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Abstract 

 

This paper proposes a decomposition approach for health concentration curves. Decomposing changes in 
health concentration curves gives additional insight compared to decomposing a single index such as the 

health concentration index. First, the results would be valid for a comprehensive set of indices. Second, 

and more importantly, it allows for identifying heterogeneous effects along socioeconomic ranks. We use 
inverse propensity weighting for the overall decomposition. We use multiple recentered influence function 

regressions on a grid of points to identify the impact of specific covariates. We weight these regressions by 
the inverse propensity score of the observations to correct for errors due to departure from linearity. The 

paper also derives the expressions of the recentered influence functions of the relative and absolute health 

concentration curves since the literature does not offer the expression of these recentered influence 
functions. We offer an empirical illustration using information on cigarette consumption from the National 

Health Interview Survey of 2000 and 2020. 
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1 Introduction

Measuring socioeconomic health inequality and health achievement (shortfall) is an essential

exercise from a public health perspective, as it enables us to assess critical aspects such as

access to basic healthcare services, maternal and child health outcomes, and variations in life

expectancy among different socioeconomic groups. One prevalent approach, is the index-

based approach which consists in choosing a specific parametric structure for the inequality

measure (see Wagstaff, Paci, and van Doorslaer, 1991; Wagstaff, 2002; Erreygers and Van

Ourti, 2011; van Doorslaer and Van Ourti, 2011). An index-based approach can produce a

complete ordering of the joint distributions of health and income. However, the result for

some of the comparisons may hinge on the selected mathematical structure of the index.

Particularly, the ranking may change when the analyst picks another mathematical structure

for the index.

Another approach, is the dominance approach. It aims at identifying rankings of dis-

tributions that would be robust to all indices belonging to a broad class of indices (see

Makdissi and Yazbeck, 2014; Khaled, Makdissi, and Yazbeck, 2018 and 2023). This in-

volves comparing two distributions’ health concentration curves. For each social rank, the

relative health concentration curve1 illustrates the cumulative share of the total health of all

individuals below and up to this social rank. If these two curves do not intersect, the distri-

bution corresponding to the higher curve is considered to have less health inequality across

all indices in the pre-specified class of indices. A similar condition for health achievement

(shortfall) indices holds with non-intersection of the absolute health concentration curves

(relative health concentration curve times average health status).2

1The relative health concentration curve is often referred to as the health concentration curve. This
paper uses relative to distinguish from the absolute health concentration curve.

2For historical reasons in the literature of income inequality, the absolute concentration curve is often
referred to as the generalized concentration curve, including in Makdissi and Yazbeck (2014) and in Khaled,
Makdissi, and Yazbeck (2018, 2023). In other works, such as Schechtman, Shelef, Yitzhaki and Zitikis
(2008), the same curve has been referred to as the absolute concentration curve. Since we believe that using
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O’Donnell and Van Ourti (2021) recently suggested that analysts might utilize these

dominance approaches to evaluate health equity impacts and trade-offs when performing a

distributional cost-effectiveness analysis. This recommendation is pertinent to all forms of

health policy assessments. Nevertheless, when estimating the treatment effect of a public

health policy or a new medical treatment, the analyst often faces the task of contrasting a

population’s existing relative or absolute health concentration curve against a hypothetical

scenario (counterfactual) – one without the proposed health policy or medical treatment.

Unfortunately, by the construction of the potential outcome model, information at the

individual observation level is only available for one of the two options: treated or non-

treated. In this sense, this issue is often akin to as a missing data problem. This type

of missing data problem is not uncommon in various analyses. For instance, when an

analyst aims to construct a disaggregated profile of health inequality at a local level, they

often rely on a model derived from a broader national survey (with information on health,

income, and some demographic characteristics) to project local-level curves. However, this

is complicated by national censuses typically lacking specific health and income data, even

though they might provide other demographic specifics, a challenge discussed in studies

by Elbers, Lanjouw, and Lanjouw (2003 and 2005). Another scenario is evident in the

well-known Oaxaca-Blinder decomposition analyses. In all these situations, employing an

econometric model capable of predicting a hypothetical scenario’s relative or absolute health

concentration curve is imperative.

Heckley, Gerdtham, and Kjellsson (2016) and Kessel and Erreygers (2019) offer ap-

proaches for modeling health concentration indices. Abu Ismail, Gantner, Makdissi, and

Yazbeck (2020) have further modified the technique initiated by Heckley, Gerdtham, and

Kjellsson (2016) for application to the health achievement (shortfall) index. Nonetheless,

“absolute” better depicts the nature of the curve, we chose to use this term in this paper.
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to our knowledge, the literature does not yet offer a framework for modeling the relative

and absolute health concentration curve. Proposing a modeling approach to changes in the

health concentration curve is important for two reasons. First, analysts use health con-

centration curves to identify dominance results, i.e., results that remain valid for a wide

set of indices. Second, the health concentration curves also allow for identifying potential

heterogeneous impacts along socioeconomic ranks.

This paper aims to fill this gap by drawing from insights from Firpo and Pinto (2016)

and Heckley, Gerdtham, and Kjellsson (2016). We rely on Firpo and Pinto’s (2016) in-

verse propensity weight approach for the overall decomposition of changes in the health

concentration curve. In order to identify the impact at the covariate level, we follow Heck-

ley, Gerdtham, and Kjellsson (2016) and use weighted RIF -regressions. We extend their

approach by running multiple regressions on a grid of points and using inverse propen-

sity reweighting to estimate our regression models to account for the potential error in the

linear approximation inherent to RIF -regressions. The motivation for using inverse propen-

sity weights in estimating the regression parameters lies in the fact that Firpo, Fortin, and

Lemieux (2009) have shown that the parameters of a RIF -regression identify the impact of

a marginal change in the distribution of a covariate. However, often, counterfactuals involve

non-marginal changes in the distribution of covariates. In this case, Rothe (2015) has shown

that in the case of non-linear functionals, RIF -regression yields a measurement error.

The remainder of this paper runs as follows. First, Section 2 presents some essential

background from the literature on socioeconomic health inequality. Then, Section 3 presents

the measurement framework of the dominance approach to socioeconomic health inequality

comparisons. This section also proposes a decomposition approach and derives the expres-

sions of the recentered influence functions for the relative and absolute health concentration

curves. Next, in Section 4, we provide an empirical demonstration of the modeling ap-
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proach by decomposing the change in the relative and absolute health concentration curves

of cigarette consumption between 2000 and 2020 in the US. Finally, in Section 5, we con-

clude.

2 Measuring socioeconomic health inequality

Assume we have two random variables: health, H, and income, Y . Assume that these two

variables are absolutely continuous with a joint distribution FHY defined over the support

[0, hmax]×R+. Let us use the usual notation and denote by FH ∣Y the cumulative distribution

of health conditional on income, by FH and FY , the unconditional cumulative distributions

of health and income, and by F−1
Y (q), the q-th quantile of the distribution of income.

Since the seminal paper of Wagstaff, Paci, and van Doorslaer (1991), researchers in

health inequality have been using the relative health concentration curve to offer a graphical

representation of the distribution of expected health by socioeconomic status. For each social

rank q ∈ [0,1], the relative health concentration curve displays the cumulative share of total

health of the q poorest individuals. Figure 1 displays the relative health concentration curves

associated with two joint distributions of health and income, FH0Y0 and FH1Y1 . The curve

CR (q;FH0Y0) (in red) depicts a situation in which the health outcome is more concentrated

at higher income quantiles and the curve CR (q;FH1Y1) (in green), a situation in which the

health outcome is more concentrated at lower income quantiles. Wagstaff, Paci, and van

Doorslaer (1991) suggested using the canonical health concentration index CI (FHY ) as a

measure of socioeconomic health inequality. This index, which takes values between -1 and

1, equals twice the surface between the line of perfect socioeconomic health equality (the

45-degree line) and the relative health concentration curve. When the index has a positive

value, as in CI (FH0Y0), socioeconomic health inequalities are pro-rich. When it takes a

negative value, as in CI (FH1Y1), it signals that these socioeconomic inequalities are pro-
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poor. It is also possible to apply these tools to ill-health variables. In this case, one should

reverse the interpretation of the pro-poor/pro-rich cases.

Wagstaff (2002) points to two issues associated with using the canonical health con-

centration index. First, it imposes a specific level of aversion to socioeconomic health

inequality. Second, it ignores differences in the level of average health outcomes. For this

reason, he argues that a health achievement (shortfall) index should be considered as well

for policy recommendations. In combining both the average health outcome with its rela-

tive socioeconomic inequality, the information provided by such indices would better inform

decision-makers’ social preferences concerning health policy.

Makdissi and Yazbeck (2014) and Khaled, Makdissi, and Yazbeck (2018, 2023) build

on Wagstaff’s argument that one should aim to consider potential differences in socioeco-

nomic aversion. Instead of relying on a specific index or a specific class of indices, they

propose the use of positional dominance conditions and tests to identify rankings of health

achievement (shortfall) and socioeconomic health inequality that would remain the same for

all rank-dependent health achievement (shortfall) indices or to any rank-dependent socioe-

conomic health inequality indices. In such cases, the result is independent of the specific

mathematical structure imposed when using a specific class of indices.

In this paper, we focus only on the two most important results of these papers. The

first is that when the relative health concentration curves of two distributions do not inter-

sect, the relative health concentration curve above the other is associated with a lower level

of socioeconomic health inequality. This result remains the same for any rank-dependent

socioeconomic health inequality index in line with Bleichrodt and van Doorslaer’s (2006)

principle of income-related health transfer. This normative principle implies that a “hypo-

thetical” transfer of health from one person to another at a lower socioeconomic rank is

considered a social improvement.
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The second result relies on comparisons of absolute health concentration curves. The

absolute health concentration curve of a distribution is equal to the relative health concen-

tration curve multiplied by the average health status, CA (q;FHY ) = µHCR (q;FHY ). When

the absolute health concentration curves of two distributions do not intersect, the abso-

lute health concentration curve above the other is associated with a higher level of health

achievement (shortfall) than the other. This result is valid for any rank-dependent health

achievement (shortfall) index in line with Bleichrodt and van Doorslaer’s (2006) principle

of income-related health transfer.3

3 Estimating and modeling health concentration curves

3.1 Estimating health concentration curves

Assume that an analyst is interested in health achievement or shortfall. Also, assume

that this analyst aims at comparing health achievement or shortfall using absolute health

concentration curve rankings. The formal mathematical definition of an absolute health

concentration curve associated with FHY is

CA(q;FHY ) = ∫

F−1
Y (q)

0
∫

hmax

0
hfHY (h, y)dhdy. (1)

Utilizing a rank-dependent health achievement (shortfall) approach proves to be advan-

tageous for health policy recommendation because it combines the average health outcome

and the socioeconomic inequalities in its distribution. However, to gain a more compre-

hensive understanding, it is also essential to conduct analyses specifically focusing on the

inequalities present in health outcomes across different socioeconomic levels. Comparing

relative health concentration curves allows for identifying relative socioeconomic health in-

equality rankings. A relative health concentration curve is defined mathematically as follows:
3These two cases correspond to the “second-order” curves in Makdissi and Yazbeck (2014) and Khaled,

Makdissi, and Yazbeck (2018, 2023).
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CR(q;FHY ) =
CA(q;FHY )

µH
. (2)

3.2 Modeling health concentration curves

In applied health economics research, the analysts find themselves needing to compare the

estimated effects on an outcomes of interest with estimated effects using an alternative

counterfactual scenario. One prominent example of such as scenario is the Neyman–Rubin

potential outcome framework (Neyman, 1924; Rubin, 1974) developed for a univariate out-

come variable. In this paper, we extend this framework to a bivariate outcome variable.

Our focus in this paper is on the joint health/income distribution of two groups, group 1

and group 0. Subsequent to this, our discussion operates under the assumption that we

have a random assignment procedure of the units of observation between these two groups.

In many applied contexts, the analyst must ensure that the identification assumptions are

such that their setting mimics this type of random assignment.

For an individual i, let (H1i, Y1i) be the joint health and income outcome if the individual

is assigned to group 1 and let (H0i, Y0i) be the joint health and income outcome if the

individual is assigned to group 0. Since the same individual i can either be observed in

group 1 or in group 0 but not in both groups at the same time, we never have data on

the same individual in both groups. Therefore, for each individual the potential outcome

framework is defined as follows: (Hi, Yi) = (H1i ⋅ Ti, Y1i ⋅ Ti) + (H0i ⋅ (1 − Ti), Y0i ⋅ (1 − Ti)),

where Ti = 1 if individual i is observed in group 1, and Ti = 0 if individual i is observed in

group 0. When individuals are assigned, we observe one of the two potential joint outcomes

(H1i, Y1i) or (H0i, Y0i).

The health policy analyst is often interested in evaluating the impact of the assignment

to particular group, for instance group 1, on an outcome of interest, for instance, health

inequality. In such cases, using health concentration curve dominance requires estimating a
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counterfactual health concentration curve for individuals in group 1 had they been assigned

to group 0. In the context of this paper’s counterfactual analysis we assume that we have two

groups labeled by T ∈ {0,1}. Each group, T , has a vector XT with support XT of covariates

and the joint potential outcome variable, (H,Y ). Let us denote by FH1TY1TXT
the joint

cumulative distribution of potential health and income, and covariates of group T ∈ {0,1}

if assigned to T = 1 and by FH0TY0TXT
the joint cumulative distribution of potential health

and income, and covariates of group T ∈ {0,1} if assigned to T = 0.

We only observe outcomes for group T = 1 assigned to group 1 and group T = 0 assigned

to group 0. For each of these groups, we have a direct observation of the absolute health

concentration curves:

CA(q;FHT YTXT ) = ∫
X
∫

F−1
YT
(q)

0
∫

hmax

0
hfHT YT ∣X(h, y∣X = x)dhdydFXT (x), T ∈ {0,1}. (3)

For policy evaluation purposes, one often needs information on the counterfactual absolute

health concentration curve of population T = 1; in the hypothetical case where it would

have been assigned to group 0. Let us denote this counterfactual absolute health concen-

tration curve by CA⟨0∣1⟩(q). This counterfactual curve is never observed. Identifying this

counterfactual curve using the information of both groups T = 0 and 1 requires the following

assumptions.

Assumption 1. Ignorability: Let (T,X, ε) have a joint distribution. ε ⊥⊥ T ∣X = x, for all

x ∈ X .

Assumption 2. Overlapping Support: For all x ∈ X , p(x) = Pr[T = 1∣X = x] < 1 and

Pr[T = 1] > 0.

Under Assumptions 1 and 2, the counterfactual absolute health concentration curve is

identifiable as:

CA⟨0∣1⟩(q) = ∫
X
∫

F−1
Y
⟨0∣1⟩
(q)

0
∫

hmax

0
hfH0Y0∣X(h, y∣X = x)dhdydFX1(x), (4)

9



where F−1
Y
⟨0∣1⟩

(q) = inf {y∣FY
⟨0∣1⟩

(y) ≥ q} and

FY
⟨0∣1⟩

(y) = ∫
X
∫

y

0
hfY0∣X(s∣X = x)dsdFX1(x). (5)

Similarly, one may also want to build a counterfactual relative health concentration curve:

CR⟨0∣1⟩(q) =
CA⟨0∣1⟩(q)

µH⟨0∣1⟩
, (6)

where

µH⟨0∣1⟩ = ∫
X
∫

hmax

0
hfH0∣X(h∣x)dhdFX1(x). (7)

In what follows, we will use the notation ⟨1∣1⟩ and ⟨0∣0⟩ when referring to functionals of the

observed distributions FH1Y1X1 and FH0Y0X0 .

3.3 Estimating counterfactual health concentration curves: a reweighting
approach

The literature in applied econometrics offers some approaches to model a functional of a

counterfactual distribution if one is interested in the overall impact of the assignment to

group T = 1. Part of the literature proposes to model the distribution and then use the func-

tional of the modeled distribution (e.g., Chernozhokov, Fernandez-Vál, and Melly (2013).

Alternatively, one can follow DiNardo, Fortin, and Lemieux (1996) and use inverse probabil-

ity weighting to model the counterfactual distribution. This last methodological approach

is the avenue chosen by Firpo and Pinto (2016) and Firpo, Fortin, and Lemieux (2018). In

this paper we use Firpo, Fortin, and Lemieux (2018) to model the counterfactual distribu-

tion. Specifically, under Assumptions 1 and 2, one can use their reweighting approach to

estimate the counterfactuals CA⟨0∣1⟩(q) and CR⟨0∣1⟩(q).

Assume that we have a sample of size N , with N1 observations of population with T = 1

and N0 observations of population with T = 0. Let p be the proportion of observations

belonging to group T = 1 in the joint sample of T = 0 and 1. In the first step, we must

estimate a propsensity score using a binary model of p(x) = Pr[T = 1∣X = x]. The predicted
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values of this model, can then be used to estimate the following three weight functions

proposed by Firpo and Pinto (2016):

ω̂⟨1∣1⟩(Ti, xi) =
Ti
p̂
, (8)

ω̂⟨0∣0⟩(Ti, xi) =
1 − Ti
1 − p̂

, (9)

and

ω̂⟨0∣1⟩(Ti, xi) = (
p̂(xi)

1 − p̂(xi)
) ⋅ (

1 − Ti
p̂

) . (10)

We follow Firpo, Fortin, and Lemieux (2018) and normalize these weights as

ω̂∗⟨1∣1⟩(Ti, xi) =
ω̂⟨1∣1⟩(Ti, xi)

∑
N
i=1 ω̂⟨1∣1⟩(Ti, xi)

, (11)

ω̂∗⟨0∣0⟩(Ti, xi) =
ω̂∗
⟨0∣0⟩(Ti, xi)

∑
N
i=1 ω̂

∗
⟨0∣0⟩

(Ti, xi)
, (12)

and

ω̂∗⟨0∣1⟩(Ti, xi) =
ω̂⟨0∣1⟩(Ti, xi)

∑
N
i=1 ω̂⟨0∣1⟩(Ti, xi)

. (13)

One can then use these weight functions similarly to survey weights to estimate the desired

relative and absolute health concentration curves and their counterfactuals.

The steps described above suggest that estimating the counterfactual health concen-

tration curves is akin to estimating these curves from the observed distribution once the

binary probability model is modeled. It is important to note that since the weight functions

are estimated values, we need to reestimate these weights at each iteration of a bootstrap

procedure.

It is often interesting to assess the impact of being assigned to T = 1 on health achieve-

ment (shortfall) and socioeconomic health inequality. Within this framework, it is often in-

teresting to decompose the change in the overall difference in health achievement (shortfall)
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and socioeconomic health inequality into two components, following the Oaxaca-Blinder’s

decomposition approach. The first component, termed the structural effect, quantifies the

portion of the overall difference attributed to the assignment to T = 1. For example, if the

assignment to T = 1 corresponds to receiving a non-placebo medical treatment or undergoing

policy intervention, this component can be interpreted as a treatment effect. Conversely,

when being assigned to T = 1 signifies membership in a specific gender or racial category, it

is commonly interpreted by analysts as the manifestation of the impact of discrimination.

The second element of the decomposition, known the composition effect, isolates the portion

of the overall difference attributable to the difference in the distribution of covariates. Let

∆̂CA(q) = ĈA⟨1∣1⟩(q) − ĈA⟨0∣0⟩(q) and ∆̂CR(q) = ĈR⟨1∣1⟩(q) − ĈR⟨0∣0⟩(q). Using the above

methodology allows us to perform these decompositions:

∆̂CA(q) = [ĈA⟨1∣1⟩(q) − ĈA⟨0∣1⟩(q)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

structural effect

+ [ĈA⟨0∣1⟩(q) − ĈA⟨0∣0⟩(q)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

composition effect

(14)

∆̂CR(q) = [ĈR⟨1∣1⟩(q) − ĈR⟨0∣1⟩(q)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

structural effect

+ [ĈR⟨0∣1⟩(q) − ĈR⟨0∣0⟩(q)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

composition effect

(15)

Since the decomposition offered in equations (14) and (15) pertains to health concen-

tration curves, the results can be interpreted in alignment with the principles of dominance

conditions. For instance, if ĈA⟨1∣1⟩(q)− ĈA⟨0∣1⟩(q) ≥ 0 for all q ∈ [0,1], then the structural ef-

fect would amplify health achievement (shortfall) across any rank-dependent health achieve-

ment (shortfall) indices in line with the principle of income-related health transfer posited

by Bleichrodt and van Doorslaer’s (2006). Analogously„ should ĈR⟨1∣1⟩(q) − ĈR⟨0∣1⟩(q) ≥ 0

for all q ∈ [0,1], the structural effect mitigate socioeconomic health inequality for any rank-

dependent socioeconomic health inequality index adhering to Bleichrodt and van Doorslaer’s

(2006) principle of income-related health transfer. Corresponding interpretations are appli-

cable for the composition effect.
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3.4 Estimating counterfactual health concentration curves: a recentered
influence function regression approach

In instances where the examination is centered around the specific structural influence of

each individual covariate in X on the impact of assignment to group G = 1, it is appropriate

to employ an alternative approach that directly models the functional of the distribution. A

methodological solution for such a direct approach has been provided by Firpo, Fortin, and

Lemieux (2009) in the form of the recentered influence function (RIF ) regression approach,

that aims to directly model the functional of a univariate distribution. Subsequently, the

extension of this methodology to the bivariate context, particularly the health concentration

index, was executed by Heckley, Gerdtham, and Kjellsson (2016). Given that both the

absolute and relative health concentration curves also represent functionals of a bivariate

distribution of health and income, this section aims to incorporate the insights provided

by Heckley, Gerdtham, and Kjellsson (2016) to the context of concentration curves. The

intention is to extend the approach of Firpo, Fortin, and Lemieux (2009) for estimating a

model of CA(q;FHY ) and CR(q;FHY ).

To illustrate the methodology, let us examine the instance of the absolute health concen-

tration curve. The influence function of the absolute health concentration curve of obser-

vation i, IF (hi, yi;CA(q;FHY ), FHY ), represents the effect on CA(q;FHY ) attributable to

an infinitesimal contamination of FHY at point mass (hi, yi). To formally derive this influ-

ence function, the Dirac distribution function is considered, characterized by a degenerate

probability mass at (hi, yi):

δHY (h, y;hi, yi) = {
0 if h < hi or y < yi
1 if h ≥ hi and y ≥ yi

. (16)

Also, consider F̃HY , a mixture of distribution FHY and δHY , F̃HY = (1− t)FHY + tδHY . The

influence function of the qth coordinate of the absolute health concentration curve is given

13



by

IF (hi, yi;CA (q;FHY ) , FHY ) = lim
t→0

CA (q; F̃HY )) −CA (q;FHY )

t

=
∂

∂t
CA (q; [1 − t]FHY + tδHY (h, y;hi, yi))∣

t=0
. (17)

This influence function is a Gâteaux derivative of the absolute health concentration curve’s

qth coordinate. It quantifies the marginal effect on CA (q;FHY ) arising from a small per-

turbation of the joint distribution function FHY at (hi, yi).

Firpo, Fortin, and Lemieux (2009) utilize the property that, by definition, the expected

value of an influence function is equal to zero. Consequently, they suggest incorporating

the functional value to the influence function to generate a recentered influence function.

In the context of our study, this implies the addition of the value of the qth coordinate of

the absolute health concentration curve to its corresponding influence function:

RIF (hi, yi;CA (q;FHY ) , FHY ) = CA (q;FHY ) + IF (hi, yi;CA (q;FHY ) , FHY ). (18)

The E[IF (h, y;CA (q;FHY ) , FHY )] is zero, which indicates that the expected value of

this RIF corresponds to the qth point on the absolute health concentration curve. Ad-

ditionally, the influence function is also the Gâteaux derivative of CA (q;FHY ). There-

fore, E[RIF (h, y;CA (q;FHY ) , FHY )] will encompass the primary two terms of a von Mises

(1947) approximation of CA (q;FHY ). This means the impact of a change in some exoge-

nous variable on the RIF is a first-order approximation of the actual impact on the q-th

coordinate of the absolute health concentration curve. In this context, Firpo, Fortin, and

Lemieux (2009) show that the coefficient of a regression gives the impact on the functional

of interest arising from a marginal change in the distribution of covariates, FX .

In modeling a counterfactual functional, it is typical to consider non-marginal changes

in the distribution of covariates, denoted as FX . Within this framework, applying a RIF -

regression approach involves constructing a functional which could be non-linear, such as
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the health concentration curves, by utilizing a linear model of iterated expectations of

RIF s. Rothe (2015) argues that it is essential to recognize deviations from linearity in

such instances and the necessity to quantify the error arising from such deviations. In this

context, Firpo, Fortin, and Lemieux (2018) recommend using the weights functions from the

prior section into the regression model to estimate the error stemming from the violation of

the linearity assumption.

In this paper, we adopt the methodology proposed by Firpo, Fortin, and Lemieux (2018).

The implementation of the estimation is structured into three stages. The first stage consists

in estimating the binary model and the weights ω̂∗
⟨1∣1⟩(Ti, xi), ω̂

∗
⟨0∣0⟩(Ti, xi), and ω̂

∗
⟨0∣1⟩(Ti, xi)

as in the preceding section.

Subsequently, in the second stage, we estimate the values of the recentered influence

function for each observation. Given the absence of the literature on the expressions of the

recentered influence functions for the health concentration curves, we resort to the approach

of Heckley, Gerdtham, and Kjellsson (2016) to develop these new expressions (comprehensive

details are provided in the appendix).

Proposition 1. The influence function of the coordinate CA(q;FHY ) of the absolute health

concentration curve is given by

IF (hi, yi;CA(q;FHY )) = −CA(q;FHY ) + [q − 1 (yi ≤ F
−1
Y (q))] ⋅E[H ∣Y = F−1

Y (q)]

+1 (yi ≤ F
−1
Y (q)) ⋅ hi

Its recentered influence function is given by

RIF (hi, yi;CA(q;FHY )) = [q − 1 (yi ≤ F
−1
Y (q))] ⋅E[H ∣Y = F−1

Y (q)] + 1 (yi ≤ F
−1
Y (q)) ⋅ hi

Corollary 1. The influence function of the coordinate CR(q;FHY ) of the relative health
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concentration curve is given by

IF (hi, yi;CR(q;FHY )) = −
CR(q;FHY )

µH
⋅ hi + [q − 1 (yi ≤ F

−1
Y (q))] ⋅

E[H ∣Y = F−1
Y (q)]

µH

+1 (yi ≤ F
−1
Y (q)) ⋅

hi
µH

Its recentered influence function is given by

RIF (hi, yi;CR(q;FHY )) = CR(q;FHY ) ⋅ [1 −
hi
µH

] + [q − 1 (yi ≤ F
−1
Y (q))] ⋅

E[H ∣Y = F−1
Y (q)]

µH

+1 (yi ≤ F
−1
Y (q)) ⋅

hi
µH

Examination of Proposition 1 and Corollary 1 reveals that to compute the RIF of both

the relative and absolute health concentration curves, one must estimate a non-parametric

regression model of E[H ∣Y ]. Given that selecting the bandwidth for a non-parametric

estimation aims at minimizing the mean integrated squared error (MISE), there will be

inherent bias in these estimates.4 In the empirical section of this paper, we will visually

compare the health concentration curves obtained by averaging the RIF of the observations

with those that are directly estimated. For both absolute and relative health concentration

curves, three vectors of recentered influence functions must be estimated. There vectors

are estimated by applying the weights ω̂∗
⟨1∣1⟩(Ti, xi), ω̂

∗
⟨0∣0⟩(Ti, xi), and ω̂

∗
⟨0∣1⟩(Ti, xi) on the

observations.

In the third stage, the task is to estimate weighted OLS, E [RIF ∣X], for each of the

three vectors of RIF computed in the preceding stage. Here β̂CA(q)
⟨t′∣t⟩

the vector of parame-

ters estimated for the model of the absolute health concentration curves, using the weights

ω̂∗
⟨t′∣t⟩(Ti, xi), (t′, t) ∈ {(1,1), (0,0), (0,1)}. The parameters β̂CR(q)

⟨t′∣t⟩
are defined in a corre-

sponding manner. Given the health concentration curves are defined across the entire range

of q ∈ [0,1], one must estimate a series of OLS models on a grid of selected points within

this range. Note also that since both the weights and the RIF s values are estimated values,
4Firpo, Fortin, and Lemieux (2009) face the same issue for the estimation of the RIF of the unconditional

quantile function, which requires a kernel density estimation of the density of income.
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they necessitate re-estimation during each bootstrap iteration to procure an estimate of the

standard errors.

We can use the model to perform a detailed decomposition. Let X⟨t′∣t⟩ be the vectors

of weighted averages of covariates using the weights ω̂∗
⟨t′∣t⟩(Ti, xi). The overall difference

between population 1 and population 0 absolute health concentration curve can be estimated

using

∆̂CA(q) = X
′

⟨1∣1⟩ ⋅ (β̂
CA(q)
⟨1∣1⟩

− β̂
CA(q)
⟨0∣1⟩

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Structural effect

+ (X⟨1∣1⟩ −X⟨0∣1⟩)
′
⋅ β̂

CA(q)
⟨0∣1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Misspecification of the reweighting model

+ (X⟨0∣1⟩ −X⟨0∣0⟩)
′
⋅ β̂

CA(q)
⟨0∣0⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Composition effect

+X
′

⟨0∣1⟩ ⋅ (β̂
CA(q)
⟨0∣1⟩

− β̂
CA(q)
⟨0∣0⟩

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Departure from linearity

, (19)

∆̂CR(q) can be decomposed analogously.

Equation (19) allows us to identify both the structural and composition effect of each co-

variate ` ∈ {1, . . . , L}. The structural effect of variable ` is expressed asX`⟨1∣1⟩⋅(β̂
CA(q)
`⟨1∣1⟩

− β̂
CA(q)
`⟨0∣1⟩

).

The composition effect, on the other hand, is represented by β̂CA(q)
`⟨0∣0⟩

⋅(X`⟨0∣1⟩ −X`⟨0∣0⟩). While

this flexibility offers more insights than the method outlined in the previous section, it also

entails additional complexities. It requires the estimation of two additional elements. The

first error component in equation (19) is linked to the misspecification of the reweighting

model and influences the decomposition’s structural term. If the reweightng model is cor-

rectly specified, X⟨1∣1⟩ should be very close to X⟨0∣1⟩. This error term affects both the

reweighting and RIF decomposition approaches. Nonetheless, this error term is expected

to decrease as the size of the dataset increases. As will be demonstrated in the empirical

application, even with a simple parametric logit model, this error component is generally

insignificant, and its relative magnitude is minimal when does manifest significance.

The second error term is linked with deviations from linearity and impacts the compo-

sition term of the decomposition. If the functionals under consideration were linear, then
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the estimated parameters β̂CA(q)
⟨0∣1⟩

and β̂
CA(q)
⟨0∣0⟩

would be close enough as both models are

estimated under assignment to group 0. Given the non linear nature of the health concen-

tration curves in our framework, this error term may be non marginal. This error term

does not impact the reweighting approach presented in the preceding section. However,

the reweighting approach does not allow for identifying each covariate’s composition and

structural effect.

Similarly to the overall decomposition in section 3.3, dominance interpretations can

be applied to analyze the effect of each covariate. For instance, if for all q ∈ [0,1],

(β̂
CA(q)
`⟨1∣1⟩

− β̂
CA(q)
`⟨0∣1⟩

) ⋅ X`⟨1∣1⟩ ≥ 0 holds true, then the change in the “return” to covariate `

would lead to an increased health shortfall for all rank-dependent health shortfall indices in

line with the principles of principle of income-related health transfer by Bleichrodt and van

Doorslaer’s (2006). Similarly, if (β̂CR(q)
`⟨1∣1⟩

− β̂
CR(q)
`⟨0∣1⟩

)⋅X`⟨1∣1⟩ ≥ 0 for all q ∈ [0,1], then the struc-

tural effect would lead to a decreased socioeconomic health inequality for all rank-dependent

socioeconomic health inequality indices in line with Bleichrodt and van Doorslaer’s (2006)

principle of income-related health transfer. Similar interpretations hold for the composition

effect.

4 Empirical analysis: Decomposing changes in health short-
fall and socioeconomic health inequality in cigarette con-
sumption in the USA between 2000 and 2020

In this study we conduct an empirical demonstration using data from National Health Inter-

view Survey for the years 2000 and 2020 to showcase the practical utility of the methodology

introduced in this paper. This empirical demonstration, focuses on the decomposition of

the change in both the absolute and relative health concentration curves across these two

decades with a focus on an important health metric often examined in health economics:

daily cigarette consumption. Our decision to analyze cigarette consumption for 2000 and
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2020 is driven by two primary considerations. To begin with, the span between these two

years offers a unique opportunity to observe significant shifts in the distribution of the

studied variables. Moreover, there was a notable evolution in smoking habits during this

interval. Thus, investigating changes in health shortfall and socioeconomic health inequality

in smoking behavior between these two years provides a valuable case study for assessing

the errors associated with the linear approximation of the RIF -regression approach. Given

that the primary purpose of this empirical exercise is demonstrative, we will refrain from

proposing policy-based recommendations. In our concluding remarks, we highlight potential

directions worth delving into.

The NHIS has monitored the health outcomes of Americans since 1957. It is a cross-

sectional household interview survey representative of American households and non-institu-

tionalized individuals collected via personal household interviews. We focus on the adult

population in the 2000 and 2020 public-use data for which we have information on income.

As a result, sample sizes are 31,410 for 2000 and 30,007 for 2020. We use the sample

adult file to extract information on cigarette consumption and use family per capita income

to infer the socioeconomic rank of individuals. In this empirical illustration, we focus on

decomposing temporal changes in health shortfall and socioeconomic health inequality in

cigarette consumption at the national level.

4.1 Comparison of health shortfall and socioeconomic health inequality
in cigarette consumption over time

We begin by evaluating the health shortfall over time. Health shortfall (and achievement)

indices are designed to capture one of the health policymaker’s primary objective of under-

standing the health distribution. They account for both the population’s health variable’s

average level and socioeconomic inequalities in its distribution. In Figure 2 we provide a

visual representation of the dominance condition for the health shortfall associated with
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cigarette consumption. An initial glance at this figure reveals that the absolute health con-

centration curve of 2000 consistently lies above its 2020 counterpart. This non-intersection

implies that there isn’t any rank-dependent health shortfall index where the health shortfall

for cigarette consumption in 2020 surpasses that of 2000.

This result carries two key takeaways. First, it indicates that the average cigarette con-

sumption decreased between 2000 and 2020. This reduction can be visually confirmed

by observing the shift in the coordinate of the absolute health concentration curve at

q = 1, which represents the population average level of the health shortfall variable since

CA(1;FHY ) = µH .5 Secondly, irrespective of a policymaker’s structure of preferences for

socio-economic health disparities, the health shortfall related to cigarette consumption has

diminished between these two decades. The ability to derive these conclusions is attributed

to the use of absolute health concentration curves, as their curvature provides insights into

the above-mentioned dynamics.

The dominance result between the absolute health concentration curves of 2000 and

2020 indicates that there has been an improvement across all socioeconomic ranks. Despite

this clear social improvement, it is still essential, from a public health standpoint, to in-

vestigate potential socioeconomic inequalities in these gains. To better understand these

disparities, we delve into the evolution of socioeconomic health inequalities over time. As vi-

sualized in Figure 3, the socioeconomic health inequality dominance condition for cigarette

consumption reveals that at no point does the 2020 curve fall below that of 2000. This

non-intersection implies that there isn’t any rank-dependent socioeconomic health inequal-

ity index that produce a higher value of socioeconomic inequality in cigarette consumption

in 2000 compared to 2020. This means that even though there was a universal decline in

cigarette consumption across all socioeconomic levels, the benefits were not equally reaped
5Note that CA(1;FHY ) = µHCR (1;FHY ) = µH .
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by everyone. There’s a discernible rise in the socioeconomic health disparity in cigarette

consumption over these two decades.

4.2 Modeling the health concentration curves

Although comparing health shortfall and socioeconomic health inequalities over time offers

valuable insights from a health policy perspective, it is also important to understand the

underlying changes behind these results. A logical hypothesis might be the demographic

evolution between 2000 and 2020, perhaps is accounting for the decline in smoking rates.

To capture the importance of the demographic changes, Table 1 presents some population

characteristics in terms of three demographic aspects: age, race, and education (we will

control for additional demographic characteristics in the analysis). Descriptive statistics

suggests that, between 2000 and 2020, there was an increase proportion of population above

50, an increase in racial diversity, and an increase in education. These changes alone,

everything else being held constant, may induce a change in the absolute and relative health

concentration curves.

To construct a statistical association between the potential correlates and the values

of the absolute and relative health concentration curves, we need an econometric model.

The purpose our empirical analysis is to showcase how to model absolute and relative

health concentration curves using the approaches described in Sections 3.3 and 3.4. For the

reweighting approach, we employed a straightforward parametric logit model. To address the

challenges posed by multiple discrete covariates, we use Firth’s (1993) penalized maximum

likelihood estimation approach. For the RIF -regressions, we rely on a simple linear model.

In both cases, we use age, sex, race, region of residence, education, and an indicator variable

for the presence of children at home as covariates. Our reference group for comparison is

childless white males with less than a high school degree residing in a Northeastern state.

We use a grid of twenty-one points to estimate the absolute and relative health concentration
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curves and for the overall decomposition. To be systematic, we estimated the curves using a

21-point grid q ∈ {0,0.05,0.10,0.15, . . . ,0.85,0.90,0.95,1}. For absolute concentration curve

CA(q;FHY ) we’ve computed twenty regressions on a grid spanning from 0.05 to 1. For the

relative concentration curve CR(q;FHY ) we estimate nineteen regressions on a grid spanning

from 0.05 to 0.95.6 In order to estimate the values of the terms E[H ∣Y = F −1
Y (q)] in the

expression of RIF (hi, yi;CA(q;FHY )) and RIF (hi, yi;CR(q;FHY )), we use a Nadaraya-

Watson non-parametric estimator (Nadaraya, 1964; Watson, 1964). We use the Silverman

rule of thumb (Silverman, 1986) for the selection of the bandwidth.

4.3 Overall decomposition of changes in health shortfall and in socioeco-
nomic health inequality

In this section, we are interested in the overall structural and composition effects of the

change in absolute and relative health concentration curves from 2000 and 2020. We estimate

this decompostion using the methodology outlined in Section 3.3 on our dataset. In addition

to the estimated curves for both years, Figures 2 and 3 displays the estimated counterfactual

curves CA⟨2000∣2020⟩(q) and CR⟨2000∣2020⟩(q). We use the two estimated and counterfactual

curves for both the absolute and relative health concentration curves to determine the

structural and composition effect in the decomposition.

The curves in Figure 4 represent the structural and composition effects of the differences

in the absolute health concentration curves between 2020 and 2000. A visual inspection of

Figure 4 indicates that both structural and composition effects play a role in the change

between these two years. The result indicates that although both the composition and

structural effects play quantitatively an equivalent role in the reduction in the shortfall in

cigarette smoking at low socioeconomic ranks. However, for higher socioeconomic ranks, the

dominant factor is the structural effect. Notably, for every socioeconomic rank the structural
6Note that, since by construction CR(1) = 1, there is no need to model the health concentration curve

at this socioeconomic rank.
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and composition effects are negative. This suggests a consistent reduction in health shortfall

due to these two effects, regardless of the specific health shortfall index used.

Figure 5 presents the structural and composition effects of the difference between the

relative health concentration curves of 2020 and 2000. The effects appear to counteract

each other. The changes in the distribution of demographic characteristics would have

reduced socioeconomic health inequality in cigarette consumption for any rank-dependent

socioeconomic health inequality index. Yet, the structural effect, which goes in the oppo-

site direction, overshadow this composition effect accounting for the observed increase in

socioeconomic health inequality in cigarette consumption between the two years.

4.4 Assessing the impact of specific demographic variables

In this Section, we investigate individual covariates’ structural and composition effects. As

explained in Section 3.4, we estimate these effects using RIF of the health concentration

curves. Before we proceed with our estimation, let us assess how well the RIF s approxi-

mate the health concentration curves. Figure 6 displays the curves derived from averaging

RIF (CA(q)) and RIF (CR(q)) and the estimated absolute and relative health concentra-

tion curves for both years. It illustrates that taking the average of the RIF gives the value

of the health concentration curves. Nevertheless, the inherent bias in non-parametric esti-

mation of the term E[H ∣Y = F−1
Y (q)] in the expression of the RIF of both the absolute and

relative health concentration curve, means that the point estimates are not precisely equal.

Despite this inherent bias, we see from the curves in Figure 6 that averaging the RIF gives

a very good approximation of the estimated curve. We opted not to include the confidence

band on this figure to focus the point estimates. Nonetheless, a glance at the confidence

bands in Figures 2 and 3, confirms that averaging the RIF yields clearly to a curve within

these bands.
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4.4.1 Estimating the RIF-regression models

We begin by estimating the six regression models we use in the analysis: the model of

the 2020 health concentration curves, CA⟨2020∣2020⟩(q) and CR⟨2020∣2020⟩(q), the model of the

2000 health concentration curves, CA⟨2000∣2000⟩(q) and CR⟨2000∣2000⟩(q), and the model of the

counterfactual health concentration curves of the distribution of covariates of 2020 with the

returns of 2000, CA⟨2000∣2020⟩(q) and CR⟨2000∣2020⟩(q).

Tables 2, 3, and 4 display the estimated values of the parameters of the models of

CA⟨2000∣2000⟩(q), CA⟨2020∣2020⟩(q) and CA⟨2000∣2020⟩(q) for q ∈ {0.25,0.50,0.75,1}. For the year

2000, nearly all covariates significantly impacted the four coordinates of the CA(q;FHY )

with two notable exceptions. First, living in the Midwest does not significantly impact

CA⟨2000∣2000⟩(q) at q = 0.25 and 0.50. Second, having children does not significantly impact

CA⟨2000∣2000⟩(q) at q = 0.75 and 1 values. In 2020, the age covariate became statistically

insignificant. In contrast, residing in the Midwest is now significant for all values of q in

the table. The variable regarding the presence of children is statistically significant at q

values of 0.75 and 1 but not for q = 0.25. Upon examining the counterfactual curve model

CA⟨2000∣2020⟩(q), the most significant covariates mirror those of CA⟨2000∣2000⟩(q) except for

the presence of children, which only holds significance at q = 1.

Tables 5, 6, and 7 display the estimated values of the parameters of the models of

CR⟨2000∣2000⟩(q), CR⟨2020∣2020⟩(q) and CR⟨2000∣2020⟩(q) for q ∈ {0.25,0.50,0.75}. The Hispanic

and Black variables are significant for all three q values in both specified years and the

counterfactual model. Being a female does not significantly impact the relative health

concentration curve for all three values of q in both years and the counterfactual model.

The same holds for being in the South. The significance of all other variables changes when

moving from one model to the other.
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4.4.2 Assessing the impact of the error in estimation

In Section 3.4, we highlighted that the main advantage of adopting a RIF -regression ap-

proach lies on the identification each covariate’s effect. However, it has a limitation because

it represents a linear approximation of our two curves, which are inherently non-linear func-

tionals. Within the same section, we introduce a methodology from Firpo, Fortin, and

Lemieux (2018) designed to capture the errors associated with this approximation. To as-

sess the influence of these errors on our analysis, Figure 7 compares the structural and

composition effects on the absolute health concentration curves obtained using the RIF -

regression approach with the one obtained using the reweighting approach. A closer look at

this figure reveals that the structural effects of both approaches are almost the same. Any

error stemming from the specification of the reweighting function seems insignificant. The

information on the four points in Table 8 supports this conclusion since the errors linked

with the reweighting function’s misspecification are insignificant. The composition effects

obtained using both methods are closely aligned. The curve representing the error due to

departure from linearity seems consistently positive, suggesting that the RIF -regression

approach may overestimate the composition effect. Referring to the information displayed

in Table 8, the relative magnitude of this error seems to be between 11% and 16.5% of the

composition effect.

Figure 8 compares the structural and composition effects on the relative health concen-

tration curves obtained using the RIF -regression approach with the one obtained using the

reweighting approach. The visual inspection of the figure suggests again that the structural

effects of both approaches are almost the same. Furthermore, the error due to the specifi-

cation of the reweighting function seems insignificant. The information for two of the three

points in Table 9, reinforces this information and confirms the insignificance of the error

linked with the reweighting function’s misspecification. However, a significant error is noted
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for q = 0.75 but it constitutes less than 1% of the total structural effect at that point. The

composition effects estimated with the two approaches are in the same direction. However,

they are less close than in the case of the absolute concentration curve. The error due

to departure from linearity suggests that the RIF -regression approach overestimates the

composition effect with Table 9 suggesting an overestimation ranging from 18% and 48% of

the total composition effect.

In summary, the RIF -regression approach fairly precisely estimates the structural ef-

fect for both absolute and relative health concentration curves. Such accuracy is crucial,

especially when analysts often focus on the structural effect, which represents the impact

of assignment to group 1. This structural effect might correspond to a treatment effect or

policy influence in various contexts (but not in the case of our empirical application). While

the composition effect estimation is not as precise as the structural effect, the method allows

for measuring errors resulting from deviations from linearity.7

4.4.3 Assessing the impact of individual covariates on the structural effects

Figure 9 illustrates the structural effect of each variable on the absolute health concentration

curve. A visual examination reveals that the change in returns to age and gender would

contribute to a robust increase in the health shortfall. However, the structural effect of the

intercept, i.e., the social change that affects everyone, goes in the opposite direction, and

its magnitude offsets all the other effects. This result means this social change dominates

the overall structural effect on the absolute health concentration curve. Table 10 presents

the estimates of the structural effect associated with each demographic characteristic. It

is interesting to note that although not clear from visual inspection, the structural effects

of other characteristics, even if small, remain significant. This statistical significance holds

for all race-associated variables. For other variables, such as the presence of children in
7Although we do not perform this exercise in this paper, one could potentially allocate a portion of the

error to each of the covariates using equation (19).
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the household and some education variables, the structural impacts are significant for some

values of q.

The structural effect of the return to age is especially noteworthy. Given that all the

estimated age parameters in Tables 2 and 4 are all significant and negative, the change in the

age structure displayed in Table 1 would have induced a decrease in the CA(q). However,

the parameters estimated in Table 3 are not statistically significant. All this explains that

the structural effect of age, which is induced by the difference in the parameters in Tables

3 and 4, would have increased health shortfall for any health shortfall indices.

Even though they are of a smaller magnitude, the structural effect of both gender and

race would have induced a robust increase in health shortfall for cigarette consumption.

These two effects are consistent with the change of the values of the parameters for these

variables between Tables 2, 3, and 4. Specifically, there is a noticeable reduction in the

magnitude of these negative parameters between 2020 on one side, and 2000 and the coun-

terfactual of 2020 with the 2000 returns on the other side.

Figure 10 displays the structural effect of each variable on the relative health concentra-

tion curve. We note that the only demographic characteristic with a discernible structural

effect is having a High School degree. As corroborated by Table 11, the other educational

variables also significantly impact the relative health concentration curve in the same di-

rection. However, these impacts are smaller in magnitude. The change in the return to

education would yield a robust decrease in socioeconomic health inequality in cigarette

smoking. Other variables such as age, race, and the presence of children also have minor

significant impacts. However, the structural effect of the intercept, i.e., the social change

that affects everyone, goes in the opposite direction. Its extensive magnitude outweighs the

effect of the change in the return of education, indicating that the general social change

amplifies the structural effect on the health concentration curve, increasing socioeconomic
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health inequality.

4.4.4 Assessing the impact covariates on the composition effects

Figure 11 illustrates the impact of the change in the distribution of each demographic

variable. The change in the composition of demographic characteristics that have the most

important impacts are the proportion of individuals from Hispanic backgrounds and those

with education levels higher than a High School degree. All these impacts reduce the

health shortfall unambiguously (i.e., for any rank-dependent index). Conversely, a rise in

the proportion of individuals with only a High School education would increase the health

shortfall. However, since most of this demographic shift gravitates towards higher education

levels, the aggregate effect of educational changes in the population’s education decreases

the health shortfall. Additionally, the change in the age composition also reduces the health

shortfall. Table 11 also reveals a significant change in the composition for almost all the

other variables, except for the proportion of Afro-Americans, which is relatively constant

over this two-decade span.

Figure 12 displays the impact of the change in the distribution of each demographic

variable on the relative health concentration curve. The changes in the age distribution,

the presence of children in the household, the proportion of Hispanics, other Non-Whites,

and people having an associate degree would have all yielded a reduction of socioeconomic

health inequalities. The change in the proportion of people with High School or Graduate

degrees increases socioeconomic health inequalities. This result is also confirmed by the

estimated values displayed in Table 13.

5 Conclusion

Health concentration curves have been widely used in the literature for graphically rep-

resenting socioeconomic health inequality. Moreover, these curves are used as tools when
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testing for dominance conditions. Specifically, when these curves do not intersect, they pro-

vide a ranking for socioeconomic health inequality between two populations that is valid for

any rank-dependent socioeconomic health inequality index. Absolute health concentration

curves serve a similar purpose in illustrating health achievement and shortfall. However,

applied researchers often aim to compare an existing joint distribution of health and income

with a counterfactual for which no data is available. In such instances, it is crucial to have

an econometric model for both the relative and absolute health concentration curve.

This paper leverages the RIF -regression approach introduced by Firpo, Fortin, and

Lemieux (2009) to propose a novel method for modeling relative and absolute health con-

centration curves. By deriving the expressions of the RIF for these curves, the paper

equips applied economists with the ability to employ conventional econometric methods to

construct models of relative and absolute health concentration curves.

In addition, the paper offers an empirical demonstration of the proposed modeling ap-

proach by decomposing the changes in relative and absolute concentration curves of cigarette

consumption in the US between 2000 and 2020. This empirical application not only demon-

strates the application of this modeling in real-world health economics analysis but also

highlights the process of estimating errors that arise due departures from linearity, espe-

cially in instances where there’s been a significant shift in the distribution of covariates. In

future work, it would be interesting to apply the potential outcome framework developed

in this paper in the context of natural experiments to infer the causal impact of policy in-

terventions on the relative and absolute health concentration curves. This apparent avenue

would contribute to informing policymakers aiming at designing evidence-based policies to

reduce health shortfall and socioeconomic health inequality.
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A Proof of propositions

Proof of Proposition 1: Let δhi,yi be the bivariate distribution of (H,Y ) with a probability

mass of 1 at (hi, yi), and let F̃ t
HY = t ⋅ δhi,yi + (1 − t) ⋅ FHY and . The influence function of

the coordinate of the absolute health concentration curve at q is given by

IF (hi, yi;CA(q;FHY )) =
∂

∂t
CA(q; F̃ t

HY )∣
t=0
. (20)

Using equation (1), equation (20) can be rewritten as

IF (hi, yi;CA(q;FHY )) =
∂

∂t
{∫

F̃−1
Y (q)

0
∫

hmax

0
h [t ⋅ δhi,yi(h, y) + (1 − t) ⋅ fHY (hy)]dhdy}∣

t=0

,

(21)

IF (hi, yi;CA(q;FHY )) = IF (yi;F
−1
Y (q)) ⋅ ∫

hmax

0
hfHY (h,F −1

(q))dh

+∫

F−1
Y (q)

0
∫

hmax

0
hδhi,yi(h, y)dhdy

−∫

F−1
Y (q)

0
∫

hmax

0
hfHY (hy)dhdy. (22)

Note that ∫
hmax

0 hfHY (h,F −1(q))dh = ∫
hmax

0 hfH ∣Y (h∣Y = F −1(q))dhfY (F −1(q)). Also

∫
hmax

0 hfH ∣Y (h∣Y = F−1(q))dh = E [H ∣Y = F −1(q)]. From Firpo, Fortin, and Lemieux (2009),

we know that IF (yi;F
−1
Y (q)) = [p − 1 (yi ≤ F

−1
Y (q))] /fY (F−1

Y (q)). The first term on the

r.h.s. of equation (22) becomes

IF (yi;F
−1
Y (q))⋅∫

hmax

0
hfHY (h,F−1

(q))dh = [q − 1 (yi ≤ F
−1
Y (q))]⋅E[H ∣Y = F−1

Y (q)]. (23)

The second term on the r.h.s. of equation (22) integrates over a Dirac function with prob-

ability mass 1 at (hi, yi). This implies that this term will be equal to hi if yi ≤ F−1
Y (q) and

equal to 0 if yi > F −1
Y (q). The second term on the r.h.s. of equation (22) becomes

∫

F−1
Y (q)

0
∫

hmax

0
hδhi,yi(h, y)dhdy = 1 (yi ≤ F

−1
Y (q)) ⋅ hi. (24)
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Using equations (23) and (24) and the fact that the last term on the r.h.s. of equation (22)

is exactly the expression of the CA(q;FHY ) in equation (1), equation (22) becomes

IF (hi, yi;CA(q;FHY )) = [q − 1 (yi ≤ F
−1
Y (q))] ⋅E[H ∣Y = F−1

Y (q)]

+1 (yi ≤ F
−1
Y (q)) ⋅ hi −CA(q;FHY ) (25)

Reorganizing the terms of the r.h.s. of equation (25) yields the first result of the proposition.

Adding the functional CA(q;FHY ) to the influence function yields the second result of the

proposition.

Proof of Corollary 1: Since CR(q;FHY ) = CA(q;FHY )/µH ,

IF (hi, yi;CR(q;FHY )) =
IF (hi, yi;CA(q;FHY )) ⋅ µH −CA(q;FHY ) ⋅ IF (hi, yi;µH)

µ2H
. (26)

The influence function of the average is a known result: IF (hi, yi;µH) = hi−µH (see Essama-

Nssah and Lambert, 2012). Substituting this result and the expression of IF (hi, yi;CA(q;FHY ))

into equation (26) yields

IF (hi, yi;CR(q;FHY )) =
1

µH
[p − 1 (yi ≤ F

−1
Y (q))] ⋅E[H ∣Y = F−1

Y (q)]

+1 (yi ≤ F
−1
Y (q)) ⋅

hi
µH
−CR(q;FHY )

−CR(q;FHY ) ⋅
hi
µH
+CR(q;FHY ). (27)

Reorganizing the terms of the r.h.s. of equation (27) yields the first result of the proposition.

Adding the functional CR(q;FHY ) to the influence function yields the second result of the

corollary.
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Table 1: Demographics

Year
2000 2020

Age groups:

18 to 29 22.15% 20.80%
30 to 39 20.77% 17.01%
40 to 49 21.07% 15.88%
50 to 59 14.78% 16.44%
60 to 69 9.71% 15.36%
70 to 85 11.53% 14.51%
Race:

White 74.21% 63.49%
Hispanic 10.54% 16.55%
Black 11.16% 11.36%
Other non-white 4.10% 8.61%
Education level:

Less than high school degree 17.81% 11.58%
High school degree or some college 50.10% 45.63%
Associate degree 8.95% 13.06%
Bachelor degree 15.16% 18.43%
Graduate or professional school degree 7.98% 11.30%
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 2: Model of CA⟨2000∣2000⟩(q)

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Age −0.01433∗∗∗ −0.02700∗∗∗ −0.03776∗∗∗ −0.04181∗∗∗

(0.00140) (0.00198) (0.00228) (0.00247)

Female −0.37232∗∗∗ −0.71917∗∗∗ −1.13921∗∗∗ −1.41854∗∗∗

(0.05395) (0.07664) (0.08785) (0.09562)

Hispanic −2.13851∗∗∗ −2.98347∗∗∗ −3.50215∗∗∗ −3.65738∗∗∗

(0.09246) (0.11583) (0.12720) (0.13483)

Black −1.12650∗∗∗ −1.79976∗∗∗ −2.24514∗∗∗ −2.45088∗∗∗

(0.08588) (0.10629) (0.12077) (0.12612)

Other Non-White −0.70387∗∗∗ −1.24637∗∗∗ −1.44816∗∗∗ −1.39458∗∗∗

(0.12276) (0.14455) (0.17269) (0.18220)

Midwest −0.02255 0.14416 0.32051∗∗ 0.54137∗∗∗

(0.07356) (0.10624) (0.12689) (0.14043)

South 0.18204∗∗ 0.41292∗∗∗ 0.69452∗∗∗ 0.83207∗∗∗

(0.07202) (0.09927) (0.11244) (0.12211)

West −0.19358∗∗∗ −0.33010∗∗∗ −0.41021∗∗∗ −0.41714∗∗∗

(0.07503) (0.09970) (0.12091) (0.13644)

High School/Some College −0.52715∗∗∗ −0.94723∗∗∗ −1.28871∗∗∗ −1.31806∗∗∗

(0.10394) (0.13608) (0.14609) (0.15165)

Associate Degree −0.77189∗∗∗ −1.58798∗∗∗ −2.27432∗∗∗ −2.38209∗∗∗

(0.11956) (0.16398) (0.18355) (0.19823)

Bachelor Degree −1.00969∗∗∗ −2.10113∗∗∗ −3.38470∗∗∗ −4.20417∗∗∗

(0.10402) (0.14406) (0.15932) (0.17151)

Graduate/Professional −0.94821∗∗∗ −1.9375∗∗∗ −3.36322∗∗∗ −4.72361∗∗∗

(0.10163) (0.14306) (0.15963) (0.16613)

Child in household 0.20377∗∗∗ 0.30318∗∗∗ 0.11746 −0.04645
(0.06206) (0.08869) (0.10436) (0.10778)

Constant 2.79328∗∗∗ 5.08729∗∗∗ 7.25283∗∗∗ 8.46790∗∗∗

(0.15521) (0.20970) (0.23105) (0.24738)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 3: Model of CA⟨2020∣2020⟩(q)

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Age −0.00141 −0.00110 −0.00105 −0.00054
(0.00089) (0.00109) (0.00125) (0.00134)

Female −0.17885∗∗∗ −0.29176∗∗∗ −0.35920∗∗∗ −0.43021∗∗∗

(0.03550) (0.04498) (0.05234) (0.05429)

Hispanic −1.10473∗∗∗ −1.54251∗∗∗ −1.66538∗∗∗ −1.73157∗∗∗

(0.05365) (0.06017) (0.06657) (0.06978)

Black −0.57932∗∗∗ −0.87159∗∗∗ −0.99433∗∗∗ −1.05193∗∗∗

(0.05961) (0.07040) (0.07595) (0.07861)

Other Non-White −0.26550∗∗∗ −0.48916∗∗∗ −0.47391∗∗∗ −0.54114∗∗∗

(0.06143) (0.07047) (0.08057) (0.08369)

Midwest 0.11139∗∗ 0.26786∗∗∗ 0.42319∗∗∗ 0.48913∗∗∗

(0.05331) (0.06798) (0.08064) (0.08612)

South 0.21552∗∗∗ 0.37384∗∗∗ 0.49415∗∗∗ 0.54495∗∗∗

(0.05096) (0.06207) (0.06941) (0.07507)

West −0.14092∗∗∗ −0.17546∗∗∗ −0.20129∗∗∗ −0.20391∗∗∗

(0.04415) (0.05395) (0.06333) (0.06915)

High School/Some College −0.53582∗∗∗ −0.88248∗∗∗ −0.98831∗∗∗ −0.99076∗∗∗

(0.09468) (0.11101) (0.11768) (0.12147)

Associate Degree −0.69005∗∗∗ −1.12740∗∗∗ −1.39823∗∗∗ −1.49388∗∗∗

(0.09757) (0.12080) (0.13140) (0.13528)

Bachelor Degree −0.87909∗∗∗ −1.60994∗∗∗ −2.20374∗∗∗ −2.44102∗∗∗

(0.09359) (0.11213) (0.12029) (0.12414)

Graduate/Professional −0.83789∗∗∗ −1.57863∗∗∗ −2.29296∗∗∗ −2.65583∗∗∗

(0.09184) (0.11382) (0.12099) (0.12414)

Child in household 0.02794 0.13120∗∗ 0.16158∗∗∗ 0.14629∗∗

(0.04351) (0.05479) (0.06042) (0.06076)

Constant 1.48807∗∗∗ 2.33986∗∗∗ 2.88154∗∗∗ 3.14008∗∗∗

(0.12886) (0.14907) (0.16176) (0.17105)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 4: Model of CA⟨2000∣2020⟩(q)

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Age −0.01329∗∗∗ −0.02431∗∗∗ −0.03492∗∗∗ −0.03808∗∗∗

(0.00119) (0.00174) (0.00202) (0.00220)

Female −0.34166∗∗∗ −0.58155∗∗∗ −0.95011∗∗∗ −1.22022∗∗∗

(0.04855) (0.06647) (0.07922) (0.08887)

Hispanic −1.46619∗∗∗ −2.10174∗∗∗ −2.52646∗∗∗ −2.66313∗∗∗

(0.07612) (0.10479) (0.12498) (0.14582)

Black −0.78948∗∗∗ −1.27017∗∗∗ −1.65045∗∗∗ −1.89294∗∗∗

(0.07519) (0.09656) (0.10951) (0.11969)

Other Non-White −0.50937∗∗∗ −0.87813∗∗∗ −1.04539∗∗∗ −1.00326∗∗∗

(0.09790) (0.13781) (0.16925) (0.18952)

Midwest 0.02897 0.11004 0.29950∗∗ 0.48972∗∗∗

(0.06352) (0.09291) (0.11672) (0.13839)

South 0.18450∗∗∗ 0.35732∗∗∗ 0.53593∗∗∗ 0.66898∗∗∗

(0.06264) (0.08573) (0.10327) (0.12198)

West −0.12023 −0.27358∗∗∗ −0.32188∗∗∗ −0.36042∗∗∗

(0.06665) (0.09062) (0.11118) (0.13440)

High School/Some College −0.21678∗∗ −0.40644∗∗∗ −0.66472∗∗∗ −0.65224∗∗∗

(0.09579) (0.11876) (0.12755) (0.13155)

Associate Degree −0.49588∗∗∗ −0.94211∗∗∗ −1.36483∗∗∗ −1.40092∗∗∗

(0.11112) (0.15516) (0.17226) (0.18930)

Bachelor Degree −0.73270∗∗∗ −1.45328∗∗∗ −2.51559∗∗∗ −3.06790∗∗∗

(0.09911) (0.13274) (0.14831) (0.15559)

Graduate/Professional −0.70296∗∗∗ −1.36382∗∗∗ −2.54786∗∗∗ −3.60736∗∗∗

(0.09559) (0.13380) (0.15553) (0.16424)

Child in household 0.08088 0.04349 −0.16878 −0.27395∗∗∗

(0.05748) (0.08355) (0.09506) (0.09684)

Constant 2.36477∗∗∗ 4.30044∗∗∗ 6.30936∗∗∗ 7.39058∗∗∗

(0.13209) (0.18114) (0.20149) (0.21693)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 5: Model of CR⟨2000∣2000⟩(q)

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Age −0.00095∗∗∗ −0.00133∗∗∗ −0.00149∗∗∗

(0.00033) (0.00037) (0.00027)

Female −0.00039 0.00984 −0.01082
(0.01241) (0.01365) (0.01052)

Hispanic −0.33008∗∗∗ −0.28991∗∗∗ −0.18564∗∗∗

(0.01910) (0.01912) (0.01369)

Black −0.13560∗∗∗ −0.13857∗∗∗ −0.09600∗∗∗

(0.01840) (0.01749) (0.01251)

Other Non-White −0.09471∗∗∗ −0.14091∗∗∗ −0.10227∗∗∗

(0.02777) (0.02633) (0.02257)

Midwest −0.04582∗∗ −0.04014∗∗ −0.02777
(0.01792) (0.01954) (0.01522)

South −0.00992 −0.00827 0.01369
(0.01718) (0.01927) (0.01355)

West −0.02360 −0.03022 −0.02418
(0.01739) (0.01834) (0.01520)

High School/Some College −0.05096∗∗ −0.06875∗∗∗ −0.07433∗∗∗

(0.02329) (0.02253) (0.01467)

Associate Degree −0.04161 −0.08965∗∗∗ −0.11905∗∗∗

(0.02797) (0.03005) (0.02284)

Bachelor Degree 0.02501 0.03763 −0.03442
(0.02271) (0.02608) (0.02225)

Graduate/Professional 0.08009∗∗∗ 0.16045∗∗∗ 0.08408∗∗∗

(0.02290) (0.02660) (0.02569)

Child in household 0.06028∗∗∗ 0.09154∗∗∗ 0.04286∗∗∗

(0.01443) (0.01566) (0.01252)

Constant 0.42318∗∗∗ 0.69482∗∗∗ 0.96667∗∗∗

(0.03260) (0.03458) (0.02565)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 6: Model of CR⟨2020∣2020⟩(q)

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Age −0.00091∗∗ −0.00057 −0.00043
(0.00052) (0.00047) (0.00031)

Female −0.02386 −0.02109 0.00808
(0.02069) (0.01939) (0.01331)

Hispanic −0.38090∗∗∗ −0.35740∗∗∗ −0.13002∗∗∗

(0.02675) (0.02160) (0.01472)

Black −0.16345∗∗∗ −0.16865∗∗∗ −0.06612∗∗∗

(0.03071) (0.02519) (0.01494)

Other Non-White −0.06002 −0.11695∗∗∗ −0.00618
(0.03271) (0.02913) (0.01695)

Midwest −0.04093 −0.02328 0.00176
(0.03136) (0.02997) (0.02255)

South 0.02207 0.02987 0.01874
(0.02872) (0.02646) (0.01931)

West −0.05287∗∗ −0.03751 −0.01914
(0.02644) (0.02519) (0.01993)

High School/Some College −0.14668∗∗∗ −0.20442∗∗∗ −0.10061∗∗∗

(0.04924) (0.03756) (0.02277)

Associate Degree −0.13394∗∗ −0.15782∗∗∗ −0.08364∗∗∗

(0.05222) (0.04305) (0.02643)

Bachelor Degree −0.03496 −0.08598∗∗ −0.07673∗∗∗

(0.04729) (0.03845) (0.02826)

Graduate/Professional 0.04971 0.03449 −0.00599
(0.04691) (0.04188) (0.03180)

Child in household −0.01622 0.03084 0.02644∗∗

(0.02474) (0.02214) (0.01301)

Constant 0.65015∗∗∗ 0.92155∗∗∗ 0.99359∗∗∗

(0.06543) (0.05196) (0.03495)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 7: Model of CR⟨2000∣2020⟩(q)

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Age −0.00137∗∗∗ −0.00158∗∗∗ −0.00198∗∗∗

(0.00036) (0.00042) (0.00036)

Female −0.01513 0.01702 −0.00556
(0.01437) (0.01594) (0.01353)

Hispanic −0.28010∗∗∗ −0.24832∗∗∗ −0.16743∗∗∗

(0.02329) (0.02684) (0.02564)

Black −0.11245∗∗∗ −0.09978∗∗∗ −0.06917∗∗∗

(0.02141) (0.02135) (0.01651)

Other Non-White −0.09079∗∗∗ −0.12316∗∗∗ −0.09518∗∗∗

(0.02948) (0.03389) (0.03168)

Midwest −0.03101 −0.04913∗∗ −0.02582
(0.01952) (0.02317) (0.02138)

South 0.00733 0.00386 0.00821
(0.01906) (0.02185) (0.01857)

West −0.01109 −0.02988 −0.01579
(0.01941) (0.02198) (0.02120)

High School/Some College −0.01980 −0.02368 −0.05676∗∗∗

(0.02694) (0.02485) (0.01585)

Associate Degree −0.05291 −0.07456∗∗ −0.10035∗∗∗

(0.03373) (0.03773) (0.02882)

Bachelor Degree 0.00526 0.04584 −0.05748∗∗

(0.02832) (0.03224) (0.02556)

Graduate/Professional 0.06056∗∗ 0.17221∗∗∗ 0.07303∗∗

(0.02834) (0.03532) (0.03434)

Child in household 0.05064∗∗∗ 0.06351∗∗∗ 0.01402
(0.01660) (0.01941) (0.01488)

Constant 0.43679∗∗∗ 0.68100∗∗∗ 0.98928∗∗∗

(0.03715) (0.03980) (0.02958)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 8: Overall decomposition (RIF approach), absolute health concentration curves

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Structural effect −0.32604∗∗∗ −0.73113∗∗∗ −1.15205∗∗∗ −1.56963∗∗∗

(0.02916) (0.03931) (0.04696) (0.05286)

Error due to misspecification of the reweighting function 0.00046 0.00054 0.00125 0.00451
(0.00185) (0.00304) (0.00414) (0.00489)

Composition effect −0.29910∗∗∗ −0.51221∗∗∗ −0.67703∗∗∗ −0.7669∗∗∗

(0.01766) (0.02378) (0.02796) (0.03137)

Error due to departure from linearity 0.04904∗∗∗ 0.06596∗∗∗ 0.07371∗∗∗ 0.10145∗∗∗

(0.00976) (0.01176) (0.01096) (0.00886)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.

Table 9: Overall decomposition (RIF approach), relative health concentration curves

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Structural effect 0.10544∗∗∗ 0.11342∗∗∗ 0.08252∗∗∗

(0.01219) (0.01230) (0.00957)

Error due to misspecification of the reweighting function −0.00022 −0.00061 −0.00075∗∗

(0.00033) (0.00037) (0.00031)

Composition effect −0.02752∗∗∗ −0.02913∗∗∗ −0.02292∗∗∗

(0.00344) (0.00372) (0.00301)

Error due to departure from linearity 0.01323∗∗∗ 0.00936∗∗∗ 0.00420
(0.00306) (0.00348) (0.00276)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.

43



Table 10: Detailed structural effect, absolute health concentration curves

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Age 0.56835∗∗∗ 1.11060∗∗∗ 1.62027∗∗∗ 1.79571∗∗∗

(0.06979) (0.09682) (0.11344) (0.12275)

Female 0.08424∗∗∗ 0.14995∗∗∗ 0.30577∗∗∗ 0.40879∗∗∗

(0.03098) (0.04094) (0.04827) (0.05281)

Hispanic 0.05982∗∗∗ 0.09254∗∗∗ 0.14250∗∗∗ 0.15416∗∗∗

(0.01500) (0.01944) (0.02280) (0.02599)

Black 0.02387∗∗ 0.04526∗∗∗ 0.07451∗∗∗ 0.09551∗∗∗

(0.01074) (0.01338) (0.01488) (0.01606)

Other Non-White 0.02100∗∗ 0.03349∗∗∗ 0.04920∗∗∗ 0.03978∗∗

(0.00957) (0.01291) (0.01580) (0.01768)

Midwest 0.01746 0.03343 0.02620 −0.00012
(0.01753) (0.02441) (0.03037) (0.03482)

South 0.01167 0.00622 −0.01572 −0.04668
(0.02953) (0.03960) (0.04634) (0.05391)

West −0.00491 0.02327 0.02860 0.03712
(0.01880) (0.02471) (0.02994) (0.03557)

High School/Some College −0.14559∗∗ −0.21723∗∗∗ −0.14766 −0.15447
(0.06305) (0.07592) (0.08030) (0.08342)

Associate Degree −0.02536 −0.02420 −0.00436 −0.01214
(0.01986) (0.02594) (0.02870) (0.03071)

Bachelor Degree −0.02698 −0.02887 0.05747 0.11554∗∗∗

(0.02571) (0.03223) (0.03554) (0.03699)

Graduate/Professional −0.01524 −0.02427 0.02880 0.10750∗∗∗

(0.01540) (0.02017) (0.02259) (0.02376)

Child in household −0.01766 0.02926 0.11020∗∗∗ 0.14018∗∗∗

(0.02355) (0.03235) (0.03694) (0.03782)

Constant −0.87670∗∗∗ −1.96058∗∗∗ −3.42781∗∗∗ −4.25050∗∗∗

(0.18967) (0.23650) (0.26463) (0.28172)

Error due to misspecification of the reweighting function 0.00046 0.00054 0.00125 0.00451
(0.00185) (0.00304) (0.00414) (0.00489)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 11: Detailed structural effect, relative health concentration curves

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Age 0.02232 0.04858 0.07410∗∗∗

(0.03022) (0.03011) (0.02292)

Female −0.00452 −0.01972 0.00706
(0.01302) (0.01311) (0.00982)

Hispanic −0.01668∗∗∗ −0.01805∗∗∗ 0.00619
(0.00574) (0.00556) (0.00489)

Black −0.00579 −0.00782∗∗ 0.00035
(0.00423) (0.00371) (0.00255)

Other Non-White 0.00265 0.00053 0.00766∗∗

(0.00363) (0.00370) (0.00304)

Midwest −0.00210 0.00548 0.00584
(0.00769) (0.00791) (0.00662)

South 0.00554 0.00979 0.00396
(0.01288) (0.01302) (0.01003)

West −0.00991 −0.00181 −0.00080
(0.00781) (0.00804) (0.00669)

High School/Some College −0.05790∗∗ −0.08248∗∗∗ −0.02001
(0.02606) (0.02086) (0.01281)

Associate Degree −0.01058 −0.01087 0.00218
(0.00823) (0.00729) (0.00516)

Bachelor Degree −0.00741 −0.02429∗∗∗ −0.00355
(0.01030) (0.00938) (0.00705)

Graduate/Professional −0.00123 −0.01556∗∗ −0.00893
(0.00625) (0.00628) (0.00540)

Child in household −0.02230∗∗ −0.01090 0.00414
(0.00986) (0.00967) (0.00648)

Constant 0.21335∗∗∗ 0.24055∗∗∗ 0.00431
(0.07685) (0.06524) (0.04678)

Error due to misspecification of the reweighting function −0.00022 −0.00061 −0.00075∗∗

(0.00033) (0.00037) (0.00031)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 12: Detailed composition effect, absolute health concentration curves

RIF (CA (0.25)) RIF (CA (0.50)) RIF (CA (0.75)) RIF (CA (1))

Age −0.03737∗∗∗ −0.07043∗∗∗ −0.09851∗∗∗ −0.10907∗∗∗

(0.00412) (0.00623) (0.00753) (0.00823)

Female 0.00331∗∗ 0.00639∗∗ 0.01011∗∗ 0.01259∗∗

(0.00163) (0.00302) (0.00471) (0.00591)

Hispanic −0.13433∗∗∗ −0.18741∗∗∗ −0.21999∗∗∗ −0.22974∗∗∗

(0.00839) (0.01121) (0.01285) (0.01361)

Black 0.00056 0.00090 0.00112 0.00122
(0.00287) (0.00459) (0.00573) (0.00628)

Other Non-White −0.03386∗∗∗ −0.05996∗∗∗ −0.06967∗∗∗ −0.06709∗∗∗

(0.00601) (0.00728) (0.00867) (0.00908)

Midwest 0.00095 −0.00608 −0.01352∗∗ −0.02284∗∗∗

(0.00310) (0.00451) (0.00541) (0.00612)

South 0.00247 0.00560∗∗ 0.00942∗∗∗ 0.01129∗∗∗

(0.00131) (0.00225) (0.00328) (0.00382)

West −0.00916∗∗ −0.01562∗∗∗ −0.01941∗∗∗ −0.01974∗∗∗

(0.00357) (0.00484) (0.00584) (0.00656)

High School/Some College 0.02519∗∗∗ 0.04526∗∗∗ 0.06158∗∗∗ 0.06298∗∗∗

(0.00541) (0.00756) (0.00872) (0.00899)

Associate Degree −0.03076∗∗∗ −0.06329∗∗∗ −0.09065∗∗∗ −0.09494∗∗∗

(0.00518) (0.00776) (0.00927) (0.00990)

Bachelor Degree −0.03331∗∗∗ −0.06933∗∗∗ −0.11168∗∗∗ −0.13871∗∗∗

(0.00473) (0.00830) (0.01192) (0.01459)

Graduate/Professional −0.03549∗∗∗ −0.07252∗∗∗ −0.12588∗∗∗ −0.17679∗∗∗

(0.00448) (0.00705) (0.01011) (0.01342)

Child in household −0.01729∗∗∗ −0.02572∗∗∗ −0.00997 0.00394
(0.00530) (0.00758) (0.00881) (0.00913)

Error due to departure from linearity 0.04904∗∗∗ 0.06596∗∗∗ 0.07371∗∗∗ 0.10145∗∗∗

(0.00976) (0.01176) (0.01096) (0.00886)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Table 13: Detailed composition effect, relative health concentration curves

RIF (CR (0.25)) RIF (CR (0.50)) RIF (CR (0.75))

Age −0.00247∗∗∗ −0.00347∗∗∗ −0.00388∗∗∗

(0.00088) (0.00099) (0.00074)

Female 0.00000 −0.00009 0.00010
(0.00011) (0.00014) (0.00010)

Hispanic −0.02073∗∗∗ −0.01821∗∗∗ −0.01166∗∗∗

(0.00148) (0.00144) (0.00099)

Black 0.00007 0.00007 0.00005
(0.00034) (0.00035) (0.00024)

Other Non-White −0.00456∗∗∗ −0.00678∗∗∗ −0.00492∗∗∗

(0.00134) (0.00128) (0.00109)

Midwest 0.00193∗∗ 0.00169∗∗ 0.00117
(0.00077) (0.00084) (0.00066)

South −0.00013 −0.00011 0.00019
(0.00025) (0.00028) (0.00021)

West −0.00112 −0.00143 −0.00114
(0.00082) (0.00087) (0.00072)

High School/Some College 0.00244∗∗ 0.00329∗∗∗ 0.00355∗∗∗

(0.00113) (0.00111) (0.00076)

Associate Degree −0.00166 −0.00357∗∗∗ −0.00474∗∗∗

(0.00112) (0.00124) (0.00097)

Bachelor Degree 0.00083 0.00124 −0.00114
(0.00075) (0.00087) (0.00074)

Graduate/Professional 0.00300∗∗∗ 0.00601∗∗∗ 0.00315∗∗∗

(0.00087) (0.00109) (0.00100)

Child in household −0.00511∗∗∗ −0.00777∗∗∗ −0.00364∗∗∗

(0.00124) (0.00138) (0.00107)

Error due to departure from linearity 0.01323∗∗∗ 0.00936∗∗∗ 0.0042
(0.00306) (0.00348) (0.00276)

Note: ∗∗p < 0.05; ∗∗∗p < 0.01
Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.
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Figure 1: Relative health concentration curves
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Figure 2: Health shortfall
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Figure 3: Socioeconomic health inequality

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative oncentration curves

Social ranks

C
u

m
u

la
ti
ve

 s
h

a
re

 o
f 

to
ta

l 
c
ig

a
re

tt
e

 c
o

n
s
u

m
p

ti
o

n

2000

2020

Counterfactual of 2020 with return of 2000

Perfect equality

Source: Authors’ own estimation, NHIS 2000 & NHIS 2020.

50



Figure 4: Structural and endowment effects. Absolute health concentration curve.
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Figure 5: Structural and endowment effects. Relative health concentration curve.
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Figure 6: Illustrating the fit of the curves estimated by averaging the RIF s in the sample
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Figure 7: Comparison of the decomposition approaches. Absolute health concentration curve
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Figure 8: Comparison of the decomposition approaches. Relative health concentration curve
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Figure 9: Impact of each variable on the structural effect. Absolute health concentration curve
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Figure 10: Impact of each variable on the structural effect. Relative health concentration curve
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Figure 11: Impact of each variable on the composition effect. Absolute health concentration curve
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Figure 12: Impact of each variable on the composition effect. Relative health concentration curve
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