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1 Introduction

In a recent rapport (IEA (2006)), the International Energy Agency concludes

that there is a need for a rapid improvement in energy efficiency and low-

carbon technology, because of the historically hight increase in oil prices and

in CO2 concentration in the last decade (more than 20 percent). The rapport

also advocates an expansion of the R&D budgets in order to achieve tech-

nological progress in areas like hydrogen and fuel cells, advanced renewable
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energies, next-generation biofuels and energy storage.

The interaction between Climate policy and endogenous technological

change has been recently studied in several papers (see Golombek and Hoel

(2005) and Golombek and Hoel (2006) for overviews), but none of these

studies, as far as we know, focused on the interaction between the oil price,

technological progress and Greenhouse gas emissions.

We study this problem in this paper using a differential game model that

includes three stocks, each of which is relevant to understand the negotiation

process about global warming: the pollution, the marginal extraction cost

of the resource and the level of knowledge in the renewable non polluting

resource sector. We don’t focus, in this paper, on the choice of policy instru-

ments that can be implemented in order to reach the first best optimum. We

adopt the same point of view as van der Ploeg and de Zeeuw (1994), implic-

itly assuming that taxation is an appropriate instrument of environmental

policy, as opposed to other instruments such as standards or marketable

permits. Our approach is close to van der Ploeg and de Zeeuw (1994), con-

cerning the comparison of centralized and decentralized solution in a global

pollution problem with investment in clean technology by the means of differ-

ential games model. This authors compare the outcome under international

coordination of environmental policies with the case of the adoption of “open-

loop” strategies in a N-symmetric players game. As noted by the authors, it

is well known, in the differential games literature, that this kind of strategies,

by comparison with the “closed-loop” strategies, give smaller payoffs. The

principal reason is that “closed-loop” strategies, like linear Markov perfect

strategies, ensure subgame perfection contrary to open-loop strategies (Cf.,

e.g., Fudenberg and Tirole (1992), p.74-77). That’s why we choose to adopt

this kind of strategies in your model. Another specificity of our model is that

we consider two asymmetrical players, as in List and Mason (2001), who can

be thought of as two groups of nations: rich and poor countries. This as-

sumption is more realistic than the symmetry assumption in climate change

problems.

Unfortunately, a three stocks, two asymmetric countries differential game

in Markov-linear strategies just cannot be solved analytically. To counter this
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difficulty, we use numerical techniques to get an insight into the behavior of

the model.

The paper is organized as follows. Section 2 develops the model. Section 3

derives cooperative and non-cooperative equilibria.Section 4 presents a Monte

Carlo procedure that enables to numerically solve the model. Results are

analyzed in Section 5. Section 6 concludes.

2 The model

We consider a world with 2 players; indexed by i=1,2; corresponding to

two heteregenous countries in terms of sentitivity to the environment and of

wealth. Four factors are important for understand the structure of the model

and are described hereafter.

2.1 Scarcity and pollution

Oil extraction has two harmful effects:

First, it lowers the oil stock for the future, because oil is a non-renewable

resource. In this paper, we don’t model oil as a finite-size non-renewable

stock. We assume the stock is infinite, but the marginal extraction cost is an

increasing function of the cumulated extractions. For simplicity, no scarcity

rent is assumed. It follows that the resource price, P, equates its marginal

cost expressed in term of the aggregate output. P follows:

Ṗ =
2∑

i=1

ζEi (1)

Where Ei is the rate of resource extraction by country i, and ζ is a parameter.

ζ denotes the importance of scarcity.

Second, burning oil pollutes. Oil pollution is cumulative. The stock of

pollution follows:

Ṁ =
2∑

i=1

Ei − δM (2)
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where δ is the constant rate of decay of pollution.

Pollution generates an external cost given by αiM
2, where αi > 0 is a

parameter. The sensitivity to pollution is different between both countries.

2.2 The resource sector

The resource is used as an input to produce an aggregate good Qi, together

with a renewable non polluting energy. Ceteris Paribus, an improvement

of the backstop technology makes profitable a shift from hydrocarbon to

clean energy in a number of economic sectors. Thus, for a given Ei, this

improvement generates an increase in the opportunity cost of Ei. This effect

is represented in figure 1.1

Let A be a renewable non polluting resource and X a coefficient denoting

the level of knowledge in the renewable energy sector. For a given X, the

optimal level of production is Q, and the optimal combination of oil and clean

energy is given by (E,A). Now, what happens if X increases, inducing a fall

in the cost of the clean energy? First, the prices ratio between both inputs is

changed. If this change in the prices ratio did not affect the quantity of output

produced, then the new optimal combination of input would be (E ′, A′), with

more clean energy and less oil than in the previous equilibrium. But this

fall in the clean energy price results in a fall of the aggregate energy price,

which implies a greater level of output production. Assume this new optimal

output level is given by Q′. In this situation, the new optimal combination

of input would be (E ′′, A′′), with both more clean energy and more oil than

in (E ′, A′). A crucial question is to know whether E ′′ is greater or smaller

than E. It depends both on the elasticity of the production with respect to

the energy price and on the elasticity of substitution between oil and clean

energy. Since different energy sources are heavily substitutable2, it seems

realistic to assume that a fall in the clean energy price results in a fall in the

1Technological changes are presented, for illustrative purpose, at a point of time
to be able to represented the effects in a two-dimensional figure. Obviously, in a
dynamic framework, the effects of changes are, in fact, integrated over time.

2Because joules that come from oil are identical to joules that come from any other
energy source. Only storage and transportation differ from one source to another.
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Figure 1: substitution between oil and clean energy

oil consumption.

The most relevant way to model these effects would be to introduce the

clean energy A as a control variable into the model. However, by seek of sim-

plicity, we propose a simpler modeling. The two consequences of an increase

in X are an increase in the production and a fall in the use of oil. The net

production function of country i is3:

Qi = (βi,1 −X)Ei − β2E
2
i + ηi,1X − η2X

2

where (βi,1, β2, ηi,1, η2) > 0 are parameters4.

Figure 2 presents the production net of the oil cost.

3The main technical problem with this formulation is that it does not respect the
Innada Conditions. For Monte Carlo procedure of section 4, parameters are chosen such
as the non negativity condition over Ei is respected for a relevant future.

4The interpretation of this parameters is explain below, see 2.4.
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Figure 2: Impact of a technology improvement in the renewable energy sector

The curve at the south-east represents the net production as a function

of the oil use before an increase in the knowledge stock. when X increases,

the net production switches to the second curve. As one can see, the optimal

level of production is higher after the switch, and the associated optimal level

of oil is lower.

2.3 The research sector

The output of the research sector is an increase in X. Notice that X is a

pure public good. The motivation to invest in research is twofold: first, it

enables to lower the economic impact of the increasing scarcity of the nonre-

newable resource. Second, it lowers the abatement cost of an environmental

policy that would incite to substitute non-polluting to polluting energies.

The country i invests Ii in research. X follows:
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Ẋ = σ (I1 + I2)− εX (3)

where σ and ε are positive parameters.5

Country i faces an investment cost given by γI2
i , where γ reflects the

investment cost.

2.4 Welfare functions

The welfare function of country i is given by:

Wi =

∞∫
0

e−ρt
[
(βi,1 − P −X)Ei − β2E

2
i + ηi,1X − η2X

2 − αiM
2 − γI2

i

]
dt

where ρ is the discount rate.

Both countries differ from each other with respect to their sensitivity to the

environment and to their wealth. The higher αi, the higher the sensitivity

to the environment. The higher βi,1 and ηi,1, the richer. Indeed, the wealth

of a country comes from it’s capital accumulation. The capital accumulation

makes the energy (both clean and polluting energy) more productive. It is

assumed that:

5Two features of this knowledge production function must be discussed. First, we don’t
make the giants’ shoulders assumption. That is to say that the research productivity
does not depend on the current level of knowledge. This modeling differs from the one
usually made in endogenous growth literature, such as in Romer (1990), where the research
productivity is linear with respect to the knowledge stock. However, it should be noted
that modeling the evolution of an aggregate stock of knowledge has to differ from the
modeling of the evolution of a sectoral stock of knowledge. Indeed, (as pointed out by
Aghion and Howitt (1998)) the number of new ideas that remain undiscovered in one
particular sector should not be thought of as an infinite stock. The linear modeling in
macroeconomic models accounts both for the knowledge increase in each sector (quality
innovations) and for the increase of the number of sectors (variety innovations). Within a
given sector, the best way to model the innovation would probably be a logistic function.
It would account for the giants’ shoulders effect when the stock of knowledge is low, and
then for the rarefaction of the remaining undiscovered ideas when the stock of knowledge
is high. To keep in touch with the linear quadratic formulation, the best modeling is the
constant productivity assumption made in equation 3. Second, if no research investment
is made, X decreases by εX per unit of time. This feature accounts for the necessity
to maintain a research sector to transmit the knowledge from old generations to new
generations.
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β1,1 > β2,1

and

η1,1 > η2,1

In other words, country 1 is the rich one.

3 Cooperative and non-cooperative equilib-

ria

3.1 Cooperative equilibrium

In this section, we characterize the optimal path that should be followed by

the system in order to maximize a sum (W) of both objectives.

W ≡ W1 +W2

subject to 1, 2 and 3. In other words, this section characterizes the shape of

an international agreement between both countries.

The cooperative problem can be restated as the minimization of

W =

∞∫
0

(y′Qcy + v′Rcv) dt

subject to

ẏ = Ay +Bcv

y(t) ≡ e−
1
2
ρt


P

M

X

1

 ; v(t) ≡ e−
1
2
ρt


X

2
√

β2
− β1,1

2
√

β2
+ P

2
√

β2
+
√
β2E1

X
2
√

β2
− β2,1

2
√

β2
+ P

2
√

β2
+
√
β2E2

I1

I2


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A ≡


−ρ

2
− ζ

β2
0 − ζ

β2

β1,1 ζ+β2,1 ζ

2β2

− 1
β2

−ρ
2
− δ − 1

β2

β1,1+β2,1

2β2

0 0 −ρ
2
− ε 0

0 0 0 −ρ
2



Bc ≡



ζ√
β2

ζ√
β2

0 0

1√
β2

1√
β2

0 0

0 0 σ σ

0 0 0 0

 ; Rc ≡


1 0 0 0

0 1 0 0

0 0 γ 0

0 0 0 γ



Qc ≡



− 1
2β2

0 − 1
2β2

β1,1

4β2
+ β2,1

4β2

0 α1 + α2 0 0

− 1
2β2

0 − 1
2β2

+ 2η2
β1,1+β2,1

4β2
− 1

η2

β1,1

4β2
+ β2,1

4β2
0 β1,1+β2,1

4β2
− 1

η2
−β2

1,1

4β2
− β2

2,1

4β2



Sc ≡ BcRc−1Bc′

The optimal linear strategy is given by

vc = Ccy

where Cc = −Rc−1Bc′
Kc and Kc is the symmetric stabilizing solution of the

following algebraic Riccati equation:

A′Kc +KcA−KcScKc +Qc = 0
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One of the purposes of this paper is to analyze the equilibrium strategies

of the players. However, Cc can not be analyzed in itself, because of the

variable transformations we did in order to solve the model. This is why we

define the following two transformation matrices:

TR1 =


0.5√
β2

0 0.5√
β2

−0.5β1,1√
β2

0.5√
β2,2

0 0.5√
β2,2

−0.5β2,1√
β2

0 0 0 0

0 0 0 0

 ;TR2 =


0.5√
β2

0 0 0

0 0.5√
β2

0 0

0 0 1 0

0 0 0 1


They enable to compute the following matrix Zc:

Zc = TR2 (Cc − TR1) =


zc
1,1 · · · · · · zc

1,4
...

. . .
...

...
. . .

...

zc
4,1 · · · · · · zc

4,4


such as the optimal strategy is given by:

Ec
1

Ec
2

Ic
1

Ic
2

 = Zc


P

M

X

1


3.2 Closed-loop differential game

In this section, we are looking for a Nash closed loop equilibrium. We define

the following vectors and matrices:

vi(t) ≡ e−
1
2
ρt

(
X

2
√

β2
− βi,1

2
√

β2
+ P

2
√

β2
+
√
β2Ei

Ii

)
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Bm
i ≡



ζ√
βi,2

0

1√
βi,2

0

0 σ

0 0


; Rm ≡

(
1 0

0 γ

)
; Sm

i ≡ Bm
i R

m−1Bm′

i

Qm
i ≡



− 1
4βi,2

0 − 1
4βi,2

βi,1

4βi,2

0 αi 0 0

− 1
4βi,2

0 − 1
4βi,2

+ ηi,2
βi,1

4βi,2
− 1

2ηi,2

βi,1

4βi,2
0

βi,1

4βi,2
− 1

2ηi,2
− β2

i,1

4βi,2


Each country seeks to minimize:

∞∫
0

(y′Qiy + v′iRvi)dt

subject to:

ẏ = Ay +Bm
i vi +Bm

j vj j 6= i

In other words, this section characterizes the behavior of both countries

when they act with no cooperation6. As shown in Engwerda (2005), the

markovian linear strategy, for player i, is given by:

vm
i = Cm

i y

where Cm
i = −Rm−1Bm′

i Km
i =

(
cmi (1, 1) · · · · · · cmi (1, 4)

cmi (2, 1) · · · · · · cmi (2, 4)

)
and Km

i ,

i = 1, 2 are the symmetric stabilizing solutions of the following system of

algebraic Riccati equations7:

6The only cooperation assumed here is about the choice of stabilizing strategies.
7The algorithm used to solve for this system is described in (ANNEX 1)
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(A− Sm
2 K

m
2 )′Km

1 +Km
1 (A− Sm

2 K
m
2 )−Km

1 S
m
1 K

m
1 +Qm

1 +Km
2 S

m
2 K

m
2 = 0

(A− Sm
1 K

m
1 )′Km

2 +Km
2 (A− Sm

1 K
m
1 )−Km

2 S
m
2 K

m
2 +Qm

2 +Km
1 S

m
1 K

m
1 = 0

(4)

Let’s define Cm and vm as:

Cm =


cm1 (1, 1) · · · · · · cm1 (1, 4)

cm2 (1, 1) · · · · · · cm2 (1, 4)

cm1 (2, 1) · · · · · · cm1 (2, 4)

cm2 (2, 1) · · · · · · cm2 (2, 4)

 ; vm = Cmy

Like in the previous section, a transformation has to be done in order to

interpret the results. Zm is defined as:

Zm = TR2 (Cm − TR1) =


zm
1,1 · · · · · · zm

1,4
...

. . .
...

...
. . .

...

zm
4,1 · · · · · · zm

4,4


such as the markovian strategies are given by:

Em
1

Em
2

Im
1

Im
2

 = Zm


P

M

X

1


4 Monte Carlo procedure

A complete solution of the model would express each endogenous variable of

the model as a function of the set of parameters. Let fi(π) be the function

that gives the endogenous variable φi and π the set of the N exogenous

parameters indexed by k. Unfortunately, such a solution is very hard, if

possible, to compute. However, a Monte Carlo procedure enables to give a

Taylor approximation of fi for a range of parameters values. Indeed, for a
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given π, simple algorithms compute the particular solution of the model. We

run 1000 simulations, with, at each iteration j, a randomly chosen πj. Let’s

Call φ̄i the average value of φi in the sample. Then, we compute the ols

estimators ψ̂ of the set of parameters ψ of the following function:

φi = ψ1,i +
N∑

k=1

ψ(k+1,i)πk +
N∑

k=1

∑
k′≥k

ψ(k,k′,i)πkπk′ + ei

Where e is an error term. This error term is treated as random, even if

it’s not: it is the difference between the genuine deterministic function and

its Taylor approximation.

At each iteration, the parameters are chosen via an homogeneously dis-

tributed density function defined between 0.5µπi
and 1.5µπi

where µπi
is the

mean value of πi.

5 Results

5 and 6 represent the equilibrium strategies, respectively for the cooperative

game and for the markovian game. In each matrix is indicated the sign of

the corresponding component as it appears in the simulations, followed by

the percentage of occurrence of this sign when it is less than 100%. In the

matrix representing the markovian strategy a comparision symbol indicate

how is the absolute value of the corresponding component compared to the

same component in the cooperative equilibrium. Again, between brackets is

the percentage of occurence of this sense of comparision when it is less than

100%. 
Ec

1

Ec
2

Ic
1

Ic
2

 =


− − − +

− − − +

+ + − +

+ + − +




P

M

X

1

 (5)
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
Em

1

Em
2

Im
1

Im
2

 =


− > − < − > + >

− > − < − > (0.92) + >

+ < (0.97) +/− < − < + < (0.98)

+(0.99) < + > (0.73) − < + < (0.97)




P

M

X

1


(6)

At this point, rather obvious observations can be done. In both games,

the oil price, the pollution stock and the stock of knowledge incite to emit less

when they increase. This is true in 100% of the simulations. Indeed, these

three stocks increase the cost of using oil: the direct private cost (price), the

external cost (pollution) and the opportunity cost (knowledge) The negative

impact of pollution over the emissions is, as could be expected, stronger in the

cooperative game than in the markovian game. Indeed, in the cooperative

case, each player takes into account the negative impact of pollution not only

on his own situation, but also on the one of the other player. It can be added

that the difference is rather important for the emissions of the rich player.

Indeed,
z̄c
1,2

z̄m
1,2
' 3

Surprisingly, the same does not apply for the negative impact of oil price

on oil consumption: this impact is stronger in the Markovian game than in

the cooperative game. In order to understand this result, we look for the

coefficients that are the most affected by the change from the Markovian

equilibrium to the cooperative equilibrium in the regressions of z̄c
1,1 and of

z̄m
1,1. We also look for the coefficients the signs of which change between both

situations.

The coefficient associated to γ is significantly negative in the Markovian

equilibrium, whereas it is significantly positive in the cooperative equilibrium.

That is to say that the higher the cost of research, the more the rich country

reacts to high oil prices by lowering its oil consumption when both countries

don’t cooperate. When they cooperate, the higher the cost of research, the

less the rich country reacts to high oil prices.

In order to go deeper in the analysis, we have to study the coefficients of

the regressions explained in section 4. The great number of coefficients don’t

allow to study each of them.
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5.1 On Chinese growth

The non-inclusion of emerging countries such as China is an important critic

addressed to the Kyoto protocol by the United States.

(To be completed)

5.2 The paradox of knowledge

Maybe on of the most striking result of this model is that an agreement

based both on R&D and on emission cutting reduces the aggregate cumula-

tive R&D expenditure. Of course, the public good feature of the knowledge

implies that, ceteris paribus, the aggregate R&D expenditure is higher in the

cooperative case than in the non cooperative case. But, in the cooperative

case, every thing else is not equal. In particular, in the cooperative case,

both the stock of pollution and the oil prices are smaller than in the non

cooperative case. This results from the limitation of the emissions which is

a consequence of the agreement. In this situation, the private incentives to

invest in research is higher, since knowledge is a way to offset higher prices

and a higher level of pollution. Of course, the cooperative outcome remains

optimal and better than the Markovian Outcome, even if it implies less re-

search. But this finding is a counter-argument to the view that technology

should be the key of a future agreement. This is however a generalization of

a result van der Ploeg and de Zeeuw (1994), establishing that in the absence

of international coordination for pollution control, levels of clean technology

stocks are too excessive.

5.3 The carbon leakage revisited

As shown in cooperative game literature [References to be completed], the

emission reduction by the coalition members incites the non-member coun-

tries to increase their own emissions through a fall in oil prices. Even if this

paper is not in the same context, we show results close to this one, in a

dynamic framework

(To be completed)
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5.4 The impact of an exogenous economic boom in the

poor countries

We study the impact of an exogenous economic boom in the poor countries

in terms of aggregate pollution emission rates, R&D investment, oil prices...

(To be completed)

6 Conclusion

We study in this paper the problem of international coordination in Climate

policy using a three stocks, two asymmetric countries differential game in

Markov-linear strategies. (To be completed)

16



A Algorithm for the system of coupled alge-

braic Riccati equations

The algorithm used to compute the solutions of system 4 is taken from Freil-

ing et al. (1996).

1. We compute Km
1 (0) and Km

2 (0) the stabilizing symmetric solutions of

the following autonomous algebraic Riccati equations:

A′Km
1 +Km

1 A+Q1 −Km
1 S

m
1 K

m
1 = 0

A′Km
2 +Km

2 A+Q2 −Km
2 S

m
2 K

m
2 = 0

2. We compute the following discrete dynamical system, by taking Km
1 (0)

and Km
2 (0) as initial conditions:

Km
1 (i+ 1) [A− Sm

2 K
m
2 (i)] + [A− Sm

2 K
m
2 (i)]′Km

1 (i+ 1) +Q1

−Km
1 (i+ 1)Sm

1 K
m
1 (i+ 1) = 0

Km
2 (i+ 1) [A− Sm

1 K
m
1 (i)] + [A− Sm

1 K
m
1 (i)]′Km

2 (i+ 1) +Q2

−Km
2 (i+ 1)Sm

2 K
m
2 (i+ 1) = 0

Where i is the number of iterations

3. We stop after i∗, where i∗ is such as:∣∣Km
1 (i∗) [A− Sm

2 K
m
2 (i∗)] + [A− Sm

2 K
m
2 (i∗)]′Km

1 (i∗) +Q1 −Km
1 (i∗)Sm

1 K
m
1 (i∗)

∣∣
+
∣∣Km

2 (i∗) [A− Sm
1 K

m
1 (i∗)] + [A− Sm

1 K
m
1 (i∗)]′Km

2 (i∗) +Q2 −Km
2 (i∗)Sm

2 K
m
2 (i∗)

∣∣ < ε

Where ε is a small number, set equal to 10−8 in the current simulations.

4. Km
1 (i∗) and Km

2 (i∗) are the solutions of system 4.

Notice that there exist no proof of convergence for this algorithm. How-

ever, in the simulations made for this paper, it always converged.
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