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Abstract

This paper investigates the relationship between memory and the essentiality of

money. We consider a random matching economy with a large finite population in

which commitment is not possible and memory is limited in the sense that only a

fraction m ∈ (0, 1) of the population has publicly observable histories. We show that

no matter how limited memory is, there exists a social norm that achieves the first—

best regardless of the population size. In other words, money can fail to be essential

irrespective of the amount of memory in the economy. This suggests that the emphasis

on limited memory as a fundamental friction for money to be essential deserves a deeper

examination.
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1 Introduction

Fiat money is essential if socially desirable allocations can only be achieved with its use.

Since, by definition, fiat money does not provide any direct utility, its essentiality must come

from the fact that it overcomes frictions in the trade process that alternative arrangements

are unable to circumvent. Thus, if one wants to identify the conditions under which (fiat)

money is essential, one must have a clear assessment of the role played by the different

trading frictions in preventing non—monetary trade. Monetary theorists usually focus on

two frictions: limited commitment and limited memory or record—keeping (Kiyotaki and

Moore (2002), Kocherlakota (2002), Wallace (2001)). In this article we investigate the role

that limited memory plays on the essentiality of money.

We consider a random matching economy with a large finite population in which com-

mitment is not possible. Following Kocherlakota and Wallace (1998), we define memory as

a technology that records the past actions of agents and makes this information public.1 We

say that memory is limited or imperfect if this technology only keeps track of the records of

a fraction m < 1 of the population. It is well—known that money is inessential is memory

is perfect. Our main result is that no matter how limited is memory and how large is the

population, there exists a social norm that achieves the first—best as long as the arrival rate

of trading opportunities is high enough, where the lower bound on the arrival rate does not

depend on the population size. Thus, even though limited memory is necessary, it is never

sufficient to make money essential. This suggests that the emphasis on limited memory as a

fundamental friction for money to be essential needs to be re—evaluated.

This work is not the first to look at the extent to which social norms can substitute the

use of money.2 Araujo (2004) analyzes a random matching economy with a finite population

1The notion of memory we consider has been extensively used in the literature. See, for instance, Deviatov
and Wallace (2009), Ales et al. (2008), Berentsen (2006), Cavalcanti and Wallace (1999a,b), Cavalcanti,
Erosa, and Temzelides (1999), Martin and Schreft (2006), and Mills (2007, 2008). It is different from the
notion of memory introduced by Kocherlakota (1998), though. We discuss the relationship between the two
at the end of the paper.

2The basic references in the literature on social norms are Kandori (1992), Ellison (1994), and Okuno—
Fujiwara and Postlewaite (1995). Recent contributions are Deb (2008) and Takahashi (2008).
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and no memory and shows that there exists a social norm that achieves the first—best as long

as the arrival rate of trading opportunities is sufficiently high. However, he also shows that

for a fixed arrival rate of trading opportunities, there exists no social norm that achieves

the first—best (or any non—autarkic allocation, for the matter) when the number of agents is

large enough. So, money is essential in large economies if there is no memory. This makes

it natural to consider the role of memory on the essentiality of money in large populations.3

Another related paper is Kocherlakota and Wallace (1998), who also look at the rela-

tionship between imperfect record—keeping and the essentiality of money in a decentralized

economy with no commitment. They define imperfect memory as a technology that records

the past actions of all agents in the economy and makes this information public with a lag,

where the greater the lag, the more imperfect is the memory.4 Their main result is that for a

given arrival rate of trading opportunities, the optimal incentive—feasible allocation has some

role for money if memory is imperfect enough. The nature of our exercise is different. We

ask whether money is essential given a fixed (and limited) amount of memory. As described

above, our main result is that for any amount of memory there is no role for money if the

arrival rate of trading opportunities is high enough.

The paper is organized as follows. We introduce the environment in Section 2. In Section

3 we discuss the major difficulties in establishing our main result and outline the approach

we take to deal with them. We prove the main result in Section 4 and address its robustness

in Section 5. We conclude in Section 6. The Appendix contains omitted proofs and details.

2 Environment

The environment we consider is based on Shi (1995) and Trejos and Wright (1995). Time

is discrete and indexed by t ≥ 0. There is a finite set I = {1, . . . , N 0} of infinitely—lived
3More recently, Aliprantis, Camera, and Puzzello (2007) study the role of social norms in environments,

first introduced in Lagos and Wright (2005), where there is occasional trade in ‘centralized’ markets. See
Lagos and Wright (2008) for a comment on their contribution. For another application of social norms to
monetary theory, see Corbae, Temzelides, and Wright (2003).

4In our setting, the public histories are revealed without a lag. We make this assumption for simplicity.
As we discuss later in the paper, our main result holds for any lag.
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and anonymous agents who discount future utility at rate β ∈ (0, 1). We assume that 2ηN ,

where η and N are positive integers. There is also one indivisible and perishable good that

comes in many varieties. We discuss the indivisibility assumption in Section 5.

Agents are heterogeneous with respect to what varieties they can consume and produce

in a period. Each agent can only consume a subset of the varieties and cannot consume any

of the varieties that he produces. An agent who consumes y units of the good obtains utility

u(y); the cost of producing x units of the good is x. We assume that u(x)− x has a unique

maximizer, that we denote by x∗, and that x∗ > 0. Moreover, we assume that there exists

an upper bound x ≥ x∗ on how much an agent can produce in each period.

Trade is decentralized and agents faces frictions in the exchange process. More precisely,

in each period agents are randomly and anonymously matched in pairs and at most one

agent can produce in a meeting. The probability that an agent is a consumer in a match is

α ≤ 1/2 and it is the same as the probability that he is a producer.

Note that an increase in β corresponds to a reduction in the time interval between two

consecutive periods. This amounts to an increase in the arrival rate of trading opportunities.

We adopt this interpretation of an increase in β in the remainder of the paper.5

There are two types of agents in the economy: public and private. An agent is private, or

type—1, if the only other agent who can observe his action in a period is his current partner.

An agent is public, or type—0, if everyone else in the population can observe his actions in

every period. We say a meeting is public if it involves at least one public agent, otherwise

we say the meeting is private. An agent observes his partner’s type in any meeting he

participates. As we discuss in Section 4, this makes it more difficult to sustain cooperation

between the agents. The number of public agents is 2ηN0, with N0 ∈ {1, . . . , N}. We denote

the fraction of public agents by m = N0/N . By definition, m is the amount of memory in

the economy. Notice that an increase in η increases the population size while keeping the

amount of memory fixed.

5An alternative would be to consider a setting in which β is fixed, but the agents are randomly and
anonymously matched in pairs q ≥ 1 times in each period. An increase in q would then amount to an
increase in the arrival rate of trading opportunities. The results we obtain are the same.
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We simplify the description of actions by assuming that in every match the participating

agents simultaneously announce the amount x they are willing to produce. This announce-

ment occurs before the agents know whether the meeting is a single—coincidence or not, and

is binding within the meeting. In other words, an agent who announces x in a meeting

commits to produce x units of the good to his partner if he is a producer. An agent can

announce zero, so that this assumption does not violate his participation constraint.

The private history of a private agent is the list of his past actions together with the types

of all the partners he had so far and the action choices of all the private partners he had so far.

The private history of a public agent is the list of the types of all the partners he had so far

together with the action choices of all the private partners he had so far. Let A = {0, . . . , x}

be the set of possible announcements, Y0 = A×{0, 1}, and Y1 = A× ({0}∪ ({1}×A)). The

set of period—t private histories for a type—c agent, with c ∈ {0, 1}, is then Hc,t = Y t
c . We

denote a typical element of Hc,t by hc,t.

All agents in the economy share a common history, which is the list of all past action

choices made by the public agents. A public observation is a map ψ from A into {0, . . . , N 0
0},

where ψ(x) is the number of public agents who announce x. We denote the set of all such

profiles by Ψ. A period—t common history is then a list (ψ0, . . . , ψt), where ψs, with s ≤ t, is

the period—s public observation and ψ1 = ∅ by convention. We denote the set of all period—t

common histories by Ωt = Ψt and a typical element of this set by ωt.

Let Zc,t = Hc,t × Ωt and denote a typical element of this set by zc,t = (hc,t, ωt). By

construction, Zc,t is the set of period—t histories for a type-c agent. Now let Zc =
S∞

t=0 Zc,t.

A behavior strategy for a type—c agent is a map from Zc×{0, 1} into ∆(A), the set of mixed

actions–an agent can condition his announcement in a meeting both on his history and on

his partner’s type. A profile of behavior strategies is symmetric if all agents of the same type

use the same strategy.

A (finite—state) automaton for an agent is a list (Θ, θ0, f, τ), where: (a) Θ is a finite set

of states; (b) θ0 is the initial state; (c) f : Z+ ×Θ× {0, 1}→ ∆(A) is a decision rule where

f(t, θ, c) is the agent’s action in period t if his state is θ and his partner’s type is c; (d)
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τ : Z+×Θ×A×{0, 1}×A×Ψ→ Θ is a transition rule where τ(t, θ, a, c, a0, ψ) is the agent’s

state in t + 1 if his state in t is θ, he announces a, his partner is of type c and announces

a0, and the public observation is ψ. In the remainder of this section we restrict attention to

symmetric strategy profiles σ that are induced by a pair of automatons, one for each type of

agent. We can assume, without loss, that both automatons have the same state space Θ.

A profile of states is a map π = (π0, π1) : Θ → {0, . . . , N 0
0} × {0, . . . , N 0

1}, where N 0
1 =

N 0−N 0
0 and πc(θ) is the number of type—c agents in state θ. Denote the set of state profiles

by Π. A strategy profile σ induces an evolution {λσt }t≥0 of probability distributions over state

profiles.6 A belief for a private agent is a map pi : Θ × {0, . . . , N 0
0} × {0, . . . , N 0

1} → [0, 1]

such that p(θ, n0, n1) is the probability that the agent assigns to the event that there are nc

type—c agents in state θ. A belief for a public agent is defined in a similar way.

Let ∆c be the set of beliefs for a type—c agent. A belief system for a type—c agent is

a map from Zc into ∆c. If zc,t has positive probability under σ, then a type—c agent with

history zc,t can compute his belief after zc,t from λσt by using Bayes’ rule. Suppose σ is such

that every history for both types of agents happens with positive probability. In this case,

we can compute the belief system μi(σ) of each agent i from the sequence {λσt } by applying

Bayes’ rule. Denote the profile of belief systems obtained in this way by μ(σ) = (μi(σ))i∈I .

A decision rule f is fully mixed if it always assigns positive probability to every element

of A. Consider an assessment (σ, μ), where σc = (Θ, θ
0
c , fc, τ c) is the automaton used by the

type—c agents. The assessment (σ, μ) is consistent if there exist sequences {fn0 } and {fn1 }

of fully mixed decision rules such that fnc → fc for each c ∈ {0, 1} and μn = μ(σn) → μ

pointwise, where σn = (σn0 , σ
n
1) is the strategy profile where the type—c agents use the

automaton σnc = (Θ, θ
0
c , f

n
c , τ c). The assessment (σ, μ) is a sequential equilibrium if it is both

consistent and sequentially rational.

6Let θ0c be the initial state of the type—c agents. In t = 0, the state profile is π0 such that π0c(θ
0
c) = N 0

c

for all c ∈ {0, 1}. So, λσ0 is the element of ∆(Π) that assigns probability one to π0. Now observe that there
exists a map Qσ

t : Π→ ∆(Π) such that if the state profile in period t is π, then the probability that the state
profile in period t+ 1 lies in B ⊂ Π is Qσ

t (π)(B). This implies that λ
σ
t+1 =

P
π∈ΠQ

σ
t (π)λ

σ
t (π) for all t ≥ 0.
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3 Preliminary Discussion

The first—best is achieved when in every single—coincidence meeting the agent who is the

producer transfers x∗ units of the good to his partner. We want to determine whether the

first—best allocation can be sustained (by a sequential equilibrium) when there is limited

memory. We know from Araujo (2004) that this is possible even when there is no memory in

the economy as long as the arrival rate of trading opportunities is sufficiently high.7 However,

as Proposition 1 below shows, without memory, for any β ∈ (0, 1), the only allocation that

can be sustained when the population is large enough is the autarkic allocation.

Proposition 1. Suppose that m = 0. For each β, there exists N 0(β) such that if N 0 ≥ N 0(β),

then autarky is the only Nash equilibrium outcome.

We just provide a sketch of the proof of Proposition 1, since it is very similar to the

proof of Proposition 2 in Araujo (2004). Any non—autarkic allocation has at least one agent,

i let us say, producing x0 ≥ 1 units of the good to his partner in some period t. This is

only possible if i is punished for announcing zero in t. Define the sequence of (random) sets

{Is(i)}∞s=1 recursively as follows. Let I1(i) be the singleton set with i’s partner in t and, for

each s ≥ 1, let Is+1(i) be the set of agents j such that either j ∈ Is(i) or j is matched with

an agent from Is(i) in t + s − 1. Notice that |Is(i)| ≤ min{2s−1, N 0} for all s ≥ 1. Since

m = 0, agent i can only be punished for a defection in t when he meets with an agent from

Is(i) in period t+ s, with s ≥ 1. Moreover, because of discounting, these punishments have

a deterrent effect only if they happen within a finite number T of periods from t, where T

depends on β. However, the probability that i is not matched with someone from Is(i) in

t+ s for all s ∈ {1, . . . , T} converges to one as the population size grows. Thus, autarky is

the only Nash equilibrium outcome when N 0 is large enough.

The main result of the paper is in sharp contrast to Proposition 1. It shows that as long

as there is some memory, it is possible to sustain the first—best if β is high enough no matter

7Araujo (2004) considers the case where there is a unit upper bound on the amount of goods that can be
produced in a single—coincidence meeting. It is straightforward to adapt his argument to our setting.
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the population size (as long as it is large enough). In the remainder of this section we discuss

the main challenges involved in establishing our main result and outline (in broad terms)

the approach we use to deal with them.

We say that an agent cooperates if he announces x∗ and defects if he announces any x

different from x∗. Moreover, we say that a defection is public if it is done by a public agent,

otherwise we say that it is private. It is straightforward to provide public agents with the

incentive to cooperate: just punish a public defection with sufficiently many periods of global

autarky. The problem lies with providing private agents with the incentive to do the same.

We know from the reasoning above that without public agents, the amount of time it

takes for the information about a private defection to reach a substantial fraction of the

population increases with the population size. This suggests that the role of the public

agents in sustaining cooperation in arbitrarily large populations is to speed up the process

by which the population learns about a private defection by doing a public defection.

In light of this last observation, a natural candidate for an equilibrium sustaining the

first—best is the strategy profile where an agent who suffers a private defection always defects

afterwards and the economy moves to global autarky for a long enough time once a public

defection occurs. In this strategy profile, a private agent who defects starts a “contagion”

process that eventually reaches a public agent, triggering global autarky. Moreover, how fast

the punishment phase begins does not depend on the population size, but on the speed with

which trading opportunities arrive (and on the fraction of public agents). So, if β is high

enough, private agents have an incentive to always cooperate no matter the population size.

There are two (related) difficulties with the above strategy profile, though. The first

is that a public agent who suffers a private defection may not have an incentive to defect.

Indeed, since a public defection immediately triggers global punishment, such an agent is

only willing to defect if he believes that other public agents have also suffered a private

defection, which is unlikely early on in the game or when the fraction of public agents is

small. Likewise, a private agent who suffered a private defection will only have an incentive

to defect against a public agent if he believes that many other private agents have suffered
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a private defection as well (in which case a public defection is likely to occur even if he does

not defect). This is also not probable early on in the game or when the fraction of public

agents is small.8

We solve the two problems by changing the strategy profile in the following way: a public

agent who suffers a private defection only defects in periods that are positive multiples of

some T > 1, where T is large enough, but independent of the population size. To see why

this works, consider a public agent who suffers a private defection for the first time in some

period s ∈ {kT, . . . , k(T +1)−1}, with k ≥ 0. When s is close to kT , the chance that before

k(T + 1) another public agent suffers a private defection is high, and so the agent finds it

in his best interest to defect in k(T + 1).9 On the other hand, when s is close to k(T + 1),

the agent believes that the number of private agents who are defecting is large enough that

the likelihood that another public agent has also suffered a defection sometime between kT

and s is high. Indeed, public agents communicate a private defection that they observe in

{kT, . . . , k(T +1)− 1} only in k(T +1), which allows the number of private agents who are

defecting to become large. Hence, the public agent also finds it optimal to defect in k(T +1).

A similar reasoning shows that a private agent who suffers a private defection now has an

incentive to defect against any public agent that he meets.

4 Main Result

We now establish the main result of the paper. Notice that the normalized lifetime payoff

to the agents in the first—best is VFB = α[u(x∗)− x∗].

Proposition 2. For all m ∈ (0, 1), there exists β0 ∈ (0, 1) and η0 ≥ 1 such that the first—best

can be sustained when β ≥ β0 for all η ≥ η0.

8A third difficulty, which is central in Ellison (1994) and Araujo (2004), is that a private agent who
suffered a private defection may find it optimal to delay the contagion process by not defecting against
another private agent. We are going to see that this is not important when the population size is large.

9This shows that the amount of memory in the environment dictates the choice of T ; the smaller memory
is, the larger T needs to be.
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For the proof of Proposition 2, let σ∗(T ) be the strategy profile described by the following

automaton. The state space is Θ = {C,A,D,D0, . . . ,DK}, and all agents start in state C.

• State C. An agent in state C always cooperates. The agent stays in state C if he observes

no defection (public or private), and moves to state A if there is a public defection. If

there is no public defection, a public agent in state C moves to state D if his partner

defects. If there is no public defection, a private agent in state C moves to: (i) state

D if his partner defects; (ii) state D0 if he defects and his partner is public; (iii) state

D1 if he defects and his partner is private and does not defect.

• State A. An agent in state A always announces x = 0. This state is absorbing.

• States D and D0. A private agent in states D and D0 always announces x = 0. A

public agent in state D always cooperates if t is not a positive multiple of T and always

defects if t is a positive multiple of T . An agent in states D and D0 moves to state A

if there is a public defection, otherwise he stays in the same state.

By construction, a public agent can never be in states D0 to DK . Moreover, a private

agent can be in one of these states only if he deviates in state C and his partner does not.

Thus, a private agent in states D1 to DK need not behave in the same way as a private agent

in state D, since the latter does not know the starting point of the contagion (defection)

process unless he observes a private defection in t = 0. It turns out that how a private agent

behaves in states D1 to DK is not relevant for behavior in states C, A, D, and D0. For this

reason, we describe the state transitions and action choices in the states D1 to DK in the

Appendix. We return to this point at the end of the section.

Before we start with the proof of Proposition 2, let us show that σ∗(1) can never be

part of a sequential equilibrium when the population is large enough. It is easy to show

that under σ∗(1), a private agent in state C has no profitable one—shot deviation only if

β > β∗ = x∗/u(x∗).10 Consider now a public agent in state D in some t ≥ 1. He has no
10Since a public defection immediately triggers global autarky, a one—shot deviation by a public agent in
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profitable one—shot deviation if, and only if,

βq0(1− q00∗) ≤ x∗, (1)

where q0 is the probability that no other public agent is in state D in t and q00 is the probability

that the public agent’s partner in t + 1 is in state D when no public defection occurs in t.

Suppose that t = 1. For any μ such that (σ∗(1), μ) is a consistent assessment, the public

agent believes that there is only one private agent in state D and no other public agent in

this state. Thus, q0 = 1 and q00 ≤ 2/(N 0−1), which implies that (1) cannot be satisfied when

β > β∗ for N 0 large enough.

We proceed as follows. We start with some preliminary results. Then, we construct

a belief system μ∗ such that the assessment (σ∗(T ), μ∗) is consistent and establish some

properties of μ∗. Following that, we analyze behavior, first on the path of play, and then off

the path of play. The task is to show that for each m ∈ (0, 1), we can find a value of T such

that (σ∗(T ), μ∗) is a sequential equilibrium for arbitrarily large populations when the arrival

rate of trading opportunities is large enough.

Preliminary Results.

Let Nη,t(n, T ;m) be the number of private agents in state D in t ≤ T − 1 when in t = 0

there are n ≥ 1 such agents in state D and all the other agents are in state C. The first result

we establish is useful when we describe beliefs.

Lemma 1. limη→∞ E[Nη,t(1, T ;m)] = (2−m)t for all 1 ≤ t ≤ T − 1 and m ∈ (0, 1).

The intuition behind Lemma 1 is straightforward. Suppose there are Ns private agents

in state D in s ≤ T − 2. When the population is large, the probability that any two such

agents meet is negligible. Thus, each private agent in state D either meets with a public

agent, which happens with probability roughly equal to m, or meets with a private agent

state C is not profitable if, and only if, (1 − β)αu(x∗) ≤ VFB, that is, if, and only if, β ≥ β∗ = x∗/u(x∗).
Now observe that the payoff from a one—shot deviation in C is larger for a private agent in a private meeting
than for a public agent, since a defection in a private meeting does not immediately lead to global autarky.
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in state C, which happens with probability roughly equal to 1 −m. Hence, E[Ns+1|Ns] ≈

mNs + (1−m)2Ns = (2−m)Ns, which implies the desired result.

Now let εη(n, T ;m) be the probability that there are no public agents in state D in period

T when in t = 0 there are n ≥ 1 private agents in state D and all the remaining agents are

in state C. It is immediate to see that these probabilities are decreasing in T . It is also easy

to see that the greater the number of private agents in state D in t = 0, the smaller the

probability that a public defection does not occur in T . In other words, εη(n, T ;m) is also

decreasing in n.

Lemma 2. εη(n, T ;m) is decreasing in n and T for all η ≥ 1 and m ∈ (0, 1).

Lemma 2 is a step towards proving that for each m ∈ (0, 1), T ·supη εη(1, T ;m) converges

to zero as T increases to infinity. This implies that when a private defection occurs, the

expected number of periods it takes for a public defection to take place can be taken to be

independent of the population size, a fact that is crucial for our main result.

Lemma 3. limT→∞ T · supη εη(1, T ;m) = 0 for all m ∈ (0, 1).

Beliefs

Denote the decision rule under σ∗(T ) by f∗ and the mixed action that assigns the same

probability to every announcement by e. Let σ∗n(T ) be the profile of behavior strategies that

is obtained from σ∗(T ) when f∗ is replaced with f∗n, where f
∗
n(·) = (1 − 1

n
)f∗(·) + 1

n
e. By

construction, if μ∗ = limn μ(σ
∗
n(T )), then (σ

∗(T ), μ∗) is a consistent assessment. In what

follows, we denote the probability of an event B conditional on an event C by P n
η (B|C) if

the agents play according to σ∗n(T ) and Pη(B|C) if the agents play according to σ∗(T ). We

omit the dependence of these conditional probabilities on m for simplicity.

Fix an agent. For each t ∈ Z+, k ≤ t−1, and (s0, . . . , sk) ∈ Zk+1+ , with s0 < · · · < sk ≤ t,

let Ot(s0, . . . , sk) be the period—t event that no public defection occurs in or before t and

the agent observes a private defection in some s ∈ {s0, . . . , sk}; the agent observes a private

defection in si if his partner in this period is private and defects. Now, for each t ∈ Z+,

k ≤ t − 1, (s0, . . . , sk) ∈ Zk+1+ , and (d0, . . . , dk) ∈ Nk+1, with s0 < · · · < sk ≤ t and
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d0+ · · ·+dk ≤ N 0
1−1, let Dt(d0, s0; . . . ; dk, sk) be the period—t event that no public defection

occurs in or before t and di private agents in the rest of the population start a defection

process in si. For ease of notation, let Ot
s = Ot(s) and Dt

s = Dt(1, s). Notice that as n

increases, the events Dt(d0, s0; . . . ; dk, sk) where either d0 + · · · + dk ≥ 2 or k ≥ 1 become

infinitely less likely than the events Dt
s. Hence, for each r ≤ s ≤ t,

lim
n→∞

(
P n
η (Dt

r|Ot
s)−

P n
η (Ot

s|Dt
r)P

n
η (Dt

r)Ps
q=0 P

n
η (Ot

s|Dt
q)P

n
η (Dt

q)

)
= 0.

Moreover, P n
η (Dt

r)/P
n
η (Dt

q) converges to 1 for all r, q ∈ {0, . . . , t}. Thus,

Pη(Dt
r|Ot

s) = lim
n→∞

P n
η (Dt

r|Ot
s) = lim

n→∞

P n
η (Ot

s|Dt
r)Ps

q=0 P
n
η (Ot

s|Dt
q)
=

Pη(Ot
s|Dt

r)Ps
q=0 Pη(Ot

s|Dt
q)
. (2)

By construction, Pη(Dt
r|Ot

s) is the conditional probability of Dt
r given Ot

s when the belief

system is given by μ∗.

The first result we establish about beliefs allows us to reduce the problem of checking

incentives off the path of play for every period t to the problem of checking these incentives

only when t ∈ {0, . . . , T}. For each t ∈ Z+, 1 ≤ k ≤ t, and (s1, . . . , sk) ∈ Zk+, with

s1 < · · · < sk ≤ t if k > 1, let F t
η,s1,...,sk

(r;m) =
Pr

q=0 Pη(Dt
q|Ot(s1, . . . , sk)) for all r ≤ s1.

Lemma 4. Suppose that s1 < · · · < sk ≤ t, with s1, t ∈ {jT, . . . , (j + 1)T − 1} for some

j ≥ 1. Then F t
η,s1,...,sk

(r;m) ≥ F t−jT
η,s1−jT,...,sk−jT (r − jT ;m) for all jT ≤ r ≤ s1.

The next result is intuitive. In any t ≤ T , an agent who observes a private defection for

the first time in s < t and then observes other private defections assigns a greater probability

to the event that the defection process started earlier than an agent who only observes a

private defection in s.

Lemma 5. F t
η,s,s1,...,sk

(r;m) ≥ F t
η,s(r;m) for all r ≤ s ≤ t− 1.

The last result about beliefs is a straightforward consequence of equation (2) together

with Lemma 1 and the fact that for all r, q ≤ s, with s ≤ min{t, T − 1} and t ≤ T ,

lim
η→∞

Pη(Ot
s|Dt

r)

Pη(Ot
s|Dt

q)
= lim

η→∞

E [Nη,s−r(1, T ;m)]

E [Nη,s−q(1, T ;m)]
.

13



Lemma 6. For each r ≤ s ≤ min{t, T − 1} and t ≤ T ,

lim
η→∞

F t
η,s(r;m) =

(2−m)s+1

(2−m)s+1 − 1

½
1− 1

(2−m)r+1

¾
= Fs(r;m).

On—the—equilibrium—path behavior

We now that a one—shot deviation by a public agent in state C is not profitable if, and

only if, β ≥ β∗ (see Footnote 10). Consider now a private agent in the same state. Regardless

of the population size and the value of T , a private defection by him eventually leads to a

public defection. So, a one—shot deviation is not profitable as long as β is sufficiently large.

This is not enough for our results, though, since the lower bound on β may depend on the

population size. We show that this is not the case.

Suppose the private agent defects in t = jT + s, with j ∈ Z+ and s ∈ {0, . . . , T − 1},

and let εks , with k ≥ 1, be the probability that there is no public defection in (j + k + 1)T

when no public defection takes place in t ∈ {(j + 1)T, . . . , (j + k)T}. An upper bound to

the agent’s lifetime payoff from a one—shot deviation in t is then given by

(1− β)
2T−sX
j=0

βjαu(x∗) + β2T−s+1
∞X
k=1

(Πk
j=1ε

j
s)β

(k−1)T (1− βT )αu(x∗). (3)

This upper bound is obtained when no public defection occurs in (j + 1)T , and the agent

always meets with someone in state C as long as no public defection takes place.

Now observe, by Lemma 2, that εks ≤ εη(2, T ;m) for all k ≥ 1 and s ∈ {0, . . . , T − 1}.

By construction, the agent moves to state D0 in (k + 1)T if there is no public defection in

this period. Thus, (3) is bounded above by

V = (1− β2T−s+1)αu(x∗) + β2T−s+1εη(2, T ;m)
1− βT

1− βTεη(2, T ;m)
αu(x∗).

Since, by Lemma 3, limT supη εη(1, T ;m) = 0, we then have the following result:

(I) There exists T1 = T1(m) such that if T ≥ T1, then there exists β0 = β0(T ) such that a

private agent in state C has no profitable one—shot deviation for all β ≥ β0 regardless of the

population size.
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Off—the—equilibrium—path behavior

Consider a private agent in state D in t ∈ {1, . . . , T} and let s0 ≤ t− 1 ≤ T − 1 be the

first period in which he observed a private defection. There are two ways in which he gains

by not defecting in t. First, this reduces the probability that a public defection occurs in the

future. Second, this increases the chance that he meets with private agents in state C before

a public defection takes place. In what follows we show that both effects can be made as

small as one wants when the population is large enough.

Let εj, with j ≥ 1, be the probability that there is no public defection in jT when there

is no public defection in t ∈ {T, . . . , (j− 1)T}. These probabilities depend on how the agent

behaves in t (and after). Suppose the agent does a one—shot deviation in t. By Lemma 2,

the probabilities εj, with j ≥ 2, increase at most from zero to εη(1, T ;m) ≤ εη(1, T/2;m).

We need to determine (an upper bound on) the impact on ε1. For this, assume that T is

even. If s0 ≤ T/2, Lemma 2 implies that ε1 increases at most from zero to εη(1, T/2,m). If

s0 ≥ T/2 + 1, Lemmas 2 and 5 imply that ε1 increases at most from zero to

F t
η,s0
(T/2;m)εη(1, T/2;m) + (1− F t

η,s0
(T/2;m))εη(1, T − s0;m)

≤ εη(1, T/2;m) + 1− F t
η,s0
(T/2;m).

A one—shot deviation in t also increases the chance that from t+1 to T the agent meets

with agents who do not defect. At best, there is one more such agent in t + 1, two more

such agents in t+ 2, and so on. Hence, an upper bound to the payoff gain from a one—shot

deviation in t is

(1− β)
T−t+1X
s=1

βs
2s−1

N 0 − 1αu(x
∗) + βT−t+1

εη(1, T/2;m)

1− βTεη(1, T/2;m)
(1− βT )αu(x∗)

+I{s≥T/2+1}(s0)β
T−t+1(1− βT )(1− F t

η,s0
(T/2;m))αu(x∗),

where I{s≥T/2+1} is the indicator function of the set {T/2+1, . . . , T−1}. Thus, this deviation

is not profitable if

β

½
(2β)T − 1
2β − 1 +

1− βT

1− β

∙
εη(1, T/2;m)

1− βTεη(1, T/2;m)
+∆η(T ;m)

¸¾
≤ x∗

u(x∗)
, (4)
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where ∆η(T ;m) = maxt−1≥s0≥T/2+1[1− F t
η,s0(T/2;m)]. Now notice that the right—hand side

of the above inequality is increasing in β. Therefore, a sufficient condition for (4) is that

2T

N 0 − 1| {z }
A

+
Tεη(1, T/2;m)

1− εη(1, T/2;m)| {z }
B

+T [∆η(T ;m)−∆(T ;m)]| {z }
C

+T∆(T ;m)| {z }
D

≤ β∗,

where ∆(T ;m) = limη→∞∆η(T ;m).

By Lemma 3, there exits T 0 = T 0(m) such that B ≤ β∗/4 if T ≥ T 0. Since

1− Fs0(T/2;m) =
(2−m)s0−

T
2 − 1

(2−m)s0+1 − 1

is increasing in s0, we then have that

T∆(T ;m) =
T (2−m)

T
2
−1

(2−m)T − 1 , (5)

which converges to zero as T increases to infinity. So, there exists T 00 = T 00(m) such that

D ≤ β∗/4 if T ≥ T 00. Let T2 = max{T 0, T 00}. Now observe, by Lemma 6, that for each

T ≥ T2 there exists η0 = η0(T ) such that max{A,B} ≤ β∗/4 if η ≥ η0. We have thus

established the following result:

(II0) There exists T2 such that if T ≥ T2, then there exists η0 such that a private agent in

state D in t ∈ {0, . . . , T} has no profitable one—shot deviation for all β ∈ (0, 1) when η ≥ η0.

Consider now a private agent in state D in t ∈ {jT +1, . . . , (j+1)T} for some j ≥ 1 and

once more let s0 be the first period in which he observed a private defection. If s0 ≥ jT ,

we can apply Lemma 4 to reduce this case to the case where t ≤ T . If s0 ≤ jT − 1, then

there are at least two private agents in state D in period jT , and so we can also apply the

reasoning used when t ≤ T . Now observe that if a private agent is in state D0, then either

t ∈ {jT + 1, . . . , (j + 1)T} for some j ≥ 1, or t ∈ {1, . . . , T} and the agent defected against

a public agent in some previous period. In the first case, the analysis is the same as if the

agent were in state D and s0 ≤ jT − 1. In the second case, the only benefit from a one—shot

deviation is to increase the chance that from t+1 to T the agent meets with agents who do

not defect. We then have the following result:

16



(II) There exists T2 such that if T ≥ T2, then there exists η0 with the property that a private

agent in states D or D0 has no profitable one—shot deviation for all β ∈ (0, 1) when η ≥ η0.

As the last step before the proof of Proposition 2, consider a public agent in state D in

some period t ≥ 1 and let s0 ≤ t − 1 be the first period in which he observed a private

defection. We know from above that if β ≥ β∗, then he has no profitable one—shot deviation

if t 6= jT for all j ≥ 1. Consider then the case where t = jT and let εj be the probability

that the agent assigns to the event that there is no other public agent in state D in this

period. By Lemma 2, a one—shot deviation is not profitable if,

(1− β)αx∗ ≥ εj

1− βTεj
(1− βT )αu(x∗),

and a sufficient condition for this to hold for all β ∈ (0, 1) is that Tεj ≤ (1 − εj)β∗. As

before, assume that T is even. If either j ≥ 2 and s0 ≤ jT − 1 or j = 1 and s0 ≤ T/2,

Lemma 2 implies that εj ≤ εη(1, T/2;m). In the other cases, Lemmas 4 and 5 imply that

εj ≤ F T
η,s0
(T/2;m)εη(1, T/2;m) + 1− F T

η,s0
(T/2;m)

≤ εη(1, T/2;m) +∆(T ;m) + Fs0(T/2;m)− F T
η,s0
(T/2;m).

So, by Lemma 6, we have the following result:

(III) There exists T3 such that if T ≥ T3, then there exists η0 with the property that a public

agent in state D has no profitable one—shot deviation for all β ≥ β∗ when η ≥ η0.

Proof of Proposition 2: From (I) to (III), we know that there exists T 0 = T 0(m) such

that if we set T in σ∗(T ) equal to T 0, then there exist β0 ∈ (0, 1) and η0 ≥ 1 with the property

that no agent in states C, A, D, and D0 has a profitable one—shot deviation when β ≥ β0 as

long as η ≥ η0. Notice that this holds regardless of how a private agent behaves in states D1

to DK. Thus, for each β ≥ β0 and η ≥ η0, we just need to specify the behavior of a private

agent in states D1 to DK in a way that it is sequentially rational (given the behavior of the

agents in the other states). The details of how this can be done are in the Appendix. .

Notice that the strategy profile we consider is not “efficient” when m is close to one.

The reason is that the value of T needed to make (5) small enough for (4) to be satisfied
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increases withm. It is, of course, not necessary to set T large, which requires a high β, when

m is close to one, since in this case a defection process quickly reaches a public agent. The

advantage of using the strategy profile σ∗(T ) is that it works for all m ∈ (0, 1).

5 Robustness

There are other notions of memory that we could have used in our analysis. We discuss

three of them. The first, simpler, would be to assume that for every meeting that takes place

there is a probability m ∈ (0, 1) that the announcements in the meeting become public. In

this case, the first—best can be sustained by a grim—trigger profile as long as β is sufficiently

large. Assuming that the agents don’t know whether their decisions will be observed by

everyone else greatly simplifies the analysis.

The second notion of memory generalizes the one we use by assuming that the announce-

ments of the public agents are observed with a lag, either deterministic or stochastic.11 The

effect of an increase in the lag is potentially ambiguous. On the one hand, it increases the

amount of time it takes until a defection by a public agent is observed, which requires a larger

β to sustain cooperation on the path of play. On the other hand, a larger lag makes it easier

to provide a public agent with the incentive to communicate a private defection to the rest

of the population. If the lag is large enough, the first effect dominates the second, though.

It is straightforward to adapt the proof of Proposition 2 to cover this type of memory. The

lower bound on β will now depend on both m and the size of the lag.

The third notion of memory also generalizes the one we use by assuming that for each

public agent, there exists a fraction F < 1 of the private agents that observe his actions.

As with the second alternative notion of memory, a defection by a public agent no longer

triggers an immediate reversion to global autarky. Nevertheless, a defection by a public agent

eventually leads to global autarky (and the time elapsed does not depend on the population

11When m = 1, this coincides with the notion of memory used in Kocherlakota and Wallace (1998). The
lag is deterministic if for every period t the announcements of the public agents in t become public in the
period t+ L, with L ≥ 0. The lag is stochastic if L is random.
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size). Notice that a decrease in F has the same two effects on incentives described in the

previous paragraph as an increase in the observation lag. It is straightforward to adapt the

proof of Proposition 2 to cover this third type of memory. The lower bound on β will now

depend on m and F .

We assume that the good is not perfectly divisible. This assumption is done purely for

technical reasons: the notion of a sequential equilibrium is problematic for games with infinite

action spaces. Nowhere in the proof of Proposition 2 does the indivisibility assumption play a

role in sustaining cooperation. We do need to change Proposition 1 when the good is perfectly

divisible, though. It is easy to see that the following is true when perfect divisibility holds.

Proposition 1’. Suppose that m = 0. For each β and ex > 0, there exists N 0(β, ex) such that
if N 0 ≥ N 0(β, ex), then an agent does not announce more than ex on the path of play in any
Nash equilibrium.

An important concern in the literature on social norms is the robustness of cooperation

to trembles (deviations) in the population. This is especially important in our environment,

given our focus on allocations (and not on ex—ante payoffs). In the strategy profile we use to

prove Proposition 2, a deviation eventually leads to permanent autarky. We do this for sim-

plicity. It is easy to see that if we modify this strategy profile so that agents in state A return

to state C after sufficiently many periods, it still remains a sequential equilibrium. Thus,

we can sustain the first—best with a sequential equilibrium where cooperation is eventually

restored after a tremble.

To finish this section, notice that our results remain the same if agents make their produc-

tion decisions only after they know whether they are producers or not. The only difference

in this case is that now the defection process is slower: an agent in state D can only defect

in a single—coincidence meeting where he is the producer. This amounts, in rough terms, to

a reduction in the quantity of memory in the economy.12

12Also notice that our results do not change if agents are not anonymous. Indeed, if the identities of the
agents are observable, it still is an equilibrium to ignore these identities and follow the strategy described in
the proof of Proposition 2.
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6 Discussion

The notion of memory we use has two distinct elements. First, it is a record of the past

actions of some agents. Second, it publicly discloses this information to everyone else in

the population. The first feature constitutes a pure record—keeping device, while the second

feature constitutes a coordinating device. Kocherlakota (1998) introduces a different notion

of memory where the coordination element is absent: in every meeting that he participates,

an agent observes his partner’s past history as well as the past histories of all his partner’s

direct and indirect partners. Limited memory can be naturally defined in Kocherlakota’s

environment as a restriction on the amount of information an agent obtains about his partners

upon meeting them. We show in Araujo and Camargo (2009) that the first—best can be

achieved with this type of memory even when it is quite limited.

There is a relation between our work and the work of Cavalcanti and Wallace (1999a,b)

(CW hereafter), on the co—existence of inside and outside money. They also assume that

there exists a positive measure of agents, that they label as banks, whose histories are

publicly known. Banks are able to issue inside money. Overissue does not happen because

the trading histories of banks are public, and so they can be punished if they fail to redeem

outstanding notes. Our paper shows that money (be it inside or outside) is not essential

in CW’s environment if the arrival rate of trading opportunities is large enough. Putting

it differently, our work unveils a tension between the existence of an equilibrium in which

endogenously issued money is valued as a medium of exchange and its essentiality. The same

technology that sustains the acceptability of inside money may also allow the existence of

self—enforcing credit arrangements that achieve the first—best.13

This paper shows that the emphasis on limited memory as a fundamental friction for

13It is important to note that the results in CW crucially depend on the role of memory as a coordinating
device. Indeed, if we eliminate the coordinating component of memory and assume that an agent must
physically meet a bank in order to observe its past transactions, then there is no equilibrium in which banks
redeem outstanding notes. The reason is that if the notes issued by a bank are valued as a medium of
exchange, then an agent has no incentive to refuse production to this bank in exchange for a note, whether
it has refused to redeem outstanding notes in the past or not.
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money to be essential needs to be re—considered. It also suggests that the role of money

goes beyond that of being a (primitive) record—keeping technology. A natural question to

ask is what other frictions in the exchange process can play a key role on the essentiality of

money. One candidate, which we are currently investigating, is private information about

preferences and technology.
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Appendix: Omitted Details and Proofs

STATE TRANSITIONS IN D1 to DK .

An agent in state Dk in period t, with k ∈ {1, . . . ,K}, moves to state A if there is a

public defection and moves to state D0 if there is no public defection, but either he defects

against a public agent or t is a multiple of T .

For each k ∈ {1, . . . , T}, let Sk = {0, 1cc, 1cd, 1dc, 1dd}k−1 and denote a typical element of

this set by s = (s1, . . . , sk−1). Consider a private agent and suppose that t = jT + s, with

j ≥ 0 and s ∈ {1, . . . , T}. The agent can be in states D1 to DK only if he started a defection

process in some t0 ∈ {jT, . . . , t − 1} and so far has not defected against a public agent.

Suppose this is the case and let k = t − t0 ∈ {1, . . . , T} be the number of periods elapsed

since the agent started the defection process. We can describe his experience since t0 by an

element s of Sk: if si denotes his experience in k0 + i, then si = 0 if he meets a public agent,

si = 1cc if he meets a private agent and both agents cooperate, si = 1cd if he meets a private

agent and cooperates, but his partner does not, and so on.

For each k ∈ {1, . . . , T}, let ≥k be a total order on Sk. Now let S =
S

k Sk and introduce

a total order ≥ on this set as follows. For each s, s0 ∈ S,

s > s0 if

⎧⎨⎩ s ∈ Sk and s0 ∈ Sk0 with k > k0

s, s0 ∈ Sk and s >k s
0

.

Order the elements of S from lowest to highest according to ≥ and let s(n) denote its nth

element. To finish, let N : S → N be such that N(s(n)) = n. A private agent who starts a

defection process is in state DN(s) if his experience since he started the process is described by

s ∈ S. Notice, by construction, thatK is the number of elements of S and that DN(s(1)) = D1.
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PROOF OF LEMMA 1

We start with an auxiliary result. Let qη(n, s;m) be the probability that if there are n

private agents in state D and the remaining agents are in state C, then s of the private agents

in state D meet with a public agent and the remaining n− s ones meet with a private agent

in state C. Now let

q∞(n, s;m) =

µ
n

s

¶
ms(1−m)n−s.

We claim that for each n ∈ N and s ≤ n, limη→∞ qη(n, s;m) = q∞(n, s;m). Indeed, just

notice that if 2n ≤ N 0
1, then

qη(n, s;m) =

µ
n

s

¶
N 0
0

N 0 − 1 · · ·
N 0
0 − (s− 1)

N 0 − 2(s− 1)− 1 ·
N 0
1 − n

N 0 − 2(s+ 1)− 1 · · ·
N 0
1 − (2n− s− 1)

N 0 − 2(n− 1)− 1

=

µ
n

s

¶
m

1− 1
N 0
· · ·

m− s−1
N 0

1− 2(s−1)+1
N 0

·
1−m− n

N 0

1− 2s+1
N 0

· · ·
1−m− 2n−s−1

N 0

1− 2(n−1)+1
N 0

.

For the proof of Lemma 1, fix � > 0 and assume that η ≥ T , so that N 0T
1 . Now let

t ∈ {1, . . . , T − 1} and suppose that n ≤ 2t. First notice that
Pn

s=0(2n − s)q∞(n, s;m) =

(2−m)n and that E[Nη,t(n, T ;m)|Nη,t−1(n, T ;m) = n] =
Pn

s=0(n+n− s)qη(n, s;m). So, by

the previous paragraph, there exists η such that

|E[Nη,t(n, T ;m)|Nη,t−1(n, T ;m) = n]− (2−m)n| < �

2T−1
.

for all n ∈ {1, . . . , 2T−1} and all t ∈ {1, . . . , T − 1} if η ≥ η. Now observe that there are at

most 2t−1 private agents in state D in t− 1. Hence, by the triangle inequality,

|E[Nη,t(n, T ;m)]− (2−m)E[Nη,t−1(n, T ;m)]| <
�

2T−1

for all t ∈ {1, . . . , T − 1} if η ≥ η. Thus, using the triangle inequality again, we obtain that

|E[Nη,t(n, T ;m)]− (2−m)t−1|

≤
tX

s=1

(2−m)t−s|E[Nη,s(n, T ;m)]− (2−m)E[Nη,s−1(n, T ;m)]| < �.

if η ≥ η, which implies the desired result.
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PROOF OF LEMMA 3

First notice that

εη(1, T ;m) =
N1 − 1
N 0 − 1 · εη(2, T − 1;m) =

(1−m)− 1
N 0

1− 1
N 0

· εη(2, T − 1;m).

Now observe that for each t ≥ 1,

εη(2, t;m) =
1

N 0 − 1 · εη(2, t− 1;m) +
N 0
1 − 2

N 0 − 1 ·
N 0
1 − 3

N 0 − 3 · εη(4, t− 1;m)

≤
µ
1

N 0 +
(1−m)− 2

N 0

1− 1
N 0

·
(1−m)− 3

N 0

1− 1
N 0

¶
εη(2, t− 1;m),

where the inequality follows from Lemma 2. Therefore,

εη(1, T ;m) ≤
(1−m)− 1

N 0

1− 1
N 0

µ
1

N 0 +
(1−m)− 2

N 0

1− 1
N 0

·
(1−m)− 3

N 0

1− 1
N 0

¶T−1

≤ (1−m)

µ
1

N 0 + (1−m)2
¶T−1

,

from which the desired result holds (recall that 1/N 0 < m by construction).

PROOF OF LEMMA 4

Let r ∈ {jT, . . . , s}. Then,

F t
η,s1,...,sk

(r;m) =

Pr
q=0 Pη(Ot(s1, . . . , sk)|Dt

q)Ps
q=0 Pη(Ot(s1, . . . , sk)|Dt

q)
≥
Pr

q=jT Pη(Ot(s1, . . . , sk)|Dt
q)Ps

q=jT Pη(Ot(s1, . . . , sk)|Dt
q)
.

Now observe that if q ∈ {jT, . . . , s}, then

Pη(Ot(s1, . . . , sk)|Dt
q) = Pη(Ot−jT (s1 − jT, . . . , sk − jT )|Dt−jT

q−jT ),

and so the right—hand side of the above inequality is equal to F t−jT
η,s1−jT,...,sk−jT (r− jT ;m).

26



PROOF OF LEMMA 5

Let %r be the monotone likelihood ratio order and define gs and gs,s1,...,sk to be the

probability density functions on {0, . . . , s} such that gs(q) = Pη(Dt
q|Ot

s) and gs,s1,...,sk(q) =

Pη(Dt
q|Ot(s, s1, . . . , sk)). The desired result holds if gs %r gs,s1,...,sk . We know from the main

text that for each r ≤ s,

Pη(Dt
r|Ot(s, s1, . . . , sk)) =

Pη(Ot(s, s1, . . . , sk)|Dt
r)Ps

q=0 Pη(Ot(s, s1, . . . , sk)|Dt
q)
.

Hence, gs %r gs,s1,...,sk if, and only if,

Pη(Ot
s|Dt

r)Pη(Ot(s, s1, . . . , sk)|Dt
r0) ≥ Pη(Ot

s|Dt
r0)Pη(Ot(s, s1, . . . , sk)|Dt

r) (6)

for all r0 < r ≤ s. Now observe that if q ≤ s, then

Pη(Ot(s, s1, . . . , sk)|Dt
q) = Pη(Ot

s|Dt
q)Pη(Ot(s1, . . . , sk)|Dt

q,Ot
s).

Thus, (6) holds if, and only if, Pη(Ot(s1, . . . , sk)|Dt
r0 ,Ot

s) ≥ Pη(Ot(s1, . . . , sk)|Dt
r,Ot

s) for all

r0 < r ≤ s, which is the case when t ≤ T − 1.

BEHAVIOR IN STATES D1 to DK .

Let t = jT + s, with j ≥ 0 and s ∈ {1, . . . , T}, and consider a private agent with state

in the set {D1, . . . ,DK}. Notice that: (i) the agent’s state can be in {D1, . . . ,DK} only if

he initiated a defection process in some t0 ∈ {jT, . . . , t − 1}; (ii) the only payoff relevant

information for such an agent is his experience from t0 + 1 to t − 1, which determines his

belief about the number of private and public agents in D, and the number (j + 1)T − t

of periods left before a public defection can occur.14 Therefore, we only need to determine

behavior in the states D1 to DK for t ∈ {1, . . . , T}, which we can accomplish by a backward

induction argument starting at T–recall that from T + 1 on the private agent is either in

state A or in state D0.

14Notice that under μ∗, a private agent who starts a defection process and later observes a private defection
assigns zero probability to the event that some other private agent started a defection process.
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