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1 Introduction

In models of classical, Sraffian or long-term inspiration, natural resources are
usually confined to ‘Ricardian’ lands, i.e. resources of which the quality and
quantity remain unchanged over time, no matter how they are used. When
they become scarce, a positive price must be paid for their use. The theory of
rent examines all the intricacies to which this may give rise; a few of the main
contributions to this literature are: Sraffa (1960, ch. 11), Quadrio Curzio
(1966), Schefold (1971), Montani (1975), Kurz (1978), Abraham-Frois and
Berrebi (1980), Steedman (1982), D’Agata (1983), Salvadori (1983), Woods
(1987), Bidard and Woods (1989), Erreygers (1990), and Bidard (2010).
Considerably less work has been done on either exhaustible or renewable re-
sources. Exhaustible resources have been treated by Parrinello (1983, 2004),
Kurz and Salvadori (1997, 2000), and Bidard and Erreygers (2001a, 2001b);
this literature is reviewed by Ravagnani (2008). The corn-guano model pre-
sented by Bidard and Erreygers has been subject to a debate (see, among
others, Kurz and Salvadori, 2001; Parrinello, 2001; and Schefold, 2001), and
applied to the problem of waste treatment (Hosoda, 2001).

As far as renewable resources are concerned, there is very little besides
the salmon model of Kurz and Salvadori (1995: 351-357). In their model
they conecived the renewable resource - salmon - as a nonbasic commodity.
They examined whether long-period equilibria exist for a given demand of
salmon, and arrived at the conclusion that in some circumstances both stable
and unstable equilibria may exist. They also showed that in some cases the
population of wild salmon is doomed.

My purpose here is to construct a simple model for the study of renewable
resources in a long-term framework. My model is similar, yet distinct from
the model presented by Kurz and Salvadori. Since I draw my inspiration
from existing simple long-term models, I begin with a brief recapitulation of
two of these models, the corn model (Section 2) and the corn-guano model
(Section 3). The core of the paper consists of the presentation, analysis
and discussion of the corn-tuna model. The characteristics of the corn-tuna
model are meant to reflect salient features of the use of renewable resources
(Section 4). I start the analysis of the model with a comparison of two ‘pure’
systems of production (Section 5) before considering the ‘mixed’ system (Sec-
tion 6). This leads to the examination of two different government policies
(Section 7). I then explore what can be learned from this model, and point
out some of its limitations and weaknesses (Section 8).
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2 The Corn Model

I find it appropriate to start with a brief reminder of a simple Ricardian model
which is very familiar to those who have studied the classical theory: the corn
model (see Chapter 1 of Bidard, 2004 for a more extensive presentation). Let
us assume that there exists only one produced commodity, corn, which is
produced by means of itself, land and labour. Land and labour are assumed
to be of uniform quality. The following table summarizes the two processes
which are available in this economy.

Table 1: Processes in the Corn Model

Inputs Outputs
Corn Land Labour Corn Land
a 1 l → b 1
0 1 0 → 0 1

The first process, the single production process of corn, is used year in,
year out. The occurrence of land on the side of both inputs and outputs
means that the quantity and the quality of land are not affected by its use
in production. The same holds if land is left fallow, i.e., if it is not used in
production. This is represented by the second process.

The two price relations which correspond to these processes are:

bpc + pl ≤ (1 + r)(apc + pl + lw) [y1,t] (1)

pl ≤ (1 + r)pl [y2,t] (2)

with r the rate of profits, pc the price of corn, pl the price of land, w the
wage, and y1,t and y2,t the activity levels of the two processes in period t.
The above notation means that if the activity level of a process is positive
(yi,t > 0), then the corresponding price relation must hold as an equality; by
contrast, for an inactive process (yi,t = 0) the inequality may be strict (i.e.
the process cannot sustain the ruling rate of profit).

Let us assume that the demand for corn is such that there is plenty of
land. This means that part of the land is not used; in other words, the fallow
process is always active (y2,t > 0). In that case, (2) implies pl = 0. Taking
corn as numéraire (pc = 1), equation (1) determines the relation between the
rate of profits and the wage expressed in units of corn (i.e. w/pl). If the rate
of profit is treated as the independent variable, it should not exceed the limit
value of (b− a)/a, otherwise the wage will be negative. Alternatively, if the
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wage is treated as the independent variable, it should not exceed the limit
value of (b− a)/l, otherwise the rate of profit will be negative.

Instead of taking corn as numéraire, we could also take labour (w = 1).
We then obtain a relation between the rate of profits and the price of corn
expressed in labour (i.e. pc/w, the inverse of the wage expressed in corn). It
is easy to show that the relation is equivalent to the one obtained with corn as
numéraire.1 In other words, whatever the numéraire - a mixed corn/labour
numéraire would yield exactly the same result - we always find the same
relation between the “real rate of profits” and the “real wage”.

If the demand for corn continues to increase, eventually all the land will
be used for corn production, and no land will be left fallow (y2 = 0). There
is then room for the activation of a second corn production process, which
allows to obtain a greater net output of corn. The second process is more
expensive than the first; their joint operation leads to a positive price (and
hence rent) for land, with the rent equal to the difference in cost between the
two corn production methods. When the rate of profit is positive, however,
paradoxical results can occur; these are examined in the classical theory of
(intensive) rent.

3 Exhaustible Resources

3.1 The Hotelling Rule

I now make the model a bit more complex by introducing the existence of
an exhaustible resource, say resource g. Before we specify how this changes
the corn-model, let us consider how a rational resource owner will behave
in a competitive environment. As long as he owns a positive amount of the
resource, an owner faces the choice between selling his resource immediately,
or letting it lie idle and sell it in the future. Nothing is lost if we reduce his
problem to the choice of selling one unit at time t or waiting for one year
and selling it at time t+ 1. In the first case the sale gives him an immediate
revenue of pg,t, i.e. the price of one unit of the resource at time t, which he
can then invest. In the second case he simply waits and obtains a revenue of
pg,t+1 at time t+ 1. If one of the two options were more profitable than the
other, all resource owners would follow the most profitable course of action,
which would mean that either the whole supply of the resource would be
exploited at time t, or that none of it would. In general this is impossible:
in any period of time, except the one in which the resource is depleted, part

1In the first case we have
w

pc
=

b− (1 + r)a

(1 + r)l
, and in the second

pc
w

=
(1 + r)l

b− (1 + r)a
.
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of the supply is exploited and part of it is conserved. This means that in
equilibrium the two options must be equally profitable. If the first option
allows you to obtain a rate of return r when you invest the proceeds of selling
the resource, then so must the second. This leads to the following equilibrium
condition:

r =
pg,t+1

pg,t
− 1 (3)

from which it easily follows that:

pg,t+1 = (1 + r)pg,t (4)

Equation (4) implies that the price of the exhaustible resource, i.e. its
royalty, rises at a rate equal to the ruling rate of profit. This is the re-
sult known as the Hotelling rule, after the seminal contribution of Harold
Hotelling (1931). Since exhaustible resources are typically goods which are
used for the production of other goods, the Hotelling rule implies that one
can expect that the prices of all goods will change over time.

3.2 The Corn-Guano Model

The classical theory of prices is often identified with the theory of long-term
or normal prices, which are assumed to be constant as long as there are no
changes in the methods of production. On this interpretation, the classical
theory seems to be at odds with the Hotelling rule. A representative of
this view is Bertram Schefold, who starts from the adage that “the classical
approach relies on the conception of normal prices and is inseparable from it”
(Schefold, 2001: 320), and therefore accepts only with the greatest reluctance
the possibility of changing relative prices. I do not share Schefold’s view,
and reject his way of dealing with the issue. I maintain that the classical
theory cannot ignore changing relative prices when dealing with exhaustible
resources, and must therefore find a way of coping with changing relative
prices. In two previous contributions Bidard and Erreygers (2001a, 2001b)
have shown, by means of the corn-guano model, that this is indeed possible.

The corn-guano model has been conceived as a methodological tool: its
analytical simplicity allows us to shed light on the original economic features
linked to the introduction of exhaustible resources. However, its structure is
rich enough to initiate the reader to the study of the dynamics of models with
exhaustible resources. There is only one produced commodity, called corn,
and one exhaustible resource, called guano. The following table describes the
available processes.
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Table 2: Processes in the Corn-Guano Model

Inputs Outputs
Corn Guano Labour Corn Guano
a1 1 l1 → b1 0
a2 0 l2 → b2 0
0 1 0 → 0 1

The first, or ‘guano process’, specifies how corn can be produced by means of
guano. The second, or ‘backstop process’, is an alternative corn production
method; the name is suggested by the property that it will be used after the
exhaustion of the stock of guano.2 The third process expresses the fact that
unused quantities of guano are transferred without loss of quality to the next
period. All processes admit constant returns.

3.3 Corn as Numéraire

During any period, the operated methods must yield the same rate of profit
whereas the non-operated method(s) do not yield more. As is usual in Sraf-
fian models, I treat the rate of profit as exogenously given. What this means
in real terms depends upon the standard of value adopted by investors. Let
us assume that the numéraire acts as a standard of value. In the first version
of the model (Bidard and Erreygers, 2001a), corn is chosen as numéraire.
The rate of profit cannot be too high; I assume it is such that:

0 ≤ r <
b1 − a1
a1

, 0 ≤ r <
b2 − a2
a2

(5)

(these inequalities are required in order that the two corn production pro-
cesses can sustain that rate of profit). To make things interesting, I assume
that the production coefficients are such that if guano were free, the guano
process would be cheaper than the backstop process.3

2Both processes obviously also require land. Assuming land to be of uniform quality
and always abundantly available, its price will be zero. Hence land plays no role in this
model, and therefore I have dropped it from the inputs and outputs.

3If this were not the case, guano would never be used and we would be back in the
simple corn model. The condition holds if we have:

b2 − (1 + r)a2
l2

<
b1 − (1 + r)a1

l1
.
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For simplicity, I suppose that the date T when the stock of guano becomes
exhausted is known. The underlying hypotheses may be that the initial stock
and the demand for corn are exogenously given and that the guano method
is continuously used until exhaustion.4

As long as guano is not exhausted, the guano preservation process is
operated (y3,t > 0), therefore the price of guano, or royalty, rises at a rate
equal to the rate of profit (the Hotelling rule). Since the speed of evolution
of the royalty is determined, it suffices to know its level at some date. A
simple economic argument is:

At the moment of exhaustion (. . . ) we expect the backstop
method to be used alongside the guano-method. Only by fluke
would the then remaining supply of guano be sufficient to satisfy
the whole demand for corn by means of the guano process: nor-
mally the remaining quantity will be too low, and the backstop
process must be operated to fill the gap. (Bidard and Erreygers,
2001a: 249)

The coexistence of the two processes in the period of exhaustion requires
that they are equally costly at that time. This condition determines the
royalty at the date T of exhaustion, which coincides with the differential
rent between the two processes to produce corn. Thanks to the Hotelling
rule, the royalties in the preceding periods can be calculated by backward
induction. The last unknown, viz. the real wage, is then obtained. As
a consequence of the increasing royalties, the real wage decreases as time
passes, a phenomenon at variance with the behaviour of Ricardian models
without exhaustible resources. One may alternatively assume that the real
wage is given and show that the current rate of profit declines up to the
exhaustion period.

3.4 A Corn-Labour Numéraire

In a second version of the model (Bidard and Erreygers, 2001b), the numéraire
is a given combination of d units of corn and k units of labour, with both d
and k positive (by contrast, in our first version we assumed d = 1 and k = 0).
For period t, which begins at date t and ends at date t+ 1, the price system

4Ex post, one must check that the last assumption is consistent with the analysis of
prices, i.e. one must check that, up to date T , the guano method is cheaper that than the
backstop method.
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is such that:

pc,t+1 ≤ (1 + r)(a1pc,t + pg,t + l1wt) [y1,t] (6)

pc,t+1 ≤ (1 + r)(a2pc,t + l2wt) [y2,t] (7)

pg,t+1 = (1 + r)pg,t [y3,t] (8)

1 = dpc,t + kwt (9)

where pc,t is the price of corn, pg,t the price (or royalty) of guano, wt the wage,
and y1,t and y2,t the activity levels of the two corn production processes, all
at date t. During the exhaustion period T , these two processes are operated
simultaneously. After the exhaustion of guano, only the second process can
be operated, and expressions (6) and (8) become irrelevant.

Since the relative price of corn and labour changes with time, the prof-
itability of a given process now depends on the composition of the numéraire,
in the same way as the profitability of an international firm depends on
whether it is calculated in dollars or euros. The dynamics depend on the
numéraire and become complex. The study of system (6) to (9) shows that
the price equations admit one degree of freedom, say the level of pc,T . Once
pc,T is known, the system can be solved by means of backward induction.
This procedure, however, leads to a negative price pc,T−τ for τ great enough,
except for one specific choice of pc,T . That choice defines what we have called
the ‘natural path’. In fact, there exists an infinite number of paths with pos-
itive prices for T periods, but for large T all these paths are close to the
natural path. Comparable complications occur in multisector models (sev-
eral produced commodities) even when the numéraire is made of a unique
commodity, but their resolution is similar when the formulae obtained for
the corn-guano model are conveniently re-interpreted.

4 Renewable Resources

4.1 The Character of Renewable Resources

Typical for exhaustible resources is that nature has stopped producing them,
or produces them at such an extremely slow rate that humans do not notice it.
Renewable resources, by contrast, are goods which are produced by natural
processes, although sometimes only if a number of critical conditions are
satisfied. Think of pelagic fish: as long as the stock of fish swimming in
the sea is higher than the critical mass necessary for reproduction and lower
than the maximum carrying capacity of the environment, the stock of fish
normally increases, which means that fish is produced. One can then harvest
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fish without endangering the survival of the species, but only if one does
not catch too much of it. Sadly enough, there are plenty of examples of
overfishing culminating in the extinction or near-extinction of fish species.

In some cases it may be possible to produce renewable resources also by
man-made processes. Once again, fish is a good example: various forms of
fish farming have become increasingly important in the last decades. This
contrasts sharply with the essentially static level of capture fisheries over the
last two decades. In its most recent two-yearly report on the state of world
fisheries and aquaculture, the FAO wrote:

Global fish production continues to outpace world population
growth, and aquaculture remains one of the fastest-growing food
producing sectors. In 2012, aquaculture set another all-time pro-
duction high and now provides almost half of all fish for human
food. This share is projected to rise to 62 percent by 2030 as
catches from wild capture fisheries level off and demand from an
emerging global middle class substantially increases. If respon-
sibly developed and practised, aquaculture can generate lasting
benefits for global food security and economic growth. (FAO,
2014: iii-iv)

In the following model I try to incorporate some of these features. I
assume there exists a renewable resource - tuna - which can be produced
by nature and by man. Making some strong assumptions, I will explore the
competition between the natural method and the man-made method and
examine whether and when these methods can co-exist. Let me recall that
the exhaustible resource we considered in the previous section, guano, was a
means of production, not a consumption good. In the model we are about to
present the renewable resource is a consumption good. So we move from a
model with one consumption good to a model with two consumption goods.

4.2 Catching Fish in the Wild vs. Fish Farming

First of all we have to clarify the interplay of biological and economic factors
involved in the production of fish (see, e.g., Shaefer 1954, 1957). In the
absence of fishing, the population P tends to grow according to its natural
increase n, which can be seen as a function of the population level, i.e. n =
f(P ). Let us assume there exists a maximum population level, L, at which
the population of fish stops growing, i.e. f(L) = 0. If there is fishing, the
population changes with the difference between the natural increase and the
amount of fish caught in the sea. The catch c depends basically upon two

9



factors, the population of fish P and the effort level e, so that we can assume
that we have a functional relationship c = g(P, e). For a given effort level,
a larger population normally leads to a higher catch (∂c/∂P > 0): the more
fish are swimming in the sea, the easier it is to catch them. Likewise, for a
given population, a higher effort level leads to a higher catch (∂c/∂e > 0):
the more boats are out on the seas, the more fish is caught. To simplify the
analysis, I take the following natural increase and catch functions:

f(P ) = k1P (L− P ) (10)

g(P, e) = k2Pe (11)

where k1 and k2 are positive constants (Schaefer, 1954: 29-31). The natural
increase function (10) determines a relationship between the population and
its natural increase which has an inverted U-shape (see Figure 1). The catch
function (11) implies that the catch per effort is directly proportional to the
population.

Source: Schaefer (1954: 30).

In a long-term perspective, we are especially interested in sustainable
catch levels. A catch is sustainable if the effort level ensures that the pop-
ulation of fish remains constant. This means that, given the population of
fish, the effort level is chosen in such a way that the catch c coincides with
the natural increase n. The peak of the natural increase curve represents
the maximum sustainable yield, which for (10) is equal to k1(L/2)2. It is
easy to see that to any population 0 ≤ P ≤ L we can associate a sustain-
able catch c∗(P ) = f(P ). Given the effort function we can also determine
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a sustainable effort level e∗(P ), where c∗(P ) = g(P, e∗(P )). For the natural
increase and effort functions (10) and (11) we have c∗(P ) = k1P (L−P ) and
e∗(P ) = [k1(L− P )] /k2. The relationship between c∗(P ) and e∗(P ) has typ-
ically also an inverted U-shape. For instance, for our specific catch and effort
functions, we have c∗(P ) = {k2e∗(P ) [k1L− k2e∗(P )]} /k1. This reflects the
fact that any catch below the maximum sustainable yield can be sustained
either by a large population (and hence a low effort level) or by a small
population (and hence a high effort level). For society it seems best that a
large-population equilibrium is obtained, i.e. an equilibrium on the right-
hand side of Figure 1. The first reason is that a large-population equilibrium
is stable: if there is a small but temporary deviation of the effort level from
its sustainable level, the population will tend to return to its equilibrium
value. The opposite holds for a small-population equilibrium, which means
that there is a substantial risk of overfishing and dwindling populations. The
second reason is purely economic: in a small-population equilibrium the cost
of producing the same amount of fish as in a comparable large-population
equilibrium is much higher.

Fish farming, by contrast, resembles any other industrial or agricultural
activity. Fish farms are very much the same as pig farms or cattle farms.

4.3 The Corn-Tuna Model

While fish farming can be integrated without any problem into a Sraffian
model, catching fish in the wild poses a real challenge. One problem is that
for a given population of fish, the natural method of producing fish is not
necessarily characterized by constant returns to scale: doubling the effort
level may not double the catch of fish. Moreover, as we have just seen, in a
sustainable (and hence long-term) equilibrium the effort level is determined
by the population of fish. This means we are obliged to introduce some
biological elements into the model.

The first consumption good in our model, corn, is produced by means of
itself and land. The second consumption good, tuna, which is the model’s
renewable resource, can either be caught in the sea by means of boats (this
is the natural process) or be produced artificially in aquaculture ponds (the
man-made process). In the first case boats are needed, and to make the
model a bit more realistic I assume that every year a fraction of the existing
fleet must be replaced. With regard to the second case, I assume that ponds
also need to be renewed from time to time, so that each year new ponds
have to be constructed. Ignoring land and sea, the model therefore consists
of 4 goods (corn, tuna, boats and ponds) and 5 processes. I stress that I
make the probably unrealistic assumption that wild and farmed tuna are
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indistinguishable commodities. Consumers are indifferent between the two:
they have a demand for tuna, not for wild or farmed tuna.

The available processes are described in the following table.

Table 3: Processes in the Corn-Tuna Model

Inputs Outputs
Corn Tuna Boat Pond Labour Corn Tuna Boat Pond
a11 0 0 0 l1 → b11 0 0 0
a21 0 1 0 l2 → 0 b22,t b23 0
a31 0 0 0 l3 → 0 0 1 0
a41 a42 0 1 l4 → 0 b42 0 b44
a51 0 0 0 l5 → 0 0 0 1

The first process is the single corn production process of the economy. The
second and fourth processes are the two available methods to produce tuna:
the former using boats to catch fish in the wild, the latter using ponds in
which fish are farmed. The third process is the construction process for boats,
and the fifth that of ponds. Since boats are used only to catch wild tuna,
processes 2 and 3 will always be operated jointly; hence {2, 3} is the wild
tuna technique. The same holds with respect to processes 4 and 5, and so
{4, 5} constitutes the farmed tuna technique.

As mentioned, some caution is needed with regard to the second process.
The amount of tuna caught per boat, b22,t, is context-dependent and hence
it has a time index. Recall that the total catch of tuna in a given period is
a function of the existing population of tuna and of the effort level. While
the population at time t will be denoted by Pt, the effort level in the period
between time t and time t+1 will be measured by the size of the fishing fleet
active in this period, i.e. y2,t.

5 The catch function can therefore be written as
g(Pt, y2,t). Since the total catch is equal to the catch per boat b22,t multiplied
by the number of boats y2,t, we have b22,t = g(Pt, y2,t)/y2,t. Given the effort
function (11) the average tuna catch per boat b22,t is a simple linear function
of the population Pt:

b22,t = k2Pt (12)

As far as the b23 coefficient is concerned, I assume it is smaller than 1.
This expresses the fact each year some boats break down or perish, so that

5To be precise, the effort consists of a combination of boats, corn and labour, but since
these are always used in the same proportion, there is no harm in treating boats as a
proxy.
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new boats have to be constructed in order to keep the fleet constant. The
number 1−b23 measures the fraction of the fleet which must be replaced each
year in order to keep the fleet constant. A similar reasoning underpins the
assumption that the b44 coefficient is smaller than 1: ponds also have to be
replaced, and the replacement rate is equal to 1− b44.

Please note that in order to simplify the analysis, I assume that tuna is
not used as a means of production, except in aquaculture. In this respect the
model presented here is slightly different from the salmon model of Kurz and
Salvadori (1995: 352). Given that overfishing can lead to the exhaustion of
fish stocks, the wild tuna technique is to a certain extent comparable to the
guano process, whereas the farmed tuna technique resembles the backstop
process in the corn-guano model.

Finally, when I talk about the sea, I always understand that this is not a
privately owned good. Whereas the amount of fish in the sea may be large or
small, the sea itself is assumed to be vastly large. The sea therefore does not
have a price, and no rent will ever be paid for its use. Nevertheless, it may
occur that boat owners are in a situation to capture the advantage of using
the sea as a productive agent. The ‘sea rent’ must therefore be understood
as a kind of extra-profit earned by boat owners. Although land is (usually)
privately owned, I assume here that it is so plentiful that its owners never
earn rent. This means that we can drop the land from both the quantity and
the price equations.

4.4 The Quantity Side

The quantity equations specify that the activity levels are such that the
system is capable of satisfying the net demands for corn and tuna of the
current period, and of producing everything which is needed to continue
production in the next period. This may require an expansion of the fishing
fleet and of the number of ponds.

Let the net demands for corn and tuna in period t be equal to d1,t and
d2,t. The activity level of process i in period t is represented by yi,t. My
choice of units implies that y1,t stands for the area of land used for corn
production, y2,t for the effective number of boats used to catch tuna, y3,t for
the number of new boats constructed, y4,t for the effective number of ponds
used to produce tuna, and y5,t for the number of new ponds constructed.

13



The quantity equations can be written as follows:

y1,tb11 = y1,t+1a11 + y2,t+1a21 + y3,t+1a31 + y4,t+1a41 + y5,t+1a51 + d1,t (13)

y2,tb22,t + y4,tb42 = y4,t+1a42 + d2,t (14)

y2,tb23 + y3,t = y2,t+1 (15)

y4,tb44 + y5,t = y4,t+1 (16)

The first equation specifies that the output of corn must be equal to the sum
of the aggregate input of corn in the next period and the net demand for
corn in the current period. The second equation stipulates the same with
respect to the output of tuna. The third equation expresses that the size
of the fleet of period t + 1 is equal to the sum of what remains of the fleet
used in period t and the number of new vessels produced in period t. The
fourth equation states the same with regard to the number of ponds. With
an obvious notation, the quantity equations can be written more compactly
in the following matrix form:

ytBt = yt+1A+ dt (17)

Given that the tuna catch per boat depends on the population of tuna (cf.
(12)), the activity levels can be determined only if we know how the de-
mands for corn and tuna as well as the population of tuna change over time.
One could try to derive the dynamics of the system by means of these equa-
tions and inequalities making assumptions about the level of demand in each
period, the evolution of the population of tuna, and the initially available
quantities of the different goods. But since a choice has to be made among
different processes, we also need to consider the price side.

4.5 The Price Side

As usual in classical models, I assume that none of the available methods
makes extra-profits, and that all methods which are actually operated break
even. I take corn to be the numéraire good, and the rate of profit r to be
given, constant over time, and nonnegative.

Let the prices of the four goods in period t be denoted as pi,t, i = 1, 2, 3, 4,
the wage as wt and the ‘sea rent per boat’ as zt. Since corn is the numéraire,
we have p1,t = 1 in every period. The prices, wage and rent must be such
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that the following conditions hold:

b11 ≤ (1 + r)(a11 + l1wt) [y1,t] (18)

b22,tp2,t+1 + b23p3,t+1 ≤ (1 + r)(a21 + p3,t + l2wt) + zt [y2,t] (19)

p3,t+1 ≤ (1 + r)(a31 + l3wt) [y3,t] (20)

b42p2,t+1 + b44p4,t+1 ≤ (1 + r)(a41 + a42p2,t + p4,t + l4wt) [y4,t] (21)

p4,t+1 ≤ (1 + r)(a51 + l5wt) [y5,t] (22)

Using an obvious matrix notation the price side can be written more com-
pactly as:

Btpt+1 5 (1 + r)(Apt + lwt) + szt (23)

ytBtpt+1 = (1 + r)yt(Apt + lwt) + ytszt (24)

Boat owners are in a position to capture rent only if they can produce
tuna more cheaply than tuna farmers, and if they are unable to satisfy the
demand for tuna. We will be more specific about that in what follows.

4.6 Stationary Conditions

In the following sections I focus on situations which correspond to the long-
term positions usually studied in classical theory. Let us make the strong
assumption that the demand for corn and tuna remain constant over time.
I will explore whether there is room for long-term equilibria characterized
by constant prices and activity levels, and where the catch of wild tuna
is sustainable. This implies that I will consider only situations where the
population of tuna remains constant. I will try to find out whether it is
possible that the same set of processes is used for an extended period of
time, with the prices and activity levels equal to their long-term equilibrium
levels.6

6Of course, in reality changes occur all the time. The perspective adopted here is that
it makes sense to focus on long-term equilibrium positions if the changes are slow and
gradual, and if the price and quantity dynamics occasioned by these changes are stable,
so that the prices and activity levels will never deviate very much from their long-term
equilibrium levels. However, as we will see below, there may be circumstances in which
stability is not guaranteed.

15



5 Wild vs. Farmed Tuna

5.1 Two Pure Systems

It seems useful to begin the analysis with a comparison of two ‘pure’ systems
of production. We will look at the possible combination of the two at a later
stage.

The first pure system is the one in which tuna is caught in the wild only.
Two conditions are vital here: it must be cheaper the catch tuna in the wild
than to farm it, so that there is no incentive to switch to aquaculture, and
the catch must be both sufficient to satisfy demand and sustainable, so that
the existing population of tuna remains the same. This will be called the
Wild Tuna System. In formal terms, only processes {1, 2, 3} are operated,
and the activity levels and prices are determined by the following systems of
equations (since the activity levels and prices are assumed to be constant,
we can drop the time index from the quantity and price equations):

Wild Tuna System

y1b11 = y1a11 + y2a21 + y3a31 + d1
y2b22 = d2

y2b23 + y3 = y2

 (W.Q)

b11 = (1 + r)(a11 + l1w)
b22p2 + b23p3 = (1 + r)(a21 + p3 + l2w)

p3 = (1 + r)(a31 + l3w)

 (W.P)

We already know that the catch per boat is b22 = k2P . The existing pop-
ulation P must be such that the supply and demand of tuna coincide with
the sustainable catch (y2b22 = d2 = c∗(P )), and the size of the fleet with
the corresponding effort level (y2 = e∗(P )). For the natural increase and
catch functions (10) and (11) this means that the fleet size is equal to
y2 = [k1(L− P )] /k2.

The second pure system is the one in which tuna is produced in aquacul-
ture ponds only. The crucial condition here is that it must be cheaper to farm
tuna than to catch it in the wild. But there is another aspect which must
be taken into account: if no tuna is caught in the wild and the population
of tuna is below its maximum (but not zero), the population will tend to
increase and it might be that at some future date catching tuna in the wild
becomes more profitable than farming tuna. It must therefore be cheaper
to farm tuna than to catch it in the wild for all possible population levels.
In this system, which I will call the Farmed Tuna System, only processes
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{1, 4, 5} are operated, and the activity levels and prices are determined by
the following systems of equations:

Farmed Tuna System

y1b11 = y1a11 + y4a41 + y5a51 + d1
y4b42 = y4a42 + d2
y4b44 + y5 = y4

 (F.Q)

b11 = (1 + r)(a11 + l1w)
b42p2 + b44p4 = (1 + r)(a41 + a42p2 + p4 + l4w)

p4 = (1 + r)(a51 + l5w)

 (F.P)

5.2 The Activity Levels

Let us begin by exploring how the activity levels are determined if either the
Wild Tuna System of the Farmed Tuna System is operated. If only wild tuna
is to be produced, the demand for tuna cannot be higher than the maximum
sustainable yield. Hence we must have:

d2 ≤ k1(L/2)2 (25)

We already know that the catch per boat is b22 = k2P and that a sustainble
catch requires a fishing fleet equal to y2 = [k1(L− P )] /k2. Since the total
catch is then y2b22 = k1(L− P )P , it follows that the population P must be
such that:

k1(L− P )P = d2 (26)

As can be seen from Figure 1, when the demand for tuna is lower than
the maximum sustainable yield, there exist two population levels which are
able to sustain the demand for tuna: the small-population equilibrium P S =
L
2
−
√

(L
2
)2 − d2

k1
and the large-population equilibrium PL = L

2
+
√

(L
2
)2 − d2

k1
.

Once the population P and the fleet size y2 are known, the third equation
of (W.Q) determines the required number of new boats y3, and the first
equation determines the activity level of corn production y1. More precisely,
we have:

y1 = d1
b11−a11 + [a21+(1−b23)a31]k1(L−P )

(b11−a11)k2 (27)

y2 = k1(L−P )
k2

(28)

y3 = (1−b23)k1(L−P )
k2

(29)

If the supply of tuna comes only from farmed tuna, the second equation
of (F.Q) determines the required number of ponds y4, the third the required
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number of new ponds y5, and the first the activity level of corn production
y1. In formal terms:

y1 = d1
b11−a11 + [a41+(1−b44)a51]d2

(b11−a11)(b42−a42) (30)

y4 = d2
b42−a42 (31)

y5 = (1−b44)d2
b42−a42 (32)

5.3 The Costs of Producing Wild and Farmed Tuna

The choice between the Wild and Farmed Tuna Systems depends crucially
upon which of the two systems produces tuna in the cheapest way. At first
sight the comparison of the two systems seems impossible because they do
not produce the same set of goods: in the Farmed Tuna System ponds do not
occur, and in the Farmed Tuna System boats are inexistent. But the problem
is only apparent. In fact, in both systems the first process determines the
wage rate, and this is all that is needed to calculate the shadow prices of
boats and ponds, even if they are not actually produced. Since the wage is
the same in both systems, the (shadow) prices of boats and ponds are also
the same in both systems. Hence the choice is determined exclusively by the
price of production of tuna; the system with the lowest tuna price is the most
efficient.

Let us formalize this reasoning. The wage w is determined exclusively by
the first process and is equal to:

w =
b11 − (1 + r)a11

(1 + r)l1
(33)

Given the wage, the (shadow) price of boats is determined by the third
process:

p3 =
b11l3 − (1 + r)(a11l3 − a31l1)

l1
(34)

Likewise, the (shadow) price of ponds is determined by the fifth process:

p4 =
b11l5 − (1 + r)(a11l5 − a51l1)

l1
(35)

Given the wage and the price of boats, the price of tuna in the Wild Tuna
System is determined by the second process. This gives us the price of
production of wild tuna pW2 :

pW2 = b11[l2+(1+r−b23)l3]−(1+r)[(a11l2−a21l1)+(1+r−b23)(a11l3−a31l1)]
b22l1

= CW (r)
b22

(36)
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In the Farmed Tuna System, the price of tuna is determined by the fourth
process. This gives us the price of production of farmed tuna pF2 :

pF2 = b11[l4+(1+r−b44)l5]−(1+r)[(a11l4−a41l1)+(1+r−b44)(a11l5−a51l1)]
[b42−(1+r)a42]l1

= CF (r)
b42−(1+r)a42

(37)
For a given rate of profit, what can we say about the prices of tuna in the

two systems? From (36) it follows that the catch per boat b22 has a crucial
influence on the wild tuna price. When the catch per boat is relatively
high, the wild tuna price is low and probably aquaculture will not be able
to produce tuna more cheaply. But when the catch per boat is relatively
low, the wild tuna price is high and may very well be above the farmed tuna
price. In that case, traditional fishery loses the competition with aquaculture,
which turns out to be the cheapest tuna producer. The threshold level of the
catch per boat can be calculated with precision. The transition occurs for
the value of b22 for which we have pW2 = pF2 ; in other terms, aquaculture is
more efficient than traditional fishery when the catch per boat sinks below
the critical value:

b̃22 = CW (r)
CF (r)

[b42 − (1 + r)a42] (38)

In view of (12) it is possible to define a corresponding critical population
level:

P̃ = b̃22/k2 (39)

5.4 Wild vs. Farmed Tuna

We can now be more specific in our conclusions about the comparison be-
tween the two systems. The Wild Tuna System will dominate the Farmed
Tuna System if the demand for tuna does not exceed the maximum sus-
tainable yield, and if in addition wild tuna can be produced more cheaply
than farmed tuna. Nevertheless, there seem to be some Wild Tuna System
equilibria which are very unlikely to occur. This is due to their unstable
character.

When the first condition holds, we have seen there are two possible out-
comes: a small-population equilibrium P S and a large-population equilibrium
PL. The small-population equilibrium is clearly an unstable equilibrium: any
deviation of the catch from its sustainable level c∗(P S) = k1(L−P S)P S will
entail that the population moves away from P S. Although it is in principle
possible that the economy remains in the small-population equilibrium, it
is hard to see how the economy could ever reach it. The large-population
equilibrium, on the other hand, is stable. It seems therefore that we must dis-
card the small-population equilibria and concentrate on the large-population
equilibria.
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When we look at the second condition, it turns out that the probability
that it is satisfied is always higher in a large-population equilibrium than
in a small-population equilibrium. Since more boats are required in the
small-population equilibrium than in the large-population equilibrium, the
catch per boat is lower in the small-population equilibrium than in the small-
population equilibrium (bS22 < bL22). In the small-population equilibrium the
price of production of wild tuna is therefore always higher than in the large-
population equilibrium; the ratio of the two prices is equal to bL22/b

S
22 =

PL/P S.
To check whether the second condition is verified, we have to look at

the critical value of the catch per boat b̃22 (cf. (38)) or, equivalently, at the
critical population level P̃ (cf. (39)). Three cases can be distinguished. If
P̃ < PL, catching tuna in the wild is more efficient than farming tuna for a
tuna population equal (or close) to PL. Aquaculture will not come off the
ground: it is simply too expensive. If PL < P̃ , catching tuna in the wild
is less efficient than farming tuna for a tuna population equal (or close) to
PL. Hence, the fishing fleet will remain idle and the demand for tuna will
be satisfied by tuna farmers. But if no wild tuna is caught, the population
of tuna will increase, and after some time the point may be reached where
it is once again more efficient to catch tuna at sea. We therefore have to
distinguish two subcases: either a population level exists for which this point
is reached, or no such population level exists. More precisely, the former
arises if P̃ < L, and the latter if L ≤ P̃ . In the first case, the likely outcome
is a mixture of both systems of production - this will be examined in the
next section. In the second case, no wild tuna will ever be caught: it is much
too expensive to do so.

It is also interesting to note that it may depend upon the rate of profit
which of the two systems is the most profitable one. It can occur that the
Wild Tuna System is more profitable than the Farmed Tuna System for low
rates of profit, but less profitable for high rates of profit. We may even see
reswitching for very high rates of profit, as shown in the following example.

5.5 A Numerical Example (I)

Consider an economy characterized by the following data (for the moment
we leave the value of the catch per boat undetermined):
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Inputs Outputs
Corn Tuna Boat Pond Labour Corn Tuna Boat Pond

2 0 0 0 1 → 10 0 0 0
1 0 1 0 1 → 0 b22

9
10

0
1 0 0 0 5 → 0 0 1 0
1 1 0 1 1 → 0 10 0 9

10

3 0 0 0 3 → 0 0 0 1

Under the Wild Tuna System the prices and wage will be:

pW2 =
−90r2 + 391r + 131

10b22
p3 = 41− 9r

w = 8− 2r

and the shadow price of ponds

p4 = 27− 3r

Under the Farmed Tuna System we obtain:

pF2 =
−30r2 + 257r + 117

10(9− r)
p4 = 27− 3r

w = 8− 2r

and the shadow price of boats

p3 = 41− 9r

The catch per boat for which the wild and farmed tuna prices coincide is
equal to:

b̃22 =
−90r2 + 391r + 131

−30r2 + 257r + 117
(9− r)

For instance, when r = 1/15 ' 6.67%, we have pW2 = 47/(3b22), p
F
2 = 1.5,

p3 = 40.4, p4 = 26.8 and w = 118/15 ' 7.87. It follows that the critical
value b̃22 is equal to 94/9 ' 10.44.

To find out which of the two systems is the most efficient, we have to
determine the value of the average catch per boat and check whether it is
smaller or larger than the critical value b̃22. Let us assume that the pa-
rameters of the natural increase and catch functions are k1 = 1/126900 and
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k2 = 1/1000, and the maximum population L = 20772. The average catch
per boat is therefore b22 = P/1000, which means that every boat is able to
catch 0.1% of the existing population. The maximum sustainable yield of
wild tuna is slightly higher than 850.

Suppose that the demand for tuna is equal to d2 = 832.23, which is below
the maximum sustainable yield. The two population levels which are able to
sustain this demand are P S = 8883 and PL = 11889. We can safely discard
the low-population equilibrium. For the high-population equilibrium we have
b22 = 11.889 > 10.44 ' b̃22, which implies that the Wild Tuna System
dominates the Farmed Tuna System when r = 1/15. The required size of the
fishing fleet is y2 = 70, which means that in every period 7 new ships have to
be built. The price of production of wild tuna is pW2 = 47000/35667 ' 1.32.

In order to show the influence of the rate of profit on the comparison
between the two systems, let us suppose that the demand for tuna is equal
to d2 = 846. This can be sustained by a tuna population PL = 10575, with
a catch per boat equal to b22 = 10.575 and a fleet size of y2 = 80 boats.
The wild tuna price is therefore equal to pW2 = (−360r2 + 1564r+ 524)/423.
From this we can infer that the Wild Tuna System dominates the Farmed
Tuna System for r < 1/10 = 10%, the Farmed Tuna System dominates the
Wild Tuna System for 1/10 < r < 259/360, and the Wild Tuna System again
dominates the Farmed Tuna System for r > 259/360 ' 71.94%.

6 The Mixed Tuna System

6.1 The Mixed Tuna System

At the end of our comparison of the Wild and Farmed Tuna Systems it
transpired that there may be circumstances in which the demand for tuna
will be satisfied by both wild and farmed tuna. For this to happen, the Wild
Tuna System must dominate the Farmed Tuna System for large populations;
in formal terms, the critical population P̃ must be such that:

L/2 ≤ P̃ < L (40)

If the price of production of wild tuna were lower than that of farmed tuna,
boat owners would be in a position to earn rents. These boat rents constitute
extra profits, and act as incentives to increase the number of boats. Hence,
the fleet size would increase, more will tuna would be caught, and the tuna
population would decrease. Obviously, the process comes to an end only if the
difference between the two costs of production disappears. An equilibrium is
reached when the fishing fleet is expanded to its economic limit, i.e., up to
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the point where the price of production of wild tuna becomes equal to that
of farmed tuna.

In the Mixed Tuna System all processes {1, 2, 3, 4, 5} are operated and
the following systems of equations hold:

Mixed Tuna System

y1b11 = y1a11 + y2a21 + y3a31 + y4a41 + y5a51 + d1
y2b22 + y4b42 = y4a42 + d2

y2b22 + y3 = y2
y4b44 + y5 = y4

 (M.Q)

b11 = (1 + r)(a11 + l1w)
b22p2 + b23p3 = (1 + r)(a21 + p3 + l2w)

p3 = (1 + r)(a31 + l3w)
b42p2 + b44p4 = (1 + r)(a41 + a42p2 + p4 + l4w)

p4 = (1 + r)(a51 + l5w)

 (M.P)

Moreover, as we have just seen, the population of tuna must be equal to P̃ .

6.2 The Activity Levels and Prices

Once we know the equilibrium population level, it is straightforward to cal-
culate the activity levels. Since the catch per boat is b22 = k2P̃ and the size

of the fleet y2 =
[
k1(L− P̃ )

]
/k2, the supply of wild tuna is equal to the

sustainable catch k1(L− P̃ )P̃ . It follows that the net amount of tuna which
needs to be supplied by tuna farmers is equal to d2 − k1(L − P̃ )P̃ . The
activity levels are therefore:

y1 = d1
b11−a11 + [a21+(1−b23)a31]k1(L−P̃ )

(b11−a11)k2 +
[a41+(1−b44)a51][d2−k1(L−P̃ )P̃ ]

(b11−a11)(b42−a42) (41)

y2 = k1(L−P̃ )
k2

(42)

y3 = (1−b23)k1(L−P̃ )
k2

(43)

y4 = d2−k1(L−P̃ )P̃
b42−a42 (44)

y5 =
(1−b44)[d2−k1(L−P̃ )P̃ ]

b42−a42 (45)

The wage and prices are the same as in the Farmed Tuna System.
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6.3 A Numerical Example (II)

Let us return to our previous example, and assume that the rate of profits
is r = 10%. The critical value of the catch per boat is b̃22 = 10.575. This
implies that P̃ = 10575, with the corresponding fleet size equal to y2 = 80
boats and the sustainable catch of wild tuna equal to b̃22y2 = 846. Since we
have 10386 < 10575 < 20772, condition (40) is verified.

Suppose the net demands for corn and tuna are equal to d1 = 356 and
d2 = 1206. Given that the supply of wild tuna is equal to 846 units, the
net supply of farmed tuna must be 1206 − 846 = 360 units, which requires
an aquacultural park equal to y4 = 40 ponds. In each period 8 vessels are
replaced, as well as 4 ponds. Summarizing, we have:

y1 = 62, y2 = 80, y3 = 8, y4 = 40, y5 = 4

With regard to prices and the wage, we have:

p2 = 1.6, p3 = 40.1, p4 = 26.7, w = 7.8

7 Government Policies

7.1 An Unstable Situation

The Mixed Tuna System comes into being when the demand for tuna is too
high to be satisfied by wild tuna only, and when the price of production of
wild tuna happens to be lower than that of farmed tuna for sufficiently high
levels of the population of tuna. Condition (40) is in fact crucial to have
a stable equilibrium. Suppose that wild tuna remains cheaper to produce
even at relatively low levels of the population of tuna, or more formally, that
P̃ < L/2. As long as the tuna population exceeds P̃ , boat owners are in a
position to capture rents, and hence incentives exist to increase the fishing
fleet. Owning a boat may be a source of considerable wealth, and it can be
expected that rent seeking will occur (Krueger, 1974) The expansion of the
fishing fleet inevitably leads to capture levels exceeding the natural increase,
and hence the tuna population will decrease. In principle, this process comes
to an end when the population reaches the equilibrium level P̃ , but since
this is an unstable equilibrium, there is a very high risk that we end up in
a situation where the population of tuna will steadily decline and eventually
perish.

Put differently, if the population level for which wild and farmed tuna
are equally costly is too low, mechanisms are at work which will lead to
overfishing and extinction of tuna. In comparison to farmed tuna, wild tuna
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remains too cheap for too long. As long as there is cost advantage for wild
tuna, the fishing fleet will expand. But when the cost advantage finally
disappears, the remaining population of tuna will be low and fragile.

Governments or supranational organizations such as the European Union
which are concerned about the survival of wild tuna might think about ways
of preventing the system from entering the danger zone of overfishing and
extinction. In what follows I present two possible policies, one working on
quantities, the other on prices.

7.2 Limiting the Fleet Size

Since it is the expansion of the fleet size which pushes the system towards
overfishing, an obvious policy consists of imposing a limit on the number of
boats. Suppose that the government introduces a strict boat licensing system
by which the maximum number of boats is fixed at the level ȳ2. Evidently, in
order to be effective this maximum number should be small enough to keep
the system in the region of stable equilibria.

The presence of a constant and consistently enforced limitation of the
fleet size gives rise to a variant of the Mixed Tuna System, characterized by
a positive boat rent z. With the number of boats limited to ȳ2, the associated
population P̄ can be found through the equation ȳ2 =

[
k1(L− P̄ )

]
/k2. Given

P̄ , we can determine the catch per boat b̄22 = k2P̄ and hence the sustainable
catch b̄22ȳ2 = k1(L− P̄ )P̄ . The systems of equations determining the prices
and quantities can now be written as:

Mixed Tuna System with Fleet Limitation

y1b11 = y1a11 + ȳ2a21 + y3a31 + y4a41 + y5a51 + d1
ȳ2b̄22 + y4b42 = y4a42 + d2

ȳ2b22 + y3 = ȳ2
y4b44 + y5 = y4

 (MFL.Q)

b11 = (1 + r)(a11 + l1w)
b̄22p2 + b23p3 = (1 + r)(a21 + p3 + l2w) + z

p3 = (1 + r)(a31 + l3w)
b42p2 + b44p4 = (1 + r)(a41 + a42p2 + p4 + l4w)

p4 = (1 + r)(a51 + l5w)

 (MFL.P)

The rent per boat is determined by the difference between the cost prices of
wild and farmed tuna and equal to:

z = k2P̄ (pF2 − pW2 ) (46)

The selling price of tuna, whether it be wild or farmed, is equal to the cost
price of farmed tuna.
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7.3 Taxing Fishing Boats

The incentive to increase the number of vessels comes from the existence of
rents. An alternative policy consists of reducing the rents by taxation. Sup-
pose the government imposes a flat tax per boat equal to T . This obviously
raises the cost of production of wild tuna. As in the case of a fleet limitation
policy, the tax should be sufficiently high to to keep the system out of the
region of unstable equilibria.

Boat owners earn a positive net rent as long as z > T . The incentive
to increase the number of vessels therefore disappears when the size of the
fishing fleet is such that z = T . In view of (46), the corresponding population
level is determined by means of the following equation:

P =
T

k2(pF2 − pW2 )
(47)

Given P , it is easy to determine the size of the fishing fleet y2 = [k1(L− P )] /k2,
the catch per boat b22 = k2P , and the sustainable catch b22y2 = k1(L−P )P .

The systems of equations determining the prices and quantities can now
be written as:

Mixed Tuna System with Boat Taxation

y1b11 = y1a11 + y2a21 + y3a31 + y4a41 + y5a51 + d1
y2b22 + y4b42 = y4a42 + d2

y2b22 + y3 = y2
y4b44 + y5 = y4

 (MBT.Q)

b11 = (1 + r)(a11 + l1w)
b22p2 + b23p3 = (1 + r)(a21 + p3 + l2w) + T

p3 = (1 + r)(a31 + l3w)
b42p2 + b44p4 = (1 + r)(a41 + a42p2 + p4 + l4w)

p4 = (1 + r)(a51 + l5w)

 (MBT.P)

7.4 Numerical Example (III)

Let us once again return to our numerical example, with one change: the
maximum population of tuna is now L = 30879. Assume that the rate of
profits is r = 10%. The critical value of the catch per boat remains b̃22 =
10.575 and that of the population of tuna P̃ = 10575. The corresponding
fleet size is now y2 = 160 boats and the sustainable catch of wild tuna
b̃22y2 = 1692. Since we have 10575 < 15439.5, condition (40) is not verified.

Assume that the fishing fleet is restricted to ȳ2 = 110 vessels. The corre-
sponding tuna population is P̄ = 16920, the catch per boat b̄22 = 16.92 and
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the sustainable catch b̄22ȳ2 = 1861.2. The activity levels corresponding to
the net demands for corn and tuna d1 = 356 and d2 = 2052 are equal to:

y1 =
226987

3600
, ȳ2 = 110, y3 = 11, y4 =

949

45
, y5 =

949

450

For r = 10% the prices and wage are the same as in the case without limita-
tion of the fleet size. Since the cost price of wild tuna is significantly different
from the cost price of farmed tuna (pW2 = 1, pF2 = 1.6), the rent per boat is
substantial: each boat earns a rent equal to z = 10.152.

Assume alternatively that a boat tax equal to T = 10.152 is imposed.
Then the same solution will be obtained.

8 Discussion

8.1 Predictions of the Model

It may be useful to summarize what the corn-tuna model predicts under
plausible assumptions about the evolution of the net demand for corn and
tuna. To make things interesting, let us start the analysis at a point of
time in which the world’s oceans are plenty of wild tuna and the demand is
relatively small.

At first, a small fishing fleet suffices to catch all the wild tuna that is
required, at a low per unit cost. Wild tuna therefore dominates the market.
As the demand for tuna increases, the fishing fleet becomes larger, the aver-
age catch per boat declines, and the price of wild tuna gradually increases.
The rate at which the wild tuna price increases is the same as the rate at
which the catch per boat decreases. Inevitably, one of two things will hap-
pen: either farmed tuna will enter into competition with wild tuna when
the population of tuna is relatively large (higher than L/2), or it will do
so when the population of tuna is relatively small (lower than L/2). In the
former case, a stable equilibrium exists where the market for tuna is divided
between wild and farmed tuna. Boat owners will not earn rents, and the risk
of overfishing appears to be low. In the latter case, however, the existence of
rents will push the system into the danger zone of unstable equilibria, with
a considerable risk of overfishing and depletion. Without government inter-
vention, the most probable outcome is that wild tuna will eventually become
extinct, and the whole supply of tuna will consist of farmed tuna.

In the Good Scenario (i.e., the first case) the wild tuna price is initially
lower than the farmed tuna price, but not too much. As the demand for
tuna increases, the wild tuna price increases until it reaches the level of the
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farmed tuna price. From that moment on, the price of tuna remains constant
and equal to the farmed tuna price, even though wild tuna continues to be
supplied to the market. In the Bad Scenario (i.e., the second case) wild
tuna is initially much cheaper than farmed tuna. But the problem is that
it remains too cheap for too long: farmed tuna enters into competition with
wild tuna only when the stocks of tuna have become very low. It is difficult
to say what will be the evolution of the tuna price in this highly unstable
environment.

The corn-tuna model therefore predicts that in a situation of growing
demand the price of the renewable resource will steadily increase, until it
reaches a steady equilibrium (the Good Scenario) or becomes unstable (the
Bad Scenario). This may be thought of as a kind of Hotelling rule for renew-
able resources, but it must be kept in mind that the logic behind this rule
is fundamentally different from the logic behind the Hotelling rule. The in-
crease of the price of an exhaustible resource, such as guano in the corn-guano
model, is explained by the profit-maximizing behaviour of the resource own-
ers and occurs even when demand is not growing. In the corn-tuna model,
by contrast, the price increase of the renewable resource is driven by a com-
bination of biological and economic factors and occurs only when demand is
growing.

The model also predicts that in the long run the renewable resource will
either have a declining market share (the Good Scenario) or be replaced
entirely by an industrially produced ersatz good (the Bad Scenario), unless
a policy is implemented to prevent the collapse of the renewable resource
industry. Such a policy can take the form of quantitative restrictions or of
price incentives.

8.2 Limitations and Shortcomings of the Model

It remains to be seen whether the predictions of the corn-tuna model are in
accordance with the stylized facts of the world’s fisheries. It may very well
be that this simple model misses out on some essential features of the real
world. The model surely cannot be applied to all renewable resources. For
instance, it is not always the case that the natural ‘source’ which ‘breeds’
the renewable resource (in the corn-tuna model the source is the sea) has
no owner. Environmental economists know very well that different property
regimes may lead to different outcomes (see, e.g., Chapter 10 of Pearce and
Warford, 1993).

The model can be improved by establishing explicit links between crucial
variables. Feedback effects, positive or negative, are absent. The model
also ignores technical change, both in the traditional fishing industry and in
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aquaculture. These might be powerful enough to counteract the tendency
of increasing wild tuna prices, or to bring about a more rapid change to
aquaculture.

9 Conclusion

In this paper I have examined how renewable resources can be integrated into
classical theory. Starting from the insights which can be obtained from the
corn model and the corn-guano model, I have developed a corn-tuna model in
which a valuable renewable resource (tuna) can be produced either by nature
or by man. In the first case it is harvested by means of boats, in the second it
is farmed using aquaculture ponds. Increasing levels of demand will entail the
intensified use of the natural process, but eventually the man-made process
will become more and more dominant. It could very well be that the natural
process is operated for such a long time and at such a high level that the
renewable resource becomes over-exploited, which will lead to the exhaustion
of the resource. Since classical theory has a long-term perspective, I believe
it should try to come to grips with this issue.
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