f2 − f1)− c1(t− t̄)

≥ I(t̄− 0) + c2(f2 − f1)− c1(t− t̄) ≥ I(t) + c2(f2 − f1)− c3(t− t̄),

where c1, c2, . . . are appropriate constants. Thus for a t∗ > t̄ which is sufficiently close to
t̄ and for some γ > 0 it holds that

Ī(t) ≥ I(t) + γ(t− t̄) for t ∈ (t̄, t∗).

As before, this implies

K̄(t, a) ≥ K(t, a) + c4γ for t ∈ [t̄, t∗], a ∈ [0, t− t̄].

Using this inequality and (26) we obtain that for t ∈ [t̄, t∗]

M̄(t) =

∫ t−t̄

0

[m0 + m(t, a)]K̄(t, a) da +

∫ ω

t−t̄

[m0 + m(t, a)]K̄(t, a) da

≥
∫ t−t̄

0

[m0 + m(t, a)][K(t, a) + c4γ] da +

∫ ω

t−t̄

[m0 + m(t, a)]K(t, a) da

M(t) +

∫ t−t̄

0

[m0 + m(t, a)]c4γ da ≥ M(t) + c5(t− t̄).

To complete the proof it is enough to consider equation (22) for the anticipating and for
the non-anticipating firm for t ∈ (t̄−ω, t∗−ω). Since we obtained that M̄(t+s) ≥ M(t+s)
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and the inequality is strict for s > t̄ − t, and since f(t) = f1 in both cases, we conclude
that that the solution η̄ of the anticipating firm, and η of the non-anticipating one, satisfy

η̄(0) < η(0),

which implies Ī(t) < I(t). The proof is complete. Q.E.D.
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Figure 1: Optimal investment if a technological breakthrough at time t̄ = 30
is anticipated.
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Figure 2: Optimal maintenance if a technological breakthrough at time t̄ =
30 is anticipated.
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Figure 3: Optimal investment in new machines if a technological break-
through at time t̄ = 30 is anticipated.
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Figure 4: Optimal investment in old machines if a technological break-
through at time t̄ = 30 is anticipated.
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Figure 5: Optimal maintenance if investments in old machines are allowed
and if a technological breakthrough at time t̄ = 30 is anticipated.
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