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Abstract

Which measure of inflation should an active interest rate rule (i.e. a rule where the nominal interest

rate responds more than proportionally to changes in inflation) respond to in order to guarantee a

unique equilibrium whose Minimal State Variable (MSV) representation is learnable in the E-stability

sense proposed by Evans and Honkapohja (2001)? Using a closed economy model with a flexible-price

good and a sticky-price good we find that the measure corresponds to the sticky-price inflation To obtain

this result we analyze separately forward-looking, contemporaneous and backward-looking rules that can

respond to three possible measures of inflation: the flexible-price inflation, the sticky price inflation and

the full-inflation, i.e. a convex combination of the previous two. Although whether the flexible-price good

and the sticky-price good are Edgeworth complements, substitutes or utility separable plays an important

role in the analysis, we find in particular the following. Active forward-looking and contemporaneous rules

that respond to either the flexible-price inflation or the full-inflation are more prone to induce multiple

equilibria and E-instability of the MSV solution. More importantly active backward-looking rules that

react to either the flexible-price inflation or the full-inflation may guarantee a unique equilibrium but in

these cases the MSV solution is not learnable in the E-stability sense. Only responding actively to the

sticky-price inflation seems to be a robust policy recommendation across timings and types of goods, in

order to guarantee a unique and learnable equilibrium.
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1 Introduction

Since the seminal work by Taylor (1993) it has become more common to think about monetary policy

in terms of interest rate rules whereby the government maneuvers the nominal interest rate in response

to inflation and output. Existing works in standard New Keynesian models have found that particular

specifications of these rules may generate aggregate instability in the economy by inducing locally multiple

equilibria, or in other words, local real indeterminacy.1 To avoid this, some of the works have argued that a

government should implement rules that guarantee a unique equilibrium.

Nevertheless this policy prescription is usually derived assuming that agents in the economy can coor-

dinate their actions and learn the equilibria (unique or multiple) induced by the rule. But if agents cannot

learn the unique equilibrium targeted by the rule then there are some rules that although guaranteeing a

unique equilibrium, might not ensure that the economy will reach it.2 Hence a “good” rule should in principle

satisfy at least two criteria: uniqueness and learnability of the equilibrium.

This argument has motivated an important part of the interest rate rules literature that has tried to

disentangle the specific features of a rule that are essential to guarantee a unique and learnable equilibrium.

This part has mainly focused on the timing of the rule and on the degrees of responsiveness to inflation, to

the output gap, and to past interest rates.3 In contrast, the question of which measure of inflation should be

included in the rule has received less attention. This is to some extent surprising if one takes into account

the following two observations.

First, most of the works of the interest rate literature assume that the government targets and responds to

the CPI-inflation. But in the practice of monetary policy, governments may respond to a different measure.

For instance, they may consider measures that exclude significant impacts from terms of trade movements,

changes in energy and food prices or some other prices that are determined in an ad hoc basis.4

Second, in defining this measure there are different characteristics of the prices of the goods included in

this measure that are probably studied and taken into account. One of this characteristics is associated with

the frequency of price changes. This seems to be a relevant characteristic since there is empirical evidence

suggesting that the frequency of price changes differ dramatically across different goods: some prices seldom

1This means that there are rules that open the possibility of having fluctuations in the economy that are mainly driven
by people’s self-fulfilling expectations. To the extent that these fluctuations are usually characterized by a large degree of
volatility in real and nominal macroeconomic aggregates, then a central bank should avoid, in principle, rules that induce
multiple equilibria. See Benhabib et al. (2001), Bernanke and Woodford (1997), Clarida et al. (2000), Carlstrom and Fuerst
(1999) and Woodford (2003), among others.

2 See Bullard and Mitra (2002).
3For works that pursue a determinacy of equilibrium analysis see Batini and Pearlman (2002), Benhabib et al. (2001),

Carlstrom and Fuerst (1999), Dupor (2001) and Levin et al. (2003), among others. For works that pursue a determinacy of
equilibrium analysis in tandem with a learnability analysis see Bullard and Mitra (2002,2003), and Evans and Honkapohja
(2003), among others.

4 See for instance Bernanke et al. (1999) that documents the experiences and lessons of some countries that have adopted
inflation targeting.
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change for some goods, but some prices change very frequently for other goods.5

Based on these observations it seems relevant to answer the following question: if there are different

goods in the economy, some with flexible prices and some with sticky prices, which measure of inflation

should a government respond to in an active interest rate rule in order to guarantee a unique and learnable

equilibrium? We find that the answer to this question is the inflation associated with the sticky-price goods.6

To obtain this answer we use a New Keynesian closed economy general equilibrium model with two types

of goods: a flexible-price good and a sticky-price composite good. We analyze separately forward-looking,

contemporaneous and backward-looking rules that respond more than proportionally to one of the following

measures of inflation: the flexible-price inflation, the sticky price inflation and the full-inflation, i.e. a convex

combination of the previous two.7 We select the measure of inflation utilizing the following specific criteria:

1) the rule must guarantee a unique equilibrium and 2) the Minimal State Variable (MSV) representation of

this unique equilibrium must be learnable in the E-stability sense proposed by Evans and Honkapohja (1999,

2001).8 ,9

Using these criteria we find that rules that respond to the sticky-price inflation are more prone to deliver

a unique and learnable equilibrium than rules that respond to any other measure of inflation (i.e. the full-

inflation and the flexible-price inflation.) In particular, although whether the flexible-price good and the

sticky-price good are Edgeworth complements, substitutes or utility separable plays an important role in

the analysis, we find the following. Forward-looking and contemporaneous rules that respond to either the

flexible-price inflation or the full-inflation are more prone to induce multiple equilibria and E-instability of

the MSV solution. More importantly backward-looking rules that react to either the flexible-price inflation

or the full-inflation may guarantee a unique equilibrium but in these cases the fundamental solution (MSV

representation) is not learnable in the E-stability sense.

Our main finding is to some extent reminiscent of previous results from the optimal monetary policy liter-

ature that recommend to target the inflation of the good (sector) with the higher degree of price stickiness.10

But our selection criteria are very different.

Our main result is also related to previous contributions by Carlstrom, Fuerst and Ghironi (2004) and

Zanna (2003). Both works analyze, in the contexts of a two-sector models for a closed economy and for a small

5See Bils and Klenow (2004).
6By an active rule we mean a rule that in response to a one percent increase in inflation, increases the nominal interest rate

by more than one percent. In this sense it satisfies the Taylor Principle.
7The CPI-inflation can be understood as a full-inflation measure where the weights are associated with the shares of each

good determined by the households preferences.
8Henceforth we will use the terms “learnability”, “E-stability” and “expectational stability” interchangeably in this paper.
9Evans and Honkapoja (1999, 2001) have argued that a unique equilibrium is not “fragile” if it is learnable in the sense of

E-stability. They assume that agents in the model do not have rational expectations but are endowed with a mechanism to

form forecasts using recursive learning algorithms and previous data from the economy. Then they develop some E-stability

conditions which govern whether or not a given rational expectations equilibrium is aymptotically stable under least squares

learning.
10 See Aoki (2001) and Mankiw and Reis (2002) among others.
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open economy respectively, whether it is relevant for equilibrium determinacy which measure of inflation is

included in an active rule. The first work assumes that labor is immobile and the degree of nominal price

stickiness can vary across the sectors. It shows that a contemporaneous rule that responds actively and solely

to the sticky-price inflation of one of the sectors is sufficient to guarantee a unique equilibrium in the whole

economy. The second work shows that in order to avoid real indeterminacy problems the rule should respond

to the sticky-price (non-traded) inflation instead of to the flexible-price (traded) inflation. Nevertheless both

works do not consider the learnability of equilibrium criterion as we do in the present paper.

In addition and in comparison to the work by Carlstrom et al., our results suggest that assuming that

all the prices in the economy are sticky, even in a different degree, is not an innocuous assumption. As

mentioned before we find that the extreme asymmetry in terms of price adjustment, i.e. flexible prices vs

sticky prices, has important consequences for the dynamics of the economy. In particular an active rule

that responds, directly or indirectly, to the flexible-price inflation can make the rule more prone to induce

multiple equilibria. In this sense our results have at least two important implications from the perspective

of the determinacy and learnability of equilibrium analyses. First they imply a preference to a particular

measure of inflation. Second they suggest that the Taylor Principle of increasing the nominal interest rate

proportionally more than the increase in inflation does not necessarily apply at the sectoral level as well as

at the aggregate level.

The remainder of this paper is organized as follows. Section 2 presents the closed economy set-up with

its main assumptions. Section 3 pursues the determinacy of equilibrium and learning (E-stability) analyses

for forward-looking, contemporaneous and backward-looking rules that respond exclusively to one of the

previously mentioned measures of inflation. Finally Section 4 concludes.

2 The Model

In this section we develop a simple infinite-horizon closed economy model. The economy is populated by

a continuum of identical household-firm units and a government. Before we describe in detail the behavior

of these agents we state a few general assumptions and definitions.

There are two consumption goods: a flexible-price good and a composite sticky-price good whose prices

are denoted by PF
t and PS

t respectively. The relative price of the flexible-price good to the sticky price

(composite) good is defined as qt = PF
t /PS

t and its dynamics is determined by

qt = qt−1

µ
πFt
πSt

¶
(1)

where πFt = PF
t /PF

t−1 is the gross flexible-price inflation and πSt = PS
t /P

S
t−1 is the gross sticky-price inflation.
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2.1 The Government

The government issues two nominal liabilities: money, Mg
t , and a domestic bond, B

g
t , that pays a gross

nominal interest rate Rt. It also makes transfers to household-firm units, PF
t T g

t , pays interest on its debt,

(Rt − 1)Bg
t , and receives revenues from seigniorage. By letting ngt = mg

t + bgt =
Mg
t +B

g
t

PF
t

denote the real

government liabilities at the beginning of period we can write the government budget constraint in real

terms as ngt =
Rt−1
πFt

ngt−1 −
h
(Rt−1−1)

πFt
mg
t−1 − T g

t

i
.

We assume that the government follows a generic Ricardian fiscal policy. It picks the path of transfers,

T g
t , in order to satisfy the intertemporal version of its budget constraint in conjunction with the transversality

condition lim
t→∞

ngt
t−1

j=0
(Rj/πFj+1)

= 0.

We define monetary policy as an interest rate feedback rule whereby the government sets the gross

nominal interest rate, Rt, as an increasing and continuous function, ρ (.), of the deviation of inflation with

respect to a target. That is

Rt = R̄ρ
³
Et

³πt+j
π̄

´´
with j = −1, 0, 1; and ρ (1) = 1 (2)

where π̄ and R̄ correspond to the inflation and the nominal interest rate target that the government wants

to achieve.11 We will consider three different timings. In other words the rule may be forward-looking

responding to the deviation of the expected inflation with respect to the target, Et

¡πt+1
π̄

¢
; contemporaneous,

when the rule reacts to the current inflation deviation,
¡
πt
π̄

¢
, or backward-looking, when it responds to the

past inflation deviation
¡πt−1

π̄

¢
. The general measure of inflation that we consider in (2) corresponds to

πt = ωπFt + (1− ω)πSt (3)

where ω ∈ [0, 1] is the weight that the government puts on the flexible-price inflation. We will consider
three possible measures: the full-inflation, when ω ∈ (0, 1), the flexible-price inflation, when ω = 1, and the

sticky-price inflation, when ω = 0.

To conclude the description of monetary policy we assume that the government responds aggressively

to inflation. In terms of Leeper (1991) we assume that the rule is “active” satisfying the following Taylor

Principle.

Assumption 0. The rule is active: ρπ = ρ0 (1) > 1

Loosely speaking this means that in response to a one percent increase in inflation the government will

raise the nominal interest by more that one percent.

11For simplicity we also assume that these targets correspond to the steady-state levels of these variables.
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2.2 The Household-Firm Unit

There exists a large number of identical and infinitely lived household-firm units, each of whom derives utility

from consuming, not working and liquidity services of money. The preferences of the representative unit are

described by

E0

∞X
t=0

βt[U(cFt , c
S
t ) +H(hFt ) + L(hSt ) + J(mt)] (4)

where E0 is the expectations operator conditional on the set of information available at time 0, β ∈ (0, 1)
represents the subjective discount factor, cFt and cSt denote consumptions of a flexible-price good and a

sticky-price good respectively, hFt and h
S
t denote labor efforts required to produce these goods and mt =

Mt

PF
t

corresponds to real money balances measured with respect to the flexible price.

By the specification in (4) it is clear that we assume separability in the single period utility function

among consumption, real money balances and labor. By doing this we remove the distortionary effects of

transactions money demand.12 More formally we assume the following.

Assumption 1. The functions in (4) satisfy: a) U(.), H(.), L(.) and J(.) are continuous and twice

differentiable; b) U(.), is strictly increasing (UF ≡ dU
dcFt

> 0, US > 0) and strictly concave (UFF < 0,

USS < 0) and UFS = USF , USS − USF
US
UF

< 0 and UFFUSS − (UFS)2 > 0; c) H(.) and L(.) are strictly

decreasing (Hh ≡ dH
dhFt

< 0, Lh ≡ dL
dhSt

< 0) and concave (Hhh ≤ 0, Lhh ≤ 0); and d) J(.) is strictly

increasing (Jm > 0) and strictly concave (Jmm < 0).

The particular assumptions about the instantaneous utility function of consumption, U(., .), guarantee

that both goods are normal. But notice that we are not imposing any sign restrictions in the cross derivatives

UFS and USF . We assume that they are equal but in this paper we will consider three cases: cFt and cSt can

be Edgeworth complements ( UFS > 0), Edgeworth substitutes (UFS < 0) or they may be utility separable

(UFS = 0).13

The representative household-firm unit is engaged in the production of the flexible-price good and the

sticky-price good by employing labor from a perfectly competitive market. The technologies are described

by

yFt = zFt f
³
h̆Ft

´
and ySt = zSt g

³
h̃St

´
12This assumption also allows us to write the real money balances that enter the utility of the agent in terms of the price of

the flexible-price good, mt =
Mt

PFt
, without consequences for our results.

13For instance the commonly used utility function

U(cFt , c
S
t ) =

(αp)
1
a cFt

a−1
a + (1− αp)

1
a cSt

a−1
a

a
a−1 (1−σ)

− 1
1− σ

with αp ∈ (0, 1) and σ, a > 0 satisfies Assumption 1a)-b) and the sign of UFS is determined by the values of the intratemporal
elasticity of substitution, a, and the intertemporal elasticity of substitution, 1

σ
. Specifically UFS T 0 if and only if 1σ T a.
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where h̆Ft and h̃St denote the labor hired by the household-firm unit for the production of the flexible-price

and the sticky-price goods respectively; zFt and zSt are productivity shocks whose logarithms, ẑ
F
t = ln(z

F
t )

and ẑSt = ln(z
S
t ), follow stationary AR(1) stochastic processes:

ẑFt = φF ẑFt−1 + ξFt ẑSt = φS ẑSt−1 + ξSt (5)

with φF , φS ∈ (0, 1) and ξFt ∼ N (0, (σF )2) and ξSt ∼ N (0, (σS)2). Technology shocks are the only source
of fundamental intrinsic uncertainty and they are not correlated. The description of the technologies is

completed by the following assumption.

Assumption 2. f(.) and g(.) are continuous and twice differentiable, strictly increasing ( df

dh̆Ft
≡ fh > 0,

gh > 0), and strictly concave ( fhh < 0 and ghh < 0.)

The market for the flexible-price good is perfectly competitive.14 In contrast there is imperfect compe-

tition in the market of the sticky-price good. The consumption of the stick-price good, cSt , is assumed to

be a composite good made of a continuum of intermediate differentiated goods. The aggregator function

is described of the Dixit-Stiglitz type. We assume that each household-firm unit is the monopolistic pro-

ducer of one variety of sticky-price intermediate goods. The demand for the intermediate good is of the

form CS
t d
³
P̃S
t

PS
t

´
satisfying d (1) = 1 and d0 (1) = −µ, with µ > 1 where CS

t denotes the level of aggregate

demand for the sticky-price good, P̃S
t is the nominal price of the intermediate sticky-price good produced

by the household-firm and PS
t is the price of the composite sticky-price good. The household-firm unit that

behaves as a monopolist in the production of the sticky-price good, sets the price of the good it supplies,

P̃S
t , taking the level of aggregate demand for the sticky-price good as given. Specifically the monopolist is

constrained to satisfy demand at that price. That is

zSt g
³
h̃St

´
≥ CS

t d

Ã
P̃S
t

PS
t

!
. (6)

The way in which we introduce nominal price rigidities for the intermediate sticky-price good follows

Rotemberg (1982). Then we assume the household-firm unit faces a resource cost of the type γ
2

µ
P̃S
t

P̃S
t−1
− π̄S

¶2
,

reflecting that it is costly having the price of the good that it sets grow at a different rate from π̄S , the

steady-state level of the gross sticky-price inflation rate.

The representative household-firm unit can invest in a bond issued by the government, Bt, that pays

a gross nominal interest rate, Rt. This representative unit also receives a wage income from working,

Wt(h
F
t +hSt ), transfers from the government T

g
t and dividends from selling the different consumption goods.

14Our results do not hinge on this assumption. The crucial assumption is that there are some goods that have flexible prices.
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Then its flow budget constraint in units of the flexible-price good can be written as

nt ≤ Rt−1
πFt

nt−1 +
(1−Rt−1)

πFt
mt−1 + wt(h

F
t + hSt ) + T g

t +∆t − cFt −
cSt
qt

(7)

where nt = mt + bt, bt =
Bt
PF
t
, wt =

Wt

PF
t
and

∆t =

·
zFt f

¡
ȟFt
¢− Wt

PF
t

ȟFt

¸
+
1

qt

 P̃S
t

PS
t

CS
t d

Ã
P̃S
t

PS
t

!
− wtqth̃

S
t −

γ

2

Ã
P̃S
t

P̃S
t−1
− π̄

!2 . (8)

Equation (7) says that the end-of-period real financial domestic assets (money plus domestic bond) can be

worth no more than the real value of financial domestic wealth brought into the period plus the sum of wage

income, transfers and dividends (∆t) net of consumption. The dividends described in (8) correspond to the

difference between sale revenues and costs from selling the flexible-price good and the sticky-price good.

Besides the budget constraint the household-firm unit is subject to an Non-Ponzi game condition

lim
t→∞

nt
t−1Q
j=0

¡
Rj/πFj+1

¢ ≥ 0. (9)

The representative household-firm unit chooses the set of processes {cFt , cSt , hFt , hSt , ȟFt , h̃St , P̃S
t , mt,

nt}∞t=0 in order to maximize (4) subject to (6)-(9), given the initial condition n−1 and the set of processes

{Rt, PF
t , P

S
t , Wt, T

g
t , C

S
t , z

F
t , z

S
t }. Note that since the utility function specified in (4) implies that the

preferences of the agent display non-sasiation then constraints (7) and (9) both hold with equality. The Ap-

pendix contains a detailed derivation of the necessary conditions for optimization. Imposing these conditions

along with the market clearing conditions in the labor market (hFt = ȟFt and hSt = h̃St ), the equilibrium

symmetry (P̃S
t = PS

t and h̃St = hSt ), the market clearing conditions for the sticky-price good

cSt = CS
t = zSt g

¡
hSt
¢− γ

2

¡
πSt − π̄

¢2
(10)

and the flexible-price good

cFt = zFt f
¡
hFt
¢

(11)

and the definitions πSt = PS
t /P

S
t−1, d(1) = 1 and d0(1) = −µ we obtain

− Hh(h
F
t )

UF (cFt , c
S
t )
= zFt fh

¡
hFt
¢

(12)
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UF (c
F
t , c

S
t ) = βEt

·
UF (c

F
t+1, c

S
t+1)Rt

πFt+1

¸
(13)

US(c
F
t , c

S
t ) = βEt

·
US(c

F
t+1, c

S
t+1)Rt

πSt+1

¸
(14)

and

Et

·
US(c

F
t+1, c

S
t+1)(π

S
t+1 − π̄S)πSt+1

US(cFt , c
S
t )

¸
=
(πSt − π̄S)πSt

β
− µcSt

βγ

µ
µ− 1
µ
−mcSt

¶
(15)

where mcSt = − Lh(h
S
t )

US(cFt ,c
S
t )z

S
t gh(hSt )

corresponds to the marginal cost of producing the sticky-price good.

The interpretation of these equations is straightforward. Condition (12) makes the marginal rate of

substitution between labor (assigned to the production of the flexible-price good) and consumption of the

flexible-price good equal to the marginal product of labor in the production of the flexible-price good.

Equations (13) and (14) are the standard Euler equations for consumption of the flexible-price good and

consumption of the sticky-price good. And equation (15) corresponds to the augmented Phillips curve for

the sticky-price inflation.15

2.3 The Equilibrium

We are ready to provide a definition of the type of equilibrium in this economy that we are interested in

studying.

Definition 1 Given the inflation target, π̄ and the exogenous stochastic processes
©
zFt , z

S
t

ª∞
t=0

, a symmetric

equilibrium is defined as a set of stochastic processes {cFt , cSt , hFt , hSt , πFt , πSt , πt, Rt}∞t=0 satisfying a)
the market clearing conditions for the sticky-price good and the flexible-price good, (11) and (10); b) the

intratemporal efficient condition (12); c) the Euler equations for consumption of the flexible-price good and

consumption of the sticky-price good, (13) and (14); d) the augmented Phillips curve, (15), e) the interest

rate rule (2); and f) definition (3).

Note that this definition ignores the budget constraint of the government and its transversality condition.

The reason is that by following a Ricardian fiscal policy the government guarantees that the intertemporal

version of its budget constraint in conjunction with its transversality condition will be always satisfied. In

addition real money balances do not appear in the definition. This is because monetary policy is described

as an interest rate rule and real balances enter in the utility function in a separable way. In fact once we

solve for {cFt , cSt , hFt , hSt , πFt , πSt , πt, Rt}∞t=0 it is possible to retrieve the set of stochastic processes {qt,
mt, bt, wt, mcSt , λt}∞t=0 using (1), (7), and equations (52), (56), (57), and (59) that are presented in the
Appendix.

15We would have derived a similar augmented Phillips curve if we had follow Calvo’s (1983) approach.
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2.4 The Log-linearized Economy

In order to pursue the determinacy of equilibrium analysis and the learnability analysis we log-linearize

the system of equations that describe the dynamics of this economy around a steady state {c̄F , c̄S , h̄F , h̄S ,
π̄F , π̄S , π̄, R̄}. In the Appendix we characterize this steady state.
Log-linearizing the equations of Definition 1 around the steady-state and manipulating them yields

c̄F ĉFt = αc̄S ĉSt + κ1ẑFt (16)

R̂t −Et

³
π̂Ft+1

´
= θ

£
Et

¡
ĉSt+1

¢− ĉSt
¤
+ κ2ẑFt (17)

ĉSt = Et

¡
ĉSt+1

¢− �
h
R̂t −Et

³
π̂St+1

´i
− κ3ẑFt (18)

π̂St = βEt(π̂
S
t+1) + βδĉSt + βκ4ẑSt + βκ5ẑFt (19)

R̂t = ρπEtπ̂t+j with j = −1, 0, 1 (20)

π̂t = ωπ̂Ft + (1− ω)π̂St (21)

where

α = − (fh)
2 USF

fhhUF + (fh)
2 UFF +Hhh

(22)

� = − US
(αUFS + USS) c̄S

θ = −(αUFF + USF ) c̄
S

UF
(23)

κ1 =
c̄FHhh − (fh)2 UF + fhhUF c̄

F

fhhUF + (fh)
2 UFF +Hhh

κ2 =
κ1UFF (1− ϕF )

UF
κ3 =

κ1UFS(1− ϕF )

(αUFS + USS) c̄S
(24)

δ =
(µ− 1)(c̄S)2

βγπ̄2

"
Lhh
Lhgh

− ghh

(gh)
2 +

1

�c̄S

#
(25)
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κ4 =
(µ− 1)c̄S
βγπ̄2

·µ
ghh
gh
− Lhh

Lh

¶
c̄S

gh
− 1
¸

κ5 = −(µ− 1)c̄
S

βγπ̄2

µ
κ1UFS
US

¶
(26)

where for all the variables x̂t = log(xtx̄ ) and all the derivatives of the functions U(., .), H(.), L(.), f(.) and

g(.) are evaluated at the steady state. To complete the system of log-linearized equations that describes the

dynamics of the economy we have to consider the processes (5).

In addition for subsequent analysis it is useful to characterize the sign of some of the coefficients of the

log-linearized system. The following Lemma accomplishes this goal.

Lemma 1 Under Assumptions 1 and 2 it follows that a) α T 0 if and only if USF T 0; b) � > 0; c) θ T 0 if
and only if USF S 0; and d) δ > 0

Proof. See Appendix.

We are now ready to pursue the determinacy and learnability of equilibrium analyses.

3 The Determinacy and Learning of Equilibrium Analyses

In this section we will pursue the determinacy and learnability of equilibrium analyses for three different

rules (forward-looking, contemporaneous and backward-looking rules) that may react to different measures

of inflation. The reason of pursuing determinacy of equilibrium and learnability analyses for these rules lies

on two intertwined arguments.

The determinacy of equilibrium analysis will help us to discard rules that may generate aggregate in-

stability in the economy by inducing multiple equilibria. Nevertheless even if we only consider rules that

guarantee a unique equilibrium it does not follow necessarily that they will lead the economy to the targeted

equilibrium. In particular it is possible that agents may not be able to coordinate their actions and learn the

unique equilibrium (unique or multiple) induced by these rules. Hence a determinacy of equilibrium analysis

for interest rate rules should in principle be accompanied by a learnability of equilibrium analysis in order

to characterize rules that guarantee a unique and learnable equilibrium. To pursue both analyses we will

focus on (5) and (16)-(21) and apply the following methodology.

3.1 The Methodology

For the determinacy of equilibrium analysis we will apply the results from Blanchard and Kahn (1980)

that help to characterize whether a rational expectations linear system of equations such as

x̂t = ΛEt(x̂t+1) + Ξût (27)
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has a unique equilibrium, multiple equilibria or no equilibrium, where x̂t is a s × 1 vector of endogenous
variables, ût is a s× 1 vector that contains exogenous variables and forecast errors of endogenous variables,
and Λ and Ξ are conformable matrices of constants. As is well known the analysis consists on comparing

the number of roots of the matrix Λ that lie inside the unit circle with the number of non-predetermined

variables. Then for the determinacy of equilibrium analysis of a specific rule that responds to a particular

measure of inflation we only need to reduce the log-linearized system described by (16)-(21) and (5) to the

representation in (27) in order to apply Blanchard and Kahn’s results.16

To pursue the learnability analysis we follow Evans and Honkapohja (1999, 2001) and assume that agents

in our model no longer are endowed with rational expectations. Instead they have adaptive rules whereby

agents form expectations using recursive least squares updating and data from the system. In particular we

will focus on the concept of E-stability as a criterion of learnability of an equilibrium. That is, an equilibrium

is learnable if it is E-stable.

We will concentrate on this concept since, for models that display a unique equilibrium, Marcet and

Sargent (1989) and Evans and Honkapohja (1999, 2001) have shown that under some general conditions,

the notional time concept of expectational stability of a rational expectations equilibrium governs the local

convergence of real time adaptive learning algorithms. This implies that under E-stability, recursive least-

squares learning is locally convergent to the rational expectations equilibrium.

To define the concept of E-stability we proceed to explain the methodology proposed by Evans and

Honkapohja (1999, 2001). Consider the model

ŷt = η +ΩEtŷt+1 + Γŷt−1 +Ψẑt and ẑt = Φẑt−1 + ξt (28)

where ŷt is a s× 1 vector of endogenous variables, ẑt is a s× 1 vector of exogenous variables which follows
a stationary VAR whose s × 1 vector of shocks consists of white noise terms, and η, Ω, Γ, Ψ, and Φ are

conformable matrices of constants. In addition Et denotes in general (non-rational) expectations.17 Next,

assume that agents follow a Perceived Law of Motion (PLM) that in the case of real determinacy corresponds

to the fundamental solution or Minimal State Variable (MSV) representation18

ŷt = k + P ŷt−1 +Qẑt (29)

where k, P, Q are conformable vectors and matrices and are to be derived by the method of undetermined

coefficients. Iterating forward this law of motion and using it to eliminate all the forecasts (Etŷt+1 =

16 See also Farmer (1999).
17We use the notation Et to denote both rational expectations in the determinacy of equilibrium analysis and possibly

non-rational expectations in the learnability analysis.
18 See McCallum (1983) and Uhlig (1997).
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k + Pŷt +QΦẑt) in the model specified in (28) we can derive the implied Actual Law of Motion (ALM)

ŷt = kA + PAŷt−1 +QAẑt,

which in tandem with (29) defines the T-mapping T (k, P,Q) = (kA, PA, QA). The fixed points of this

mapping correspond to the rational expectations equilibrium.

We say that an equilibrium described by the MSV representation is E-stable if the T-mapping is stable

at the equilibrium in question. More formally a fixed point of the T-mapping is E-stable provided that the

differential equation
d(k, P,Q)

dτn
= T (k, P,Q)− (k, P,Q) (30)

is locally asymptotically stable at that particular fixed point, where τn is defined as the “notional” time.

We proceed to derive the E-stability conditions of the system (28). Consider the ALM of this system

which corresponds to

ŷt = (I −ΩP )−1 [η +Ωk + Γŷt−1 + (ΩQΦ+Ψ)ẑt]

where I is the identity matrix. Using this ALM and the PLM in (29) we find the T-Mapping

T (k, P,Q) = (kA, PA, QA) = [(I −ΩP )−1(η +Ωk), (I −ΩP )−1Γ, (I −ΩP )−1(ΩQΦ+Ψ)] (31)

whose fixed point correspond to the rational expectation equilibrium and can be used to determine the

coefficients matrices k̄, P̄ , and Q̄ of the MSV solutions. That is k̄, P̄ , and Q̄ are the solutions to

(I −ΩP −Ω)k = η ΩP 2 − P + Γ = 0 and (I −ΩP )Q−ΩQΦ = Ψ

Using (31) the “E-stability” conditions under which the differential equation (30) is locally asymptotically

stable are derived and stated in Proposition 10.3 in Evans and Honkapohja (2001). They basically say that

an MSV solution (29) to the system (28) is E-stable if all the eigenvalues of the matrices

DTk = (I −ΩP̄ )−1Ω DTP =
£
(I −ΩP̄ )−1Γ¤0 ⊗ [(I −ΩP̄ )−1Ω] and DTQ = Φ

0 ⊗ [(I −ΩP̄ )−1Ω]
(32)

evaluated at k̄, P̄ , and Q̄ have real parts less than one. On the contrary the MSV solution is not E-stable if

any of the eigenvalues has real part larger than one.

A fundamental part in the learnability analysis consists of making explicit what agents know when they

form their forecasts. In the E-stability analysis literature it is common to assume that when agents form

their expectations Etŷt, they do not know ŷt. In this paper this assumption may be inconsistent with the
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assumptions that we use to derive the equations of the model.19 Henceforth for the learnability analysis we

will assume that when forming expectations agents know ŷt.

To summarize, in order to determine whether a specific rule that responds to a particular measure of

inflation induces a learnable MSV representation of the equilibrium we proceed as follows. First we reduce

the log-linearized version of the economy described by (16)-(21) and (5) to a system similar to (28). Then

we calculate the MSV solution of this system and check if all the eigenvalues of the matrices in (32) have

real parts less than one.

3.2 Forward-Looking Rules

We start our analysis by studying rules that react to one-period ahead (expected) inflation, i.e. forward

looking rules. Our analysis is motivated by the estimates of these rules provided by Clarida et al. (1998,

2000) and Corbo (2000) for industrialized and developing economies. Specifically we focus on rules whose

log-linear representation corresponds to

R̂t = ρπEtπ̂t+1 with ρπ > 1. (33)

Using equations (5), (16)-(19), (21) and (33) we obtain the system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (34)

where ŷt = [π̂
S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = [0, 0]0,

Ω =

 β
h
1 + δ�(1−ρπ)

(1−τωρπ)
i

βδ

(1−ρπ)�
(1−τωρπ) 1

 , (35)

Φ =

 φF 0

0 φS

 , and the form of Ψ is omitted since it is not required for the following analysis. Moreover

τ = 1− θ� (36)

and it is characterized by the following Lemma.

19 In particular notice that for the derivation of the first order conditions of the representative agent we assume that EtP̃S
t = P̃S

t

(or in a symmetric equilibrium EtPS
t = PS

t .) Therefore assuming in the learnability analysis that the agents do not know PS
t

when forming expectations would have some implications for the specification of the model. Specifically it would require to

replace π̂St in (19) with the expectations of π̂
S
t .
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Lemma 2 Under Assumptions 1 and 2 a) if USF = 0 (ĉFt and ĉSt Edgeworth complements or utility

separable) then τ = 1 and b) if USF < 0 (ĉFt and ĉ
S
t are Edgeworth substitutes) then 0 < τ < 1.

Proof. See Appendix.

The MSV solution of (34) corresponds to

ŷt = k̄ + Q̄ẑt where k̄ = 0 and Q̄ solves Q−ΩQΦ = Ψ. (37)

Using this solution and (5), (16), (17), (21), and (33) we can find the set of processes {ĉFt , π̂Ft , π̂t, Rt}.
We start by analyzing rules that respond to the full-inflation defined by (21) with ω ∈ (0, 1). The

following Proposition summarizes the main results . To save some space we state the results of the de-

terminacy of equilibrium analysis together with the results from the learning analysis. Nevertheless from

our previous description of the methodology, it should be clear that the determinacy analysis is pursued

under the assumption of rational expectations whereas the learning analysis consider possibly non-rational

expectations.

Proposition 1 Consider the system defined in (34). Let ρωπ =
βδ�+2(1+β)

βδ�+2(1+β)τω where ρ
ω
π > 0, and assume that

the government follows an active forward-looking rule, R̂t = ρπEtπ̂t+1 with ρπ > 1, that responds solely to

full-inflation, π̂ = ωπ̂Ft + (1− ω)π̂St with ω ∈ (0, 1).

a) Assume USF ≤ 0 (ĉFt and ĉSt are either Edgeworth substitutes or utility separable). For any

ω ∈ (0, 1), if 1 < ρπ < ρωπ then there exists a unique rational expectations equilibrium and, under

possibly non-rational expectations, the MSV solution ŷt = k̄ + Q̄ẑt is E-stable.

b) Assume USF > 0 ( ĉFt and ĉSt are Edgeworth complements). For any ω ∈ (0, 1/τ), if 1 <

ρπ < ρωπ then there exists a unique rational expectations equilibrium and, under possibly non-rational

expectations, the MSV solution ŷt = k̄ + Q̄ẑt is E-stable.

Proof. See the Appendix.

Proposition 1 says that conditions under which active forward-looking rules deliver a unique and learnable

equilibrium depend not only on the interest rate response coefficient to inflation, but also on the weight ω

that the government puts on the flexible-price inflation to construct the full-inflation, and on whether ĉFt

and ĉSt are Edgeworth substitutes, complements or utility separable.

The importance of ω can be grasped by realizing that the threshold ρωπ is a decreasing function of ω.Which

means that as the government puts more weight on the flexible-price inflation then the range 1 < ρπ < ρωπ

under which an active forward-looking rule will deliver a unique and learnable equilibrium will be reduced.

In fact it is possible to prove that as long as ρπ > ρωπ then the forward-looking rule will always deliver
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multiple equilibria.20 This observation has important consequences for the performance of forward-looking

rules when ĉFt and ĉSt are either Edgeworth complements (USF > 0) or utility separable (USF = 0). To

understand this we can study thoroughly the properties of the function ρωπ and construct Figure 1.

The top, middle, and bottom panels of this Figure correspond to the cases when the goods are Edgeworth

substitutes, utility separable and Edgeworth complements, respectively. These panels show the combinations

of ρπ and ω for which active forward-looking rules that respond to full inflation will deliver a unique and

learnable equilibrium (real determinacy and E-stability) as well as the combinations for which there exist

multiple equilibria (real indeterminacy). Within the regions for which there exist multiple equilibria we also

characterize whether the MSV solution is E-stable or E-unstable. In the figures “D” and “I” stand for real

determinacy (unique equilibrium) and real indeterminacy (multiple equilibria) respectively. Whereas “ES”

stands for E-stable and “EU” for E-unstable.

Starting from the bottom panel, that corresponds to the case in which ĉFt and ĉSt are Edgeworth com-

plements (USF > 0), we can observe the following. Active forward-looking rules, satisfying ρπ > 1, will

always lead to real indeterminacy either for ω ∈ (0, 1τ ) and ρπ > ρωπ or for ω > 1
τ and any ρπ > 1. Only

rules satisfying 1 < ρπ < ρωπ and ω ∈ (0, 1τ ), as stated in part b) of Proposition 1), will deliver a unique and
learnable equilibrium. Now consider the middle panel associated with the case in which ĉFt and ĉ

S
t are utility

separable (USF = 0). In this case the region of real determinacy and E-stability increases with respect to

the previous case of Edgeworth complements. Nevertheless the range 1 < ρπ < ρωπ under which there exist

real determinacy and E-stability still decreases as the weight ω increases. In fact for ω very close to one we

can conclude that any active rule with ρπ > 1 will induce multiple equilibria.

Finally in the top panel, associated with the case when ĉFt and ĉSt are Edgeworth substitutes (USF < 0),

we can see that the problems of real indeterminacy seem to subside. Although it is still true that the region

of real determinacy and E-stability characterized by part a) of Proposition 1 decreases as ω increases.

The dependence of these results on ω suggests that it is important to study active forward-looking rules

in the extreme cases when ω = 1 and ω = 0. According to (21) these cases correspond to react exclusively to

either the flexible-price inflation, π̂F , or the sticky-price inflation, π̂S . By studying these two cases we will

be also able to provide an economic intuition of the results from Proposition 1 and Figure 1.

The following Proposition summarizes the determinacy of equilibrium and learnability results for an

active rule that responds solely to the flexible-price inflation.

Proposition 2 Consider the system defined in (34) evaluated at ω = 1. Let ρ1π =
βδ�+2(1+β)

βδ�+2(1+β)τω where

ρ1π > 0, and assume that the government follows an active forward-looking rule that responds to the flexible-

price inflation (π̂F ) and is described by R̂t = ρπEtπ̂
F
t+1 with ρπ > 1.

20Results are available from the authors upon request.
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Figure 1: Forward-looking rules responding to full-inflation. This Figure shows the possible combinations
of the interest rate response coefficient (ρπ) and weight on the flexible-price inflation (ω) under which there
is real determinacy (D) or real indeterminacy (I). It also shows the combinations of these parameters under
which the MSV solution is E-stable (ES) or E-unstable (EU). The top, middle and bottom panels corresponds
to the cases of Edgeworth substitutes (USF < 0), (USF = 0) and complements (USF > 0).
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a) Assume USF < 0 ( ĉFt and ĉSt are Edgeworth substitutes). If 1 < ρπ < ρ1π then there exists

a unique rational expectations equilibrium and, under possibly non-rational expectations, the MSV

solution ŷt = k̄ + Q̄ẑt is E-stable.

b) Assume USF ≥ 0 ( ĉFt and ĉSt are either Edgeworth complements or utility separable). If ρπ > 1

then there exist multiple rational expectations equilibria and, under possibly non-rational expectations,

the MSV solution ŷt = k̄ + Q̄ẑt is E-unstable.

Proof. See the Appendix.

The results of Proposition 2 show that conditions under which active forward-looking rules that respond

exclusively to the flexible-price inflation deliver a unique and learnable equilibrium depend strongly on

whether are ĉFt and ĉ
S
t are Edgeworth substitutes, Edgeworth complements or utility separable. In particular

when ĉFt and ĉSt are either Edgeworth complements or utility separable, then these rules will always induce

aggregate instability by generating multiple equilibria. More interestingly even if we focus on the MSV

solution, we find that this representation is never E-stable.

To understand this real indeterminacy result it is useful to derive the following equation from (16)-(18),

(20) and (21) evaluated at ω = 1,

Etπ̂
F
t+1 =

µ
1− τ

1− τρπ

¶
Etπ̂

S
t+1 (38)

where we have ignored the terms associated with ẑFt . With this equation and equations (18) and (19), it

is possible to construct a self-fulfilling equilibrium when ĉFt and ĉSt are either Edgeworth complements or

utility separable. But this is not feasible when they are substitutes.

Consider the cases of Edgeworth complementarity or separability first and assume that people expect

a higher sticky-price inflation. Since ĉFt and ĉSt are Edgeworth complements or utility separable then by

Lemma 2 we know that τ = 1. If in addition the rule is active ρπ > 1, then by (38) we see that higher

expectations of the sticky price-inflation will be associated with higher expectations of the flexible price

inflation satisfying Etπ̂
F
t+1 < Etπ̂

S
t+1. But this means that if the rule responds actively and exclusively to the

flexible-price inflation R̂t = ρπEtπ̂
F
t+1 then the government in response to people’s expectations of a higher

sticky-price inflation can decrease the real interest rate measured with respect to the expected sticky-price

inflation, R̂t − Etπ̂
S
t+1. This stimulates consumption of the sticky-price good (see 18) and as a response to

this, firms raise the price of the sticky-price good inducing a higher sticky-price inflation (see 19.) Then the

original expectations of a higher sticky-price inflation are validated.

Next consider the case when ĉFt and ĉSt are Edgeworth substitutes. From Lemma 2 we know that

0 < τ < 1. If in addition the rule is active ρπ > 1 and satisfies ρπ < 1
τ , then by (38) we see that higher

expectations of the sticky price-inflation will be associated with higher expectations of the flexible price

inflation but in this case we have that Etπ̂
F
t+1 > Etπ̂

S
t+1. Since the rule responds actively (ρπ > 1) and
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exclusively to the flexible-price inflation R̂t = ρπEtπ̂
F
t+1, then the government will increase the real interest

rate measured with respect to the expected sticky-price inflation, R̂t −Etπ̂
S
t+1. Consumption of the sticky-

price good declines (see 18) and as a response to this firms decrease the price of the sticky-price good inducing

a lower sticky-price inflation (see 19.) Then the original expectations of a higher sticky-price inflation are

not validated.

In a similar way it is possible to grasp the intuition of why the MSV solution is not learnable (E-stable)

when ĉFt and ĉSt are Edgeworth complements or utility separable whereas it is learnable if ĉ
F
t and ĉSt are

Edgeworth substitutes. In order to do so we use (38) and the rule R̂t = ρπEtπ̂
F
t+1 to derive the real interest

rate measured with respect to the expected sticky-price inflation

R̂t −Etπ̂
S
t+1 = −

µ
1− ρπ
1− τρπ

¶
Etπ̂

S
t+1 (39)

Consider the case in which they are Edgeworth complements or utility separable (τ ≥ 1) and recall

that ρπ > 1. According to (39) a deviation of people’s expected sticky-price inflation from the rational

expectations value will always lead to a decrease in the real interest rate measured with respect to the

expected sticky-price inflation. But this will stimulate consumption of the sticky-price good by (18) which in

turn will increase the sticky-price inflation by (19.) Over time this mechanism leads to upward revisions of

both the expected sticky-price inflation and the expected consumption of the sticky-price goods. Therefore

the policy of targeting actively the flexible-price inflation will not off-set the initial deviation from the rational

expectations equilibrium. It will move the economy further away from it.

On the contrary assume that the goods are Edgeworth substitutes. In this case 0 < τ < 1. Using (39) we

can see that a deviation of people’s expected sticky-price inflation from the rational expectations value may

induce an increase in the real interest rate measured with respect to the expected sticky-price inflation, as

long as 1 < ρπ < 1
τ . But this will decrease consumption of the sticky-price good by (18) which in turn will

decrease the sticky-price inflation by (19). Over time this mechanism leads to downward revisions of both the

expected sticky-price inflation and the expected consumption of the sticky-price goods. Hence in this case

the policy of targeting actively the flexible-price inflation is able to lead the original people’s expectations

towards the the rational expectations value.

We continue studying rules that respond to the sticky-price inflation. In contrast to the previous results,

we show that the results for these rules do not depend on the joint characteristics of ĉFt and ĉSt .

Proposition 3 Consider the system defined in (34) with ω = 0. Let ρ0π = 1 + 2(1+β)
βδ� and assume that

the government follows an active forward-looking rule that responds to the sticky-price inflation (π̂S) and is

described by R̂t = ρπEtπ̂
S
t+1 with ρπ > 1. Regardless of whether USF T 0 (whether ĉFt and ĉSt are Edgeworth

substitutes, complements or utility separable), if 1 < ρπ < ρ0π then there exists a unique rational expectations
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equilibrium and, under possibly non-rational expectations, the MSV solution ŷt = k̄ + Q̄ẑt is E-stable.

Proof. See the Appendix.

It can be also proved that when ρπ > ρ0π then the rule induces multiple equilibria. In fact the results of

Proposition 3 are equivalent to the ones in Bullard and Mitra (2002) and therefore we omit an explanation.

Figure 1 can be also used to understand graphically the results for the analysis of forward-looking rules

that respond to either the flexible-price inflation or the sticky-price inflation. These cases correspond to ω = 1

and ω = 0. From this Figure and regardless of whether ĉFt and ĉSt are Edgeworth substitutes, complements

or utility separable, we can conclude the following. In general forward-looking rules that respond to either

the full-inflation, with ω ∈ (0, 1) or to the flexible-price inflation are more prone to induce multiple equilibria
and E-instability than rules that respond to the sticky-price inflation. We proceed to verify whether this

statement is still valid for contemporaneous rules.

3.3 Contemporaneous Rules

Now we study contemporaneous rules. The motivation for studying these rules stems from empirical

evidence provided by Lubik and Schorfheide (2003) among others. Specifically we focus on rules of the

following type

R̂t = ρππ̂t with ρπ > 1 (40)

and, as before, we start by analyzing rules that respond to the full-inflation defined by (21) with ω ∈ (0, 1).
Using equations (5), (16)-(19), (21) and (40) we obtain the system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (41)

where ŷt = [π̂
F
t , π̂

S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = [0, 0, 0]0,

Ω =


1

τωρπ
+ βδ�(1−ω)

τω − (1−τ)τωρπ
− β

¡
1−ω
ω

¢ ¡
1 + δ�

τ

¢ −βδ(1−ω)
ω

−βδ�
τ β

¡
1 + δ�

τ

¢
βδ

�
τ

�
τ 1

 , (42)

Φ =

 φF 0

0 φS

 and the form of Ψ is omitted since it is not required for the following analysis.

We find that active contemporaneous rules that react to the current full-inflation always deliver real

indeterminacy regardless of whether ĉFt and ĉSt are Edgeworth substitutes, complements or utility separable.

Moreover although the MSV solution maybe learnable when ĉFt and ĉSt are Edgeworth substitutes, it is not
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E-stable when these goods are complements or utility separable, for any ρπ > 1. The following Proposition

formalizes these statements.

Proposition 4 Consider the system defined in (41). Assume that the government follows an active con-

temporaneous rule, R̂t = ρππ̂t with ρπ > 1, that responds solely to full-inflation, π̂ = ωπ̂Ft + (1− ω)π̂St with

ω ∈ (0, 1).

a) Regardless of whether USF T 0 (whether ĉFt and ĉSt are Edgeworth substitutes, complements or

utility separable), there exist multiple rational expectations equilibria.

b)Under possibly non-rational expectations, the MSV solution ŷt = k̄+ Q̄ẑt is E-unstable if USF ≥ 0
(Edgeworth complements or utility separable), and it may be E-stable if USF < 0 (Edgeworth substi-

tutes.)

Proof. See Appendix.

It is surprising that active contemporaneous rules with respect to the full-inflation will always deliver

multiple equilibria. To understand this point it is useful to study rules that respond exclusively to either the

flexible-price inflation or the sticky-price inflation.

The next two Propositions show that the previous results for active contemporaneous rules that respond

to the full-inflation are mainly explained by the fact that by reacting to the full-inflation the government is

indirectly responding to the flexible-price inflation. In particular, we find that regardless of whether ĉFt and

ĉSt are either Edgeworth substitutes, complements or utility separable, an active contemporaneous rule that

responds to the flexible-price inflation will induce multiple equilibria. In addition when ĉFt and ĉ
S
t are either

complements or utility separable then the MSV solution is not learnable. These results are the same as the

ones presented for rules that react to full-inflation.

Proposition 5 Consider the system defined in (41) with ω = 1. Assume that the government follows an

active contemporaneous rule that responds to the flexible-price inflation (π̂F ) described by R̂t = ρππ̂
F
t with

ρπ > 1.

a) Regardless of whether USF T 0 (whether ĉFt and ĉSt are Edgeworth substitutes, complements or

utility separable), there exist multiple rational expectations equilibria.

b) Under possibly non-rational expectations, the MSV solution ŷt = k̄+ Q̄ẑt is E-unstable if USF ≥ 0
(Edgeworth complements or utility separable), and it may be E-stable if USF < 0 (Edgeworth substi-

tutes.)

Proof. See Appendix.
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On the contrary rules that respond to the sticky-price inflation guarantee a unique and learnable equi-

librium. To derive this we cannot use the system (41) with Ω defined in (42) since some entries of Ω are not

well defined when ω = 0. But we can use equations (5), (16)-(19), (21) and the rule R̂t = ρππ̂
S
t to obtain

the new system

ŷt = η +ΩEtŷt+1 +Ψẑt and ẑt = Φẑt−1 + ξt (43)

where ŷt = [π̂
S
t , ĉ

S
t ]
0, ẑt = [ẑFt , ẑSt ]0, ξt = [ξ

F
t , ξ

S
t ]
0, η = [0, 0]0

Ω =

 β(1+δ�)
1+βδ�ρπ

βδ
1+βδ�ρπ

(1−βρπ)�
1+βδ�ρπ

1
1+βδ�ρπ

 , (44)

Φ =

 φF 0

0 φS

 and the form of Ψ is omitted since it is not required for the following analysis. The

following Proposition is based on this system.

Proposition 6 Consider the system defined in (43). Assume that the government follows an active contem-

poraneous rule that responds to the sticky-price inflation (π̂S) and is described by R̂t = ρππ̂
S
t with ρπ > 1.

Regardless of whether USF T 0 (whether ĉFt and ĉSt are Edgeworth substitutes, complements or utility sepa-

rable) there exists a unique rational expectations equilibrium and, under possibly non-rational expectations,

the MSV solution ŷt = k̄ + Q̄ẑt is E-stable.

Proof. See the Appendix.

Our analyses for contemporaneous and forward-looking rules with different measures of inflation have

some important policy implications. First forward-looking and contemporaneous rules that respond to

either the full-inflation or the flexible-price inflation are more prone to deliver real indeterminacy than rules

that respond exclusively to the sticky price inflation. This result is very clear when ĉFt and ĉSt are either

Edgeworth complements or utility separable. More importantly under these assumptions about ĉFt and ĉSt ,

the MSV solution is never learnable for active forward-looking and contemporaneous rules that respond to

the flexible-price inflation. As a consequence of this, the MSV solution is less prone to be learnable for active

forward-looking and contemporaneous rules that respond to the full-inflation.

These results in tandem with the results of Proposition 6 suggest that the measure of inflation that should

be included in a rule is the sticky-price inflation. The natural question that arises is whether this policy

recommendation is still valid for backward-looking rules. We proceed pursuing the analysis of these rules.

21



3.4 Backward-Looking Rules

In this subsection we pursue the determinacy of equilibrium and learning analyses for active backward-

looking rules of the type

R̂t = ρππ̂t−1 with ρπ > 1. (45)

The motivation for studying these rules comes not only from an empirical motivation such as Taylor (1993)

but also from a theoretical motivation. In fact works by Benhabib et al. (2001), Bernanke and Woodford

(1997) and Carlstrom and Fuerst (1999) among others, suggest that backward-looking rules are less prone

to induce local multiple equilibria.

We start our analysis by studying rules that respond exclusively and actively to the full-inflation defined

by (21) with ω ∈ (0, 1). For the determinacy of equilibrium analysis we use equations (5), (16)-(19), (21)

and (45) to obtain the system

x̂t = ΛEtx̂t+1 +Σẑt and ẑt = Φẑt−1 + ξt (46)

where x̂t = [R̂t, π̂
F
t , π̂

S
t , ĉ

S
t ]
0, x̂t = [ẑFt , ẑ

S
t ]
0, ξt = [ξFt , ξ

S
t ]
0, EtR̂t+1 = R̂t+1 since R̂t is a predetermined

variable,

Λ =


0 1

τ
τ−1
τ 0

1
ωρπ

(1−ω)βδ�
ωτ −β ¡1−ωω ¢ ¡

1 + δ�
τ

¢ −βδ(1−ω)
ω

0 −βδ�
τ β

¡
1 + δ�

τ

¢
βδ

0 − �
τ

�
τ 1

 , (47)

Φ =

 φF 0

0 φS

 , and the form of Ψ is omitted since it is not required for the following analysis.

On the other hand since there is a predetermined variable (an endogenous state variable) then for the

E-stability analysis we utilize (5), (16)-(19), (20) and (45) to derive the system

ŷt = η +ΩEtŷt+1 + Γŷt−1 +Ψẑt and ẑt = Φẑt−1 + ξt (48)

where x̂t = [R̂t, π̂
F
t , π̂

S
t , ĉ

S
t ]
0, x̂t = [ẑFt , ẑ

S
t ]
0, ξt = [ξFt , ξ

S
t ]
0, η = [0, 0, 0, 0]0, EtR̂t+1 = R̂t+1 (since R̂t is a

predetermined variable),

Ω =


0 1 τ − 1 0

1
ωρπ

0 −β ¡1−ωω ¢
(1 + δ�) −βδ(1−ω)

ω

0 0 β (1 + δ�) βδ

0 0 � 1

 (49)
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Γ =


0 (1− τ)ωρπ (1− τ)(1− ω)ρπ 0

0 (1− ω)βδ�ρπ
(1−ω)2βδ�ρπ

ω 0

0 −βδ�ωρπ −(1− ω)βδ�ρπ 0

0 −ω�ρπ −(1− ω)�ρπ 0

 (50)

Ψ =



κ1UFF (1−φF )
UF

θ�κ1UFS(1−φF )
US

− (1−ω)βκ5ω −β ¡1−ωω ¢ h
κ4 + δ�κ1UFS(1−φF )

US

i
βκ5 β

h
κ4 + δ�κ1UFS(1−φF )

US

i
0 �κ1UFS(1−φF )

US

 , (51)

Φ =

 φF 0

0 φS

 , and κ1, κ4, and κ5 are constants defined in (24) and (26).
For the determinacy of equilibrium and learning analyses of backward-looking rules that respond to the

full-inflation, it is not possible to derive analytical results. Therefore we have to simulate the model. We will

assume some functional forms and assign some reasonable values for the parameters associated with these

forms. Then we will apply the methodology described in 3.1 taking into account that for the E-stability

analysis the MSV solution corresponds to ŷt = k + Pŷt−1 +Qẑt.

The functional forms are the following. For consumption and labor preferences

U(cFt , c
S
t ) =

h
(αp)

1
a

¡
cFt
¢a−1

a + (1− αp)
1
a

¡
cSt
¢ a−1

a

i( a
a−1)(1−σ) − 1

1− σ
V (hFt , h

S
t ) = −

¡
hFt
¢1+ξp

1 + ξp
−
¡
hSt
¢1+ξp

1 + ξp

where αp ∈ (0, 1), σ, a > 0 and ξp ≥ 0. Note that they satisfy Assumption 1. In particular the sign of UFS is
determined by the values of the intratemporal elasticity of substitution, a, and the intertemporal elasticity

of substitution, 1σ . That is, UFS T 0 if and only if 1σ T a.

The technologies are described by

yFt = (h
F
t )

θF and ySt = (h
S
t )

θS

where θF , θS ∈ (0, 1). They satisfy Assumption 2.
Our parametrization of the model does not pretend to be a calibration of a particular economy. It is only

illustrative. The time unit is a quarter. Then we set β = 0.98. We will assume that the share of sticky-price

goods is bigger than the share of flexible-price goods. Hence we set αp = 0.2.We set σ = 1. Since the relative

magnitudes of σ and a determine the sign of UFS , that is whether cFt and cSt are Edgeworth substitutes,

complements or utility separable, we will vary a in some of the simulations. We pick a = 0.8 to represent
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goods that are complements and a = 2 to represent substitutes. In some other cases we will consider that

a ∈ (0, 4.5). We also set θF = θS = 0.5. In addition we use the following values π̄ = 1.01, ξp = 0.5, µ = 6,

γ = 17.5, φF = φS = 0.82 and ξp = 0.5 that agree with some of the parameter values used in the New

Keynesian monetary rules literature.21

The results of the simulations are presented in Figure 2. It shows the combinations of the interest rate

response coefficient to inflation, ρπ, and weight on the flexible-price inflation, ω ∈ (0, 1), that lead to either
real determinacy (D) or real indeterminacy (I)., That is, a unique equilibrium or multiple equilibria. This

Figure also shows the combinations for these parameters under which the MSV solution is either E-stable

(ES) or E-unstable (EU). In the figure the marker “⊗” represents both indeterminacy and E-instability of
the MSV solution. Whereas the marker “°” represents determinacy and E-instability of the MSV solution.
The right panel corresponds to the case of Edgeworth complements whereas the left panel corresponds to

the case of substitutes.

The Figure shows that regardless of the type of goods, active backward-looking rules that respond to

the full-inflation are more prone to induce indeterminacy as the weight ω is reduced. In addition whether

the goods are complements or substitutes matter for the determinacy of equilibrium. In general if they are

substitutes active backward-looking rules with respect to the full inflation are more prone to deliver multiple

equilibria than if they are complements. More interestingly the figure also shows that regardless of the type

of goods, the interest rate response coefficient to inflation ρπ and the weight ω, the MSV solution is not

learnable (E-stable).

As before, and in order to understand these results, we analyze active backward-looking rules that

respond solely to the flexible-price inflation. To accomplish this goal we can use the systems in (46) and (48)

evaluating the matrices of the system at ω = 1. It is possible to derive analytical results for the determinacy of

equilibrium analysis when the goods are utility separable; but when they are either Edgeworth complements

or substitutes we have to rely on simulations. On the contrary for the learning analysis, it is feasible to

derive analytical results for all the cases. The following proposition summarizes the analytical results.

Proposition 7 Assume that the government follows an active backward-looking rules that responds to the

flexible-price inflation (π̂F ) described by R̂t = ρππ̂
F
t−1 with ρπ > 1.

a) Consider the system (46) with ω = 1. If USF = 0 ( ĉFt and ĉSt are utility separable) then the rule

induces a unique rational expectations equilibrium.

b) Consider the system (48) with ω = 1. Under possibly non-rational expectations and regardless of

whether USF T 0 (whether ĉFt and ĉSt are Edgeworth substitutes, complements or utility separable),

the MSV solution ŷt = k + Pŷt−1 +Qẑt is E-unstable.

21 See Schmitt-Grohé and Uribe (2004) and Woodford (2003) among others.
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Figure 2: Backward-looking rules responding to full-inflation. This Figure shows the possible combinations of
the interest rate response coefficient (ρπ) and the weight on the flexible-price inflation (ω) under which there
is real determinacy (D) or real indeterminacy (I). It also shows the combinations of these parameters under
which the MSV solution is E-stable (ES) or E-unstable (EU). The marker “⊗” represents both indeterminacy
and E-instability of the MSV solution. Whereas the marker “°” represents determinacy and E-instability
of the MSV solution.
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Figure 3: Backward-looking rules responding to the flexible-price inflation. This Figure shows the possible
combinations of the interest rate response coefficient (ρπ) and the intratemporal elasticity of substitution (a)
under which there is real determinacy (D) or real indeterminacy (I). It also shows the combinations of these
parameters under which the MSV solution is E-stable (ES) or E-unstable (EU). The marker “⊗” represents
both indeterminacy and E-instability of the MSV solution. Whereas the marker “°” represents determinacy
and E-instability of the MSV solution.

Proof. See Appendix.

Proposition 7 states one of the most important results of the paper: even if the rule is backward-

looking, reacting to the flexible-price inflation will make the MSV solution E-unstable. Therefore it is not

learnable. The proposition also points out that as long as the two goods are utility separable then the rule

will guarantee a unique equilibrium. In order to complete the determinacy analysis for these rules, we use

the aforementioned parametrization to simulate the model when the goods are substitutes and complements.

The results are presented in Figure 3.

This Figure shows the combinations of the interest rate response coefficient to inflation (ρπ) and the

intratemporal elasticity of substitution (a) that lead to either real determinacy (D) or real indeterminacy

(I). That is, a unique equilibrium or multiple equilibria. In addition it shows the combinations for these

parameters under which the MSV solution is either E-stable (ES) or E-unstable (EU). The marker “⊗”
represents both indeterminacy and E-instability of the MSV solution. Whereas the marker “°” represents
determinacy and E-instability of the MSV solution. As explained before the relation between a and σ

determines the type of goods under consideration. For our parametrization we have that σ = 1. Hence the

case of Edgeworth complements, substitutes and utility separable correspond to a < 1, a > 1 and a = 1,

respectively.
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Figure 3 confirms our results from Proposition 7: the type of goods under consideration (complements,

substitutes and utility separable) does not affect the E-stability characterization of the MSV solution. This

solution is never learnable. Nevertheless the type of goods may affect the determinacy results for active

backward-looking rules. Interestingly when the goods are Edgeworth substitutes, active backward-looking

rules may still induce multiple equilibria.

To conclude our analysis we focus on active backward-looking rules that respond to the sticky-price

inflation. We cannot set ω = 0 and use the systems (46) and (48) to study these rules. The reason is that

by doing this some of the coefficients of Λ and Ω in (47) and (49) are not well defined. Hence we have to

derive new systems to pursue the determinacy and learning analyses. In addition we cannot derive analytical

results for the learning analysis. Hence we prefer to present some simulations that combine both analyses.

Figure 4 presents and summarizes our results for these rules. As in Figure 3, this figure shows the

combinations of the interest rate response coefficient to inflation (ρπ) and the intratemporal elasticity of

substitution (a) that lead to either real determinacy (D) or real indeterminacy (I). In addition it shows

the combinations for these parameters under which the MSV solution is either E-stable (ES) or E-unstable

(EU). The marker “⊗” represents both indeterminacy and E-instability of the MSV solution. Whereas no
marker represents determinacy and E-stability of the MSV solution. As argued before a < 1, a > 1 and

a = 1, correspond to assuming that the goods are Edgeworth complements, substitutes and utility separable

respectively.

The main conclusion from Figure 4 is that active backward-looking rules with respect to the sticky-price

inflation will deliver a unique and learnable equilibrium regardless of the type of goods under consideration.

It is important to emphasize that this result cannot be derived setting ω = 0 and using the systems (46) and

(48) that were used for the analysis of rules that respond to the full inflation. In fact it is clear from Figure

2 that when ω = 0, the determinacy and learning results do not coincide with those in Figure 4. The reason

is that there is a discontinuity for the aforementioned systems at ω = 0.

4 Conclusions

In this paper we develop a closed economy model with a flexible-price good and a sticky-price good to

answer the following question: which measure of inflation should the government target in an active interest

rate rule in order to guarantee a unique equilibrium whose MSV solution is learnable in the E-stability sense

proposed by Evans and Honkapojha (2001)?. We find that the answer to this question is the sticky-price

inflation.

In order to obtain this answer we study how the conditions under which interest rate rules lead to real

determinacy and to E-stability of the MSV solution may depend not only on the interest rate response coef-
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Figure 4: Backward-looking rules responding to the sticky-price inflation. This Figure shows the possible
combinations of the interest rate response coefficient (ρπ) and the intratemporal elasticity of substitution (a)
under which there is real determinacy (D) or real indeterminacy (I). It also shows the combinations of these
parameters under which the MSV solution is E-stable (ES) or E-unstable (EU). The marker “⊗” represents
both indeterminacy and E-instability of the MSV solution. Whereas no marker represents determinacy and
E-stability of the MSV solution.

ficient to inflation but also on the timing of the rule; on whether the two consumption goods are Edgeworth

substitutes, complements or utility separable; and more importantly on the measure of inflation included in

the rule.

We find specifically that responding to either the flexible-price inflation or the full inflation (a convex

combination of the sticky-price and the fexlible-price inflations) is more prone to induce multiple equilibria

(real indeterminacy) and to make the MSV solution not learnable. Although backward-looking rules with

respect to the flexible-price inflation or the full inflation may guarantee a unique equilibrium, they also make

the MSV solution not learnable in the E-stability sense.

Only responding actively to the sticky-price inflation seems to be a robust policy recommendation across

timings and types of goods, in order to guarantee a unique and learnable equilibrium. This result has at

least two important implications from the perspective of the determinacy and learnability of equilibrium

analyses. First they imply a preference to a particular measure of inflation. Second they suggest that the

Taylor Principle of increasing the nominal interest rate proportionally more than the increase in inflation

does not necessarily apply at the sectoral level as well as at the aggregate level.
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A Appendix

A.1 The First Order Conditions of the Household-Firm Unit Problem in the

Simple Model

The representative household-firm unit chooses the set of processes {cFt , cSt , hFt , hSt , ȟFt , h̃St , P̃S
t , mt,

nt}∞t=0 in order to maximize (4) subject to (6), (7) and (9), given the initial condition n−1 and the set of
processes {Rt, PF

t , P
S
t , Wt, T

g
t , C

S
t , z

F
t , z

S
t }. The first order conditions correspond to (7) and (9) with

equality and

UF (c
F
t , c

S
t ) = λt (52)

UF (c
F
t , c

S
t )

US(cFt , c
S
t )
= qt (53)

− Hh(h
F
t )

UF (cFt , c
S
t )
= wt (54)

− Lh(h
S
t )

US(cFt , c
S
t )
= wtqt (55)

1 =
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zFt fh
¡
ȟFt
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qtzSt gh

³
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´ (57)
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S
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qtPS
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d

Ã
P̃S
t

PS
t

!
+

λtP̃
S
t C

S
t

qt
¡
PS
t

¢2 d0
Ã
P̃S
t

PS
t

!
− γλt

qtP̃S
t−1
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t

P̃S
t−1
− π̄S

!
− mcSt λtC

S
t

qtP̃S
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Ã
P̃S
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!
(58)

+βγEt

λt+1
qt+1

Ã
P̃S
t+1

P̃S
t

− π̄S

!
P̃S
t+1³
P̃S
t
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

1

Jm(mt)
=

1

UF (cFt , c
S
t )

µ
Rt

Rt − 1
¶

(59)

λt = βEt

µ
λt+1Rt

πFt+1

¶
(60)

where mcSt λt
qt

and λt correspond to the Lagrange multipliers of (6) and (7) respectively.

We will focus on a symmetric equilibrium in which all the monopolistic producers of sticky-price goods

pick the same price. Hence P̃S
t = PS

t . Since all the monopolists face the same wage rate, Wt, and the same

production function, zSt g
¡
hSt
¢
, then they will demand the same amount of labor h̃St = hSt . In equilibrium
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the money market, the domestic bond market, the labor markets, the sticky-price goods market and the

flexible-price good market clear. Therefore

mt = mg
t (61)

bt = bgt (62)

hFt = ȟFt (63)

hSt = h̃St (64)

zSt g
¡
hSt
¢
= cSt +

γ

2

¡
πSt − π̄S

¢2
(65)

and

cFt = zFt f
¡
hFt
¢

(66)

Combining (54) and (56) yields equation (12). Using conditions (52) and (60) we obtain the Euler equation

(13). Utilizing (1), (52), (53), and (60)we derive the Euler equation (14). And finally using the notion of a

symmetric equilibrium, conditions (6), (53), (55), (57), (64), (58) and the definitions πSt = PS
t /P

S
t−1, d(1) = 1

and d0(1) = −µ we can derive the augmented Phillips curve described by equation (15).

A.2 Characterization of The Steady State

We use (1), (10)-(15), and the condition that at the steady state xt = x̄ for all the variables to derive

π̄S = π̄F = π̄ βR̄ = π̄Sµ
µ− 1
µ

¶
US(f(h̄

F ), g(h̄S)) = −Lh(h̄
S)

gh
¡
h̄S
¢ c̄S = g

¡
h̄S
¢

UF (f(h̄
F ), g(h̄S)) = −Hh(h̄

F )

fh
¡
h̄F
¢ c̄F = f

¡
h̄F
¢

Then it is simple to prove that under some assumptions that include Assumptions 1 and 2, and given

µ > 1, β ∈ (0, 1) and π̄ > 1, there exists a steady state {c̄F , c̄S , h̄F , h̄S , π̄F , π̄S , R̄} for the economy that
satisfies these equations with c̄F , c̄S , h̄F , h̄S > 0 and π̄F , π̄S , R̄ > 1. In particular to guarantee that there

exist c̄F , c̄S , h̄F , h̄S > 0 we need to impose some Inada-type assumptions such as UF (0, c̄S) = US(c̄
F , 0) =∞,

UF (∞, c̄S) = US(c̄
F ,∞) = 0, fh(0) = gh(0) =∞, and fh(∞) = gh(∞) = 0.22

A.3 Proof of Lemma 1

Proof. The proof is straightforward. a) follows from Assumptions 1 and 2 and the definition of α in

(22). b) follows from using the definition of � in (23), Assumptions 1a), 1b), 1c), and 2, c̄S > 0 and

αUFS + USS =
fhhUFUSS+(fh)

2(UFFUSS−U2
FS)+HhhUSS

fhhUF+(fh)
2UFF+Hhh

< 0. Part c) can be proved by using the definition of

θ in (23), Assumptions 1a), 1b), 1c), and 2, c̄S > 0 and αUFF + USF = − fhhUFUSF
fhhUF+(fh)

2UFF+Hhh
. Finally d)

follows from using Assumptions 1a), 1b), 1c), and 2, with � > 0, µ > 1 and c̄S , β, γ, π̄ > 0.

22Details are available from the author upon request.
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A.4 Proof of Lemma 2

Proof. To prove part a) we use parts part b) and c) of Lemma 1. If USF = 0 then θ 5 0 which together
with � > 0 and the definition of τ imply τ = 1. On the other hand if USF < 0, we use the definitions

of � and θ in (23) to write τ = 1 − θ
� = 1 − 1/

h
USSUF
USFUS

+
(USSUFF−U2

FS)f
2
h+HhhUSS

USFUSfhh

i
. From Assumptions

1a), 1b), 1c), 2, and USF < 0 we have that USSUF
USFUS

> 1 and (USSUFF−U2
FS)f

2
h+HhhUSS

USFUSfhh
> 0. Then 0 <

1/
h
(USSUFF−U2

FS)f
2
h+HhhUSS

USFUSfhh
+ USSUF

USFUS

i
< 1 and therefore 0 < τ < 1 if USF < 0.

A.5 Proof of Proposition 1

Proof. The characteristic polynomial for Ω defined in (35) is given by P(v) = v2 − Trace(Ω)v + Det(Ω)

where Det(Ω) refers to the determinant of Ω and

Trace(Ω) = 1 + β

·
1 +

δ�(1− ρπ)

(1− τωρπ)

¸
and Det(Ω) = β

Using these and the characteristic polynomial P(v) we can derive that

P(1) = −βδ�(1− ρπ)

(1− τωρπ)
and P(−1) =

·
βδ�+ 2(1 + β)τω

(1− τωρπ)

¸
(ρωπ − ρπ) (67)

We first prove a). Recall from Lemma 1 that � > 0 and δ > 0. By Lemma 2 we know that if USF = 0 then

τ = 1 and if USF < 0 then 0 < τ < 1. Using these with δ > 0, � > 0, β ∈ (0, 1) and ω ∈ (0, 1) we can infer
that ρωπ =

βδ�+2(1+β)
βδ�+2(1+β)τω > 1 and that βδ�+2(1+β)

βδ�+2(1+β)τω < βδ�+2(1+β)
[βδ�+2(1+β)]τω . Hence 1 < ρωπ < 1

τω . This in tandem

with 1 < ρπ < ρωπ , (67), δ > 0, � > 0, β ∈ (0, 1) and ω ∈ (0, 1) imply that P(1) > 0 and P(−1) > 0. Moreover
0 < Det(Ω) < 1 since Det(Ω) = β and β ∈ (0, 1). This together with P(1) > 0 and P(−1) > 0 imply that

the two eigenvalues of Ω are inside the unit circle.23 Since there are two non-predetermined variables, π̂St
and ĉSt , then by Blanchard and Kahn (1980) we conclude that there exists a unique rational expectations

equilibrium.

To prove that 1 < ρπ < ρωπ for any ω ∈ (0, 1) implies that the MSV solution ŷt = k̄ + Q̄ẑt is E-stable

we verify that the E-stability conditions are satisfied. For ŷt = k̄ + Q̄ẑt the E-stability conditions in (32)

are reduced to verify that all the eigenvalues of DTk = Ω and DTQ = Φ0 ⊗ Ω have real parts less than
one. Nevertheless by assumption the eigenvalues of Φ are less than one. This implies that the E-stability

conditions will be satisfied whenever that all the eigenvalues of Ω have real parts less than one. To check

this it is sufficient to verify that all the eigenvalues of Ω − I have negative real parts. We do so in the

following way. The eigenvalues υ1 and υ2 of Ω − I satisfy Trace(Ω − I) = υ1 + υ2 and Det(Ω − I) =

υ1υ2.
24 Then sufficient and necessary conditions for all the eigenvalues of Ω− I to have negative real parts

are Trace(Ω− I) < 0 and Det(Ω− I) > 0. We calculate

Trace(Ω− I) = β

·
1 +

δ�(1− ρπ)

(1− τωρπ)

¸
− 1 and Det(Ω− I) = −βδ�(1− ρπ)

(1− τωρπ)
(68)

As was proved before ρωπ < 1
τω which together with the assumption 1 < ρπ < ρωπ , the expression for

23See Azariadis (1993).
24 See Horn and Johnson (1985).

31



Det(Ω− I) in (68), δ > 0, � > 0, β ∈ (0, 1) and ω ∈ (0, 1) imply that Det(Ω− I) > 0. On the other hand,

using (68) we can deduce that Trace(Ω− I) < 0 is equivalent to (1−β) > −Det(Ω− I). This last inequality

is satisfied since β ∈ (0, 1) and we proved that Det(Ω−I) > 0. Then E-stability of the MSV solution follows.
Second we prove b). By Lemma 2 we know that if USF > 0 then τ > 1. Define the function ρ̂π =

1
ωτ .

Using this definition and the definition of ρωπ it is simple to show that ρ
ω
π < ρ̂π =

1
ωτ for any ω ∈ (0, 1/τ).

Then using this together with the assumption 1 < ρπ < ρωπ for any ω ∈ (0, 1/τ) we can proceed as we did in
part a) to prove the existence of a unique equilibrium and the E-stability of the MSV.

A.6 Proof of Proposition 2

Proof. We just need to consider (34) with ω = 1. The characteristic polynomial for Ω defined in (35) is

given by P(v) = v2−Trace(Ω)v+Det(Ω) where Det(Ω) refers to the determinant of Ω. By replacing ω = 1

into Ω we can obtain

Trace(Ω) = 1 + β

·
1 +

δ�(1− ρπ)

(1− τρπ)

¸
and Det(Ω) = β.

Using these and the characteristic polynomial P(v) we can derive that

P(1) = −βδ�(1− ρπ)

(1− τρπ)
and P(−1) =

·
βδ�+ 2(1 + β)τ

(1− τρπ)

¸
(ρ1π − ρπ). (69)

We first prove a). Recall from Lemma 1 that δ > 0 and � > 0. By Lemma 2 we know that τ > 0 and if

USF < 0 then τ < 1. Using these and δ > 0, � > 0, and β ∈ (0, 1) we can infer that ρ1π = βδ�+2(1+β)
βδ�+2(1+β)τ > 1

and βδ�+2(1+β)
βδ�+2(1+β)τ < βδ�+2(1+β)

[βδ�+2(1+β)]τ . Hence ρ
1
π < 1

τ . This in tandem with 1 < ρπ < ρ1π,(69), δ > 0, � > 0, and

β ∈ (0, 1) imply that P(1) > 0 and P(−1) > 0. Moreover 0 < Det(Ω) < 1 since Det(Ω) = β and β ∈ (0, 1).
This together with P(1) > 0 and P(−1) > 0 imply that the two eigenvalues of Ω are inside the unit circle.25
Since π̂St and ĉ

S
t are non-predetermined variables then by Blanchard and Kahn (1980) we conclude that there

exists a unique equilibrium.

To prove that 1 < ρπ < ρ1π implies that the MSV solution ŷt = k̄ + Q̄ẑt is E-stable we verify that

the E-stability conditions are satisfied. For ŷt = k̄ + Q̄ẑt the E-stability conditions in (32) are reduced to

verify that all the eigenvalues of DTk = Ω and DTQ = Φ
0 ⊗ Ω evaluated at ω = 1 have real parts less than

one. Nevertheless by assumption the eigenvalues of Φ are less than one. This implies that the E-stability

conditions will be satisfied whenever that all the eigenvalues of Ω have real parts less than one. Moreover

the MSV is not E-stable if any of the eigenvalues of DTk and DTQ evaluated at ω = 1 are bigger than one.

Hence we proceed to characterize the eigenvalues of these matrices.

By assumption the eigenvalues of Φ are less than one. This implies that the E-stability conditions will be

satisfied whenever that all the eigenvalues of Ω evaluated at ω = 1 have real parts less than one. To check

this it is sufficient to verify that all the eigenvalues of Ω− I with ω = 1 have negative real parts. We do so

in the following way. The eigenvalues υ1 and υ2 of Ω− I satisfy Trace(Ω− I) = υ1 + υ2 and Det(Ω− I) =

υ1υ2.
26 Then a sufficient and necessary conditions for the eigenvalues of Ω − I to have negative real parts

are Trace(Ω− I) < 0 and Det(Ω− I) > 0. We calculate them taking into account that ω = 1. Hence

25See Azariadis (1993).
26 See Horn and Johnson (1985).
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Trace(Ω− I) = β

·
1 +

δ�(1− ρπ)

(1− τρπ)

¸
− 1 and Det(Ω− I) = −βδ�(1− ρπ)

(1− τρπ)
(70)

As was proved before ρ1π < 1
τ which together with the assumption 1 < ρπ < ρ1π, the expression for

Det(Ω− I) in (70) and δ > 0, � > 0, β ∈ (0, 1) imply that Det(Ω− I) > 0. On the other hand, using (70) we

can observe that Trace(Ω− I) < 0 is equivalent to (1− β) < −Det(Ω− I). This last inequality is satisfied

since β ∈ (0, 1) and we proved that Det(Ω− I) > 0. Then E-stability of the MSV solution follows.

Second we prove b). By Lemma 2 we know that τ > 0 and if USF ≥ 0 then τ ≥ 1. Therefore 1
τ ≤ 1.

Suppose that τ = 1 then from (69), δ > 0, � > 0, and β ∈ (0, 1) we can infer that P(1) < 0. Now consider

the case in which τ > 1. Since the rule is active (ρπ > 1) and 1 > 1
τ then we can see that ρπ > 1

τ . Using

this, ρπ > 1, (69), δ > 0, � > 0, and β ∈ (0, 1) we derive that P(1) > 0. Hence regardless of whether

τ = 1 or τ > 1 (equivalently USF = 0 or USF > 0) we have that P(1) < 0. It is easy to prove that

P(−1) = 2(1 + Det(Ω)) − P(1). Then using this, P(1) < 0 and Det(Ω) = β > 0 we can deduce that

P(−1) > 0. This and P(1) < 0 are sufficient to conclude that Ω evaluated at ω = 1 has one eigenvalue inside
the unit circle and one eigenvalue outside the unit circle. Since π̂St and ĉSt are non-predetermined variables

then by Blanchard and Kahn (1980) we conclude that there exists multiple equilibria.

Furthermore to prove that the MSV solution is not E-stable we start by recalling there exists E-instability

if any of the eigenvalues of DTk = Ω and DTQ = Φ
0⊗Ω evaluated at ω = 1 have real parts bigger than one.

Hence we proceed to characterize the eigenvalues of these matrices. By assumption the eigenvalues of Φ are

less than one. Then we can just focus on the eigenvalues of Ω. We want to prove that Ω evaluated at ω = 1

has some eigenvalues with real parts bigger than one, or equivalently that Ω− I has some eigenvalues with

positive real parts. When τ = 1 then from (70) we can deduce that Det(Ω− I) = −βδ�. And using this and
the facts that δ > 0, � > 0, and β ∈ (0, 1), we deduce that Det(Ω− I) < 0. On the other hand if τ > 1 we

already derived that in this case ρπ > 1
τ . Using this, with ρπ > 1, δ > 0, � > 0, β ∈ (0, 1), and the expression

of Det(Ω− I) in (70) allows to conclude that Det(Ω− I) > 0. Hence regardless of whether τ = 1 or τ > 1

(equivalently USF = 0 or USF > 0) we have that Det(Ω− I) < 0. The eigenvalues υ1 and υ2 of Ω− I satisfy
Det(Ω− I) = υ1υ2.

27 Therefore Det(Ω− I) < 0 implies that there exists one eigenvalue with a positive real

part and the E-instability of the MSV solution follows.

A.7 Proof of Proposition 3

Proof. We just need to consider (34) with ω = 0. The characteristic polynomial for Ω defined in (35) is

given by P(v) = v2−Trace(Ω)v+Det(Ω) where Det(Ω) refers to the determinant of Ω. By replacing ω = 0

into Ω we can obtain

Trace(Ω) = 1 + β [1 + δ�(1− ρπ)] and Det(Ω) = β. (71)

Using these and the characteristic polynomial P(v) we can derive that

P(1) = −βδ�(1− ρπ) and P(−1) = βδ�(ρ0π − ρπ) (72)

27See Horn and Johnson (1985).
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Recall from Lemma 1 that δ > 0 and � > 0. Using this and β ∈ (0, 1) it is clear that ρ0π > 1. Using

1 < ρπ < ρ0π in tandem with (72), δ > 0, � > 0, and β ∈ (0, 1) we can infer that P(1) > 0 and P(−1) > 0.

Moreover since Det(Ω) = β and β ∈ (0, 1) then 0 < Det(Ω) < 1. This together with P(1) > 0 and P(−1) > 0
imply that the two eigenvalues of Ω are inside the unit circle. Since π̂St and ĉ

S
t are non-predetermined variables

then by Blanchard and Kahn (1980) we conclude that there exists a unique equilibrium.

Next we prove that 1 < ρπ < ρ0π implies that the MSV solution ŷt = k̄+ Q̄ẑt is E-stable. The E-stability

conditions correspond to verify that all the eigenvalues of DTk = Ω and DTQ = Φ
0 ⊗ Ω evaluated at ω = 0

have real parts less than one. Nevertheless by assumption the eigenvalues of Φ are less than one. This implies

that the E-stability conditions will be satisfied whenever that all the eigenvalues of Ω have real parts less

than one or equivalently when all the eigenvalues of Ω − I have negative real parts. This will be satisfied

if and only if Trace(Ω− I) < 0 and Det(Ω− I) > 0 hold since the eigenvalues υ1 and υ2 of Ω− I satisfy

Trace(Ω− I) = υ1 + υ2 and Det(Ω− I) = υ1υ2.
28 Using ω = 0 we obtain

Trace(Ω− I) = β [1 + δ�(1− ρπ)]− 1 and Det(Ω− I) = −βδ�(1− ρπ) (73)

The assumption 1 < ρπ < ρ0π, the expression for Det(Ω − I) in (73) and δ > 0, � > 0, β ∈ (0, 1) imply
that Det(Ω− I) > 0. On the other hand, using (73) we can observe that Trace(Ω− I) < 0 is equivalent to

(1−β) > −Det(Ω− I). This last inequality is satisfied since β ∈ (0, 1) and Det(Ω− I) > 0. Then E-stability
of the MSV solution follows.

A.8 Proof of Proposition 4

Proof. We will first prove that regardless of USF T 0 the rule always deliver real indeterminacy. To do so we
proceed as follows. Recall the Schur Theorem that states that the eigenvalues of a 3×3matrix Ω are inside the
unit circle if and only if having the characteristic polynomial P(v) = d0v

3+d1v
2+d2v+d3 = 0 the following

conditions are satisfied i) d0+ d1+ d2+ d3 > 0; ii) d0− d1+ d2− d3 > 0; iii) d0(d0+ d2)− d3(d1+ d3) > 0;

iv) d0(d0 − d2) + d3(d1 − d3) > 0; v) d0 + d3 > 0, and vi) d0 − d3 > 0.
29 Using the definition of Ω in (42) we

can derive its characteristic polynomial obtaining that d0 = −1 and d3 =
β

τωρπ
. Using these and β ∈ (0, 1),

ω ∈ (0, 1), τ > 0 (see Lemma 2) and ρπ > 1 then condition vi) of the Schur Theorem is violated given

that d0 − d3 = −
³
1 + β

τωρπ

´
< 0. Hence the number of eigenvalues of Ω inside the unit circle is less than

the number of non-predetermined variables (π̂Ft , π̂
S
t , and ĉSt ). Applying the results of Blanchard and Kahn

(1980) we conclude that there exist multiple equilibria.

Second we focus on the E-stability analysis. We need to find the E-stability conditions. For the MSV

solution ŷt = k̄ + Q̄ẑt the E-stability conditions correspond to verify that all the eigenvalues of DTk = Ω

and DTQ = Φ0 ⊗ Ω have real parts less than one. Moreover the MSV solution is not E-stable if any of

the eigenvalues of DTk and DTQ have real parts bigger than one. Hence we proceed to characterize the

eigenvalues of these matrices.

By assumption the eigenvalues of Φ are less than one. Then we can just focus on the eigenvalues of Ω.

We want to prove that Ω has some eigenvalues with real parts bigger than one, or equivalently that Ω − I

28 See Horn and Johnson (1985).
29 See Lorenz (1993).
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has some eigenvalues with positive real parts. We do so in the following way. Using Ω in (42) we obtain

Det(Ω− I) = −βδ�(1− ρπ)

τωρπ
+ βδ�

µ
1− 1

τ2

¶
. (74)

Consider the case USF ≥ 0. By Lemma 2 we know that τ ≥ 1. This together with δ > 0, � > 0, β ∈
(0, 1), ω ∈ (0, 1), ρπ > 1, and (74) imply that Det(Ω − I) > 0. But the eigenvalues υ1, υ2 and υ3 of Ω − I

satisfy Det(Ω − I) = υ1υ2υ3.
30 Then Ω − I has at least one eigenvalue with a positive real part. Then

E-instability of the MSV solution follows.

Now consider USF < 0. By Lemma 2 we know that τ < 1. This together with δ > 0, � > 0, β ∈
(0, 1), ω ∈ (0, 1), ρπ > 1 and (74) imply that there might be some values of ω ∈ (0, 1) and ρπ > 1 for which

Det(Ω− I) < 0. Since the eigenvalues υ1, υ2 and υ3 of Ω− I satisfy Det(Ω− I) = υ1υ2υ3 then Ω− I may

have either one eigenvalue or three eigenvalues with negative real parts. This implies that the MSV solution

may be E-stable.

A.9 Proof of Proposition 5

Proof. The proof is very simple. It is the same as the Proof for Proposition 4 taking into account that
ω = 1.

A.10 Proof of Proposition 6

Proof. The characteristic polynomial for Ω defined in (44) is given by P(v) = v2 − Trace(Ω)v + Det(Ω)

where Det(Ω) refers to the determinant of Ω and

Trace(Ω) =
1 + β(1 + δ�)

1 + βδ�ρπ
and Det(Ω) =

β

1 + βδ�ρπ
(75)

Using these and the characteristic polynomial P(v) we can derive that

P(1) = βδ�(ρπ − 1)
1 + βδ�ρπ

and P(−1) = βδ�(ρπ + 1) + 2(1 + �)

1 + βδ�ρπ
. (76)

Recall from Lemma 1 that δ > 0 and � > 0. Using this, assumption ρπ > 1, definitions (76), and β ∈ (0, 1)
we can infer that P(1) > 0 and P(−1) > 0. Moreover 0 < Det(Ω) < 1. This together with P(1) > 0

and P(−1) > 0 imply that the two eigenvalues of Ω are inside the unit circle.31 Since π̂St and ĉSt are

non-predetermined variables then by Blanchard and Kahn (1980) we conclude that there exists a unique

equilibrium.

Next we prove that ρπ > 1 implies that the MSV solution ŷt = k̄+Q̄ẑt is E-stable. For the system in (43),

the E-stability conditions correspond to verify that all the eigenvalues of DTk = Ω and DTQ = Φ
0 ⊗Ω have

real parts less than one. However by assumption the eigenvalues of Φ are less than one. This implies that

the E-stability conditions will be satisfied whenever that all the eigenvalues of Ω have real parts less than

one. To check this it is sufficient to verify that all the eigenvalues of Ω−I have negative real parts. We do so
30See Horn and Johnson (1985).
31 See Azariadis (1993).
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in the following way. The eigenvalues υ1 and υ2 of Ω− I satisfy Trace(Ω− I) = υ1 + υ2 and Det(Ω− I) =

υ1υ2.
32 Then sufficient and necessary conditions for all the eigenvalues of Ω− I to have negative real parts

are Trace(Ω− I) < 0 and Det(Ω− I) > 0. We calculate

Trace(Ω− I) = −(1− β) + βδ�(2ρπ − 1)
1 + βδ�ρπ

and Det(Ω− I) =
βδ�(ρπ − 1)
1 + βδ�ρπ

.

These, the assumption ρπ > 1, and the facts that δ > 0, � > 0, and β ∈ (0, 1) imply that Trace(Ω− I) < 0

and Det(Ω− I) > 0. Hence E-stability of the MSV solution follows.

A.11 Proof of Proposition 7

Proof. First we prove a) by considering the representation (46). To do so we derive the characteristic
polynomial of the matrix Λ in (47) taking into account that ω = 1 and that the two goods are utility

separable. This means that τ = 1 by Lemma 2. Then we obtain

P(v) =
µ
v2 − 1

ρπ

¶
| {z }

P1(v)

£
v2 − (1 + β + βδ�) v + β

¤| {z }
P2(v)

. (77)

This shows that the characteristic polynomial P(v) of Λ corresponds to the product of the polynomial P1(v)
and P2(v). Hence the roots of these two polynomials will determine the eigenvalues of Λ (with ω = 1 and

τ = 1). Consider the roots of P1(v). It is simple to see that if ρπ > 1 then the two roots of P1(v) are inside
the unit circle.

On the other hand the polynomial P2(v) satisfies

P2(1) = −βδ� and P2(−1) = 2(1 + β) + βδ�.

Using these expressions, β ∈ (0, 1) and the facts that � > 0 and δ > 0 (see Lemma 1) we can infer that

P2(1) < 0 and P2(−1) > 0. Which in turn implies that one of the roots of P2(v) is inside the unit circle
whereas the other one is outside of it.33 Putting these results together we conclude that three of the roots

of P(v) (or equivalently three of the eigenvalues of Λ with ω = 1 and τ = 1) are inside the unit circle while

the fourth one is outside of it. Then since π̂Ft , π̂
S
t and ĉ

S
t are the only non-predetermined variables from the

results of Blanchard and Kahn (1980), it follows that there exists a unique equilibrium.

Next we prove part b) by considering the system (48). We need to prove that the MSV solution ŷt =

k+Pŷt−1+Qẑt is E-unstable. To do so we recall from Evans and Honkapohja (2001) that the MSV solution

is E-unstable if any of the eigenvalues of DTk = (I−ΩP̄ )−1Ω, DTP =
£
(I −ΩP̄ )−1Γ¤0⊗ [(I−ΩP̄ )−1Ω], and

DTQ = Φ
0 ⊗ [(I − ΩP̄ )−1Ω] have real parts bigger than one. Then we start by studying the eigenvalues of

DTk = (I − ΩP̄ )−1Ω. More specifically we will prove that DTk = (I − ΩP̄ )−1Ω has some eigenvalues with
real parts bigger than one, or equivalently that

£
(I −ΩP̄ )−1Ω− I

¤
has some eigenvalues with real positive

parts. To do so it is necessary to find the MSV solution. In particular we need to solve for P̄ using the

method of undetermined coefficients. From (??) we know that this matrix should satisfy ΩP 2 − P + Γ = 0

32 See Horn and Johnson (1985).
33 See Azariadis (1993).
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or equivalently (I −ΩP )−1Γ = P. However since ω = 1 then the matrix Γ in the system (48) becomes

Γ =


0 (1− τ)ρπ 0 0

0 0 0 0

0 −βδ�ρπ 0 0

0 −�ρπ 0 0

 . (78)

This help us to have an "educated" guess for P . We choose

P =


0 p1 0 0

0 p2 0 0

0 p3 0 0

0 p4 0 0

 .

Using this expression, the expression for Ω (with ω = 1) in (49), (78) and (I − ΩP )−1Γ = P we can

prove that in this case P̄ = Γ Utilizing this and the expression for Ω (with ω = 1) in (49) we can find

Det
£
(I −ΩP̄ )−1Ω− I

¤
= −βδ�(ρπ−1)

ρπτ
. Note that Det

£
(I −ΩP̄ )−1Ω− I

¤
< 0 since by assumption ρπ > 1,

β ∈ (0, 1), � > 0, δ > 0 and τ > 0 (see Lemma 2).

Finally the eigenvalues υ1, υ2, υ3, and υ4 of
£
(I −ΩP̄ )−1Ω− I

¤
satisfy Det

£
(I −ΩP̄ )−1Ω− I

¤
=

υ1υ2υ3υ4.
34 Given that Det

£
(I −ΩP̄ )−1Ω− I

¤
< 0, we know that

£
(I −ΩP̄ )−1Ω− I

¤
has at least one

eigenvalue with a positive real part. Hence the E-instability of the MSV solution follows.
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