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Abstract

We consider an economic model that features : 1. a continuum of agents 2. an aggre-
gate state of the world over which agents have an infinitesimal influence. We first propose
a review, based on work by Jara (2007), of the connections between the “eductive view-
point” that puts emphasis on “Strongly Rational Expectations equilibrium” and the stan-
dard game-theoretical rationalizability concepts. We explore the scope and limits of this
connection depending on whether standard rationalizability versus point-rationalizability,
or the local versus the global viewpoint, are concerned. In particular, we define and char-
acterize the set of “Point-Rationalizable States” and prove its convexity. Also, we clarify
the role of the heterogeneity of beliefs in general contexts of expectational coordination
(see Evans and Guesnerie (2005)). Then, as in the case of strategic complementarities the
study of some “best response” mapping is a key to the analysis, in the case of “unambigu-
ous” strategic substitutabilities the study of some second iterate, and of the corresponding
two-period cycles, allows to describe the point-rationalizable states. We provide applica-
tion in microeconomic and macroeconomic contexts.

1 Introduction

Our purpose in this paper is then twofold.
First, we attempt to bring in a similar light, the standard game theoretical viewpoint of

coordination on rationalizable solutions and the related viewpoint adopted in the study of
expectational coordination in economic contexts, as for example in Guesnerie (1992, 2002),
Evans and Guesnerie (1993, 2003, 2005). In this work, as well as in most related work of
expectational coordination in economic contexts, (Morris and Shin (1998), Chamley (1999,
2004)) and the theory of crisis, economic agents are “non-atomic”, in the sense that they
are too small to have a significant influence on the economic system, and the “eductive”
reasoning that governs the evaluation of expectational stability refers to game-theoretical
rationalizability ideas. Linking the “economic” and the game-theoretical views leads us to
adopt the framework of a game with a continuum of agents and aggregators in the sense
used by Rath (1992). Relying on Jara (2007), we show the precise connections between
the game-theoretical concepts of rationalizability, point -rationalizability and the “economic”
concepts of IE Stability, Strongly Rational and locally “eductively stable” equilibria. We
stress the convexity properties obtained in the continuum game that follow from Liapounov
like theorems.

∗PSE - École des Hautes Études en Sciences Sociales and Collège de France
†PSE - École des Hautes Études en Sciences Sociales and DIM - Universidad de Chile
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Second, relying on this framework, we focus attention on two classes of economic problems.
In the first one, aggregate strategic complementarities, we reassess and strengthen well known
game-theoretical results concerning equilibria and rationalizable solutions. The second class of
models has, on the contrary, aggregate strategic substitutabilities. All expectational proper-
ties obtained in the strategic complementarity case are shown to have counterparts here. With
differentiability assumptions we get stronger results and simple sufficient conditions assuring
the existence of a global Strongly Rational Expectations or a unique rationalizable solutions.
Applications are given for example using the general equilibrium model of Guesnerie (2001a).

The paper proceeds as follows. In Section 2, we introduce our model of an economic system
with a continuum of agents. We show how this setting may be viewed from a game theoretical
point of view and we introduce the concepts of Nash Equilibrium and Point-Rationalizable
Strategies. We then present the economic concepts of Iterative Expectational Stability and
Eductive Stability. For this, we present an economic version of Rationalizability introduc-
ing Point-Rationalizable States and Rationalizable States. Then in Section 3 we successively
focus attention on aggregate models with Strategic Complementarities or Strategic Substi-
tutabilities. Our general results here are tightened when we examine the differentiable version
of the model. In Section 5 we conclude.

2 The canonical model and concepts.

2.1 Economic System with a continuum of agents

We consider a stylized economic model in which there is a large number of small agents i ∈ I.
Each agent chooses a strategy s (i) ∈ S (i) and we take S (i) ⊆ Rn. In this system there is
an aggregate variable or signal that represents the state of the system. We call A ⊆ RK the
set of all possible states of the economic system. Interaction occurs through an aggregation
operator, A, that to each strategy profile s associates a state of the model a = A (s) in the set
of states A. The key feature of the system is that no agent can affect unilaterally the state
of the system. That is, a change of the actions of only one, or a small1 group of agents, does
not modify the value of the state of the system.

To capture this last feature we consider the set of players to be the measure space (I, I, λ)
where I is the unit interval of R, I ≡ [0, 1], and λ is the lebesgue measure. Strategy profiles
in this setting are identified with integrable selections2 of the set valued3 mapping i⇒S (i).
We use as the aggregation operator A the integral4 of the strategy profile s:

A (s) ≡
∫

I
s (i) di.

1We will formalize what we mean by small.
2A selection is a function s : I → Rn such that s (i) ∈ S (i).
3We use the notation ⇒ for set valued mappings (also referred to as correspondences), and → for functions.
4The aggregation operator can as well be the integral of the strategy profile with respect to any measure

λ̄ that is absolutely continuous with respect to the lebesgue measure, or the composition of this result with a
continuous function. That is,

A (s) ≡ G

�Z
I

s (i) f (i) di

�

where G :
R

I
S (i) dλ̄ (i) → A is a continuous function and f is the density of the measure λ̄ with respect to

the lebesgue measure. However not all the results in this work remain true if we choose such a setting.
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and the state set A is5

A ≡
∫

I
S (i) di.

Hypothesis over the correspondence i⇒S (i) that assure that the set A is well defined can be
found in Aumann (1965) or in Chapter 14 of Rockafellar and Wets (1998), in this case we see
that A is a convex set (Aumann 1965). For simplicity, we will assume that all the agents have
the same compact strategy set S (i) ≡ S ⊂ Rn

+. As a consequence, since S is compact, the
set of meaningful strategy profiles is the set of measurable functions from I to S 6 noted from
now on SI . This assures that A is a nonempty convex compact subset of Rn (i.e. K = n)
(Aumann 1965). Moreover, in this case 7

A ≡ co {S}

The variable a ∈ A, that represents the state of the system, determines, along with each
agents’ own action, his payoff. For each agent i ∈ I then, there is a payoff function u (i, · , · ) :
S ×A → R. Agents act to maximize this payoff function.

We assume:

C : For all agent i ∈ I, u (i, · , · ) is continuous.

HM : The mapping that associates to each agent a utility function 8 is measurable.

The optimal strategy correspondence B (i, · ) : A⇒S is the correspondence which associates
to each point a ∈ A the set:

B (i, a) := argmaxy∈S {u (i, y, a)} . (2.1)

We denote Γ (a) =
∫
I B (i, a) di

In a situation where agents act in ignorance of the actions taken by the others or, for what
matters, of the value of the state of the system, they have to rely on forecasts. That is, their
actions must be a best response to some subjective probability distribution over the space
of aggregate data A. Mathematically, actions have to be elements of the set of points that
maximize expected utility, where the expectation is taken with respect to this subjective prob-
ability. We can consider then the best reply to forecasts correspondence B (i, · ) : M (A) ⇒S
defined by:

B (i, µ) := argmaxy∈S Eµ [u (i, y, a)] (2.2)

where µ ∈ M (A) and M (A) is the space of probability measures over A. Since the utility
functions are continuous, problems (2.1) and (2.2) are well defined and have always a solution,
so consequently the mappings B (i, · ) and B (i, · ) take non-empty compact values for all
a ∈ A. Clearly B (i, a) ≡ B (i, δa), where δa is the Dirac measure concentrated in a.

An equilibrium of this system is a state a∗ generated by actions of the agents that are
optimal reactions to this state.

5Following Aumann (1965) we define for a correspondence F : I⇒Rn its’ integral,
R

I
F (i) di, as:Z

I

F (i) di :=

�
x ∈ Rn : x =

Z
I

f (i) di and f is an integrable selection of F

�

6Equivalently, the set of measurable selections of the constant set valued mapping i⇒S.
7Where co {X} stands for the convex hull of a set X (see Rath (1992)).
8The set of functions for assumption HM is the set of real valued continuous functions defined on S×co {S}

endowed with the sup norm topology
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Definition 2.1. An equilibrium is a point a∗ ∈ A such that:

a∗ ∈ Γ (a∗) ≡
∫

I
B (i, a∗) ≡

∫
I
B (i, δa∗) (2.3)

Assumptions C and HM assure that the integrals in Definition 2.1 are well defined. The
conditions in (2.3) can be interpreted as forecasts that are self fulfilling. That is, in an
equilibrium a∗, agents must have a point forecast (Dirac measures) over a∗ that is supported
in the value of the state that is obtained when they take an optimal actions when having
such a forecast. In economic contexts, this is a perfect foresight equilibrium (see Guesnerie
(1992)).

Example 1. Variant of Muth’s (1961) model presented in Guesnerie (1992). In this example
there is a group of farmers indexed by the unit interval. Farmers decide a positive production
quantity q (i) and get as payoff income from sales minus the cost of production: pq (i) −
Ci (q (i)), where p is the price at which the good is sold. The price is obtained from the
inverse demand (or price) function, evaluated in total aggregate production Q. We see that
this model fits our framework.

We already said that the set of agents is the unit interval I = [0, 1] and we endow it with
the lebesgue measure. Strategies are production quantities, so strategy profiles are functions
from the set of agents to the positive line R+ (i.e. n = 1), q : I → R+. The aggregate variable
in this case is aggregate production. Agents can calculate their payoff by knowing aggregate
production through the price function and deciding their production. So the aggregate state
space is the positive line as well, R+ (i.e. K = 1 = n). The payoff of an agent is income
from sales minus cost of production, the utility function is then u (i, q, Q) = P (Q) q −Ci (q).
Where P : R+ → R+ is an inverse demand (or price) function that, given a quantity of good,
gives the price at which this quantity is sold. If we suppose that P is bounded and attains
the value 0 from a certain qmax on, then we get that the aggregate state set A is equal to the
set of strategies S (i) ≡ S, and both are the interval [0, qmax]. The aggregation operator, the
integral of the production profile q, gives aggregate production Q =

∫
I q (i) di.

On this example we can make the observation that the state of he game could be chosen to
be the price instead of aggregate production. This is not always the case if we want to obtain
the properties stated further on in this work. However, since this example is one-dimensional,
it is the case that most of the properties herein presented are passed on from the aggregate
production set to the price set.

Part of our interest in this paper is to include game theoretical concepts in to such a
general setting of a rational expectations model. In this section, we present a game theoretical
framework from which we can extract the necessary tools.

2.1.1 Games with a continuum of players

The economic system described above, can be regarded as a game with a continuum of players.
Non atomic games with continuum of players where first introduced by Schmeidler (1973).

We embed the economic system on to such an underlying game with a continuum of
players. In a game, players have payoff functions that depend on their own strategy and
the complete profile of strategies of the player π (i, · , · ) : S × SI → R. In our particular
framework these functions depend, for each player, on his own strategy and an average of
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the strategies of all the other players. That is, each π (i, · , · ) is obtained with our payoff
function u (i, · , · ) : S × co {S} → R such that:

π (i, y, s) ≡ u

(
i, y,

∫
I
s (i) di

)
Our above assumptions on utility functions put us in the framework of Rath (1992).

We begin by giving a definition of Nash Equilibrium in this setting.

Definition 2.2. A (pure strategy) Nash Equilibrium of a game is a strategy profile s∗ ∈ SI

such that:

∀ y ∈ S, u

(
i, s∗ (i) ,

∫
s∗ (i) di

)
≥ u

(
i, y,

∫
s∗ (i) di

)
, ∀ i ∈ I λ-a.e. (2.4)

It is useful to use the best response correspondence Br (i, · ) : SI⇒S defined as:

Br (i, s) := argmaxy∈S π (i, y, s) . (2.5)

The correspondence Br (i, · ) gives the optimal set for player i ∈ I facing a strategy profile
s. In this setting it is direct to see that if a =

∫
I s (i) di, then Br (i, s) = B (i, a).

Equivalently a Nash equilibrium is a strategy profile s∗ ∈ SI such that: s∗ (i) ∈ Br (i, s∗)
∀ i ∈ I λ-a.e..

We see that an equilibrium as defined in (2.3) has as a counterpart in the game-theoretical
approach a Nash Equilibrium of the underlying game as defined in (2.4):

Proposition 2.3. For every (pure strategy) Nash Equilibrium s∗ of the system’s underlying
game, there exists a unique equilibrium a∗ given by a∗ := A (s∗) and if a∗ is an equilibrium
of the system, then ∃ s∗ ∈ SI that is a Nash Equilibrium of the underlying game.

Proof. Indeed, if a∗ satisfies (2.3), then there exists an integrable strategy profile s∗ such that
s∗ (i) ∈ B (i, a∗) and A (s∗) = a∗. That is s∗ (i) ∈ B

(
i,

∫
I s∗ (i) di

)
, or equivalently

∀ y ∈ S, u

(
i, s∗ (i) ,

∫
s∗ (i) di

)
≥ u

(
i, y,

∫
s∗ (i) di

)
, ∀ i ∈ I λ-a.e.

Conversely, if

∀ y ∈ S, u

(
i, s∗ (i) ,

∫
s∗ (i) di

)
≥ u

(
i, y,

∫
s∗ (i) di

)
, ∀ i ∈ I λ-a.e. (2.6)

then s∗ (i) ∈ Br (i, s) ≡ B
(
i,

∫
s∗ (i) di

)
∀ i ∈ I λ-a.e.. Defining a∗ :=

∫
I s∗ (i) di we get that

a∗ ∈
∫
I B (i, a∗) di.

�

We will refer equivalently then, to equilibria as points a∗ ∈ A, representing “economic
equilibria”, and s∗ ∈ SI , as Nash Equilibria of the underlying game.

Under the previously mentioned hypothesis Rath shows that for every such game there
exists a Nash Equilibrium.

Theorem 2.4 (Rath 1992). The above underlying game has a (pure strategy) Nash Equilib-
rium, equivalently, the stylized economic model has an equilibrium..
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The proof of the Theorem is based on the Kakutani fixed point Theorem applied to what
we call the Cobweb Mapping, defined in (2.12). Indeed as we saw, a fixed point of such a
correspondence determines an equilibrium of the game.

We are interested now the plausibility of the equilibrium forecasts, or equivalently to the
assessment of the strength of expectational coordination described here. Our assessment relies
on the concepts of Rationalizability (Bernheim 1984; Pearce 1984) or on the derived concepts,
in our economic framework, of Strong Rationality (Guesnerie 1992). In the next sub-section,
we rather take the standard game-theoretical viewpoint.

2.2 Rationalizability in games.

Rationalizability is associated with the work of Bernheim (1984) and Pearce (1984). The set
of Rationalizable Strategy profiles were defined and characterized in the context of games
with a finite number of players, continuous utility functions and compact strategy spaces. It
has been argued that Rationalizable strategy profiles are profiles that can not be discarded
as outcomes of the game based on the premises of rationality of players, independence of
decision making and common knowledge (see Tan and da Costa Werlang (1988)).

First, agents only use strategies that are best responses to their forecasts and so strategies
in S that are never best response will never be used; second, agents know that other agents are
rational and so know that the others will not use the strategies that are not best responses and
so each agent may find that some of his remaining strategies may no longer be best responses,
since each agent knows that all agents know, etc. . This process continues ad-infinitum. The
set of Rationalizable solutions is such that it is a “fixed point” of the elimination process, and
it is the maximal set that has such a property (Basu and Weibull 1991).

Rationalizability has been studied in games with finite number of players. In a game
with a continuum of agents, the analysis has to be adapted. Following Jara (2007), and
coming to our setting, in a game-theoretical perspective, the recursive process of elimination
of non best responses, when agents have point expectations, is associated with the mapping
R : P

(
SI

)
→ P

(
SI

)
which to each subset H ⊆ SI associates the set R (H) defined by:

R(H) :=
{

s ∈ SI : s is a measurable selection of i⇒Br (i, H)
}

. (2.7)

The correspondence R represents strategies that are obtained as the reactions of agents to
strategy profiles contained in the set H ⊆ SI . If it is known that the outcome of the game is
in a subset H ⊆ SI , with point expectations, the strategies of agent i ∈ I are restricted to the
set Br (i,H) ≡

⋃
s∈H Br (i, s) and so actual strategy profiles must be measurable selections

of the set valued mapping i⇒Br (i,H). It has to be kept in mind that strategies of different
agents in a strategy profile in R (H) can be the reactions to (possibly) different strategy
profiles in H.

We then define :

Definition 2.5. The set of Point-Rationalizable9 Strategy Profiles is the maximal subset
H ⊆ SI that satisfies:

H ≡ R (H) . (2.8)

and we note it PS .
9Following Bernheim (1984) we refer as Point-Rationalizability to the case of forecasts as points in the set

of strategies or states and plain Rationalizability to the case of forecasts as probability distributions over the
corresponding set.
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Rationalizable Strategies should be obtained from a similar exercise but considering fore-
casts as probability measures over the set of strategies of the opponents. Loosely speaking
each player should consider a profile of probability measures (his forecasts over each of his
opponents play) and maximize some expected utility, expectation taken over an induced prob-
ability measure over the set of strategy profiles. A difficulty in a context with continuum of
players, relates with the continuity or measurability properties that must be attributed to
subjective beliefs, as a function of the agent’s name. There is no straightforward solution in
any case. However, in our framework it is possible to bypass this difficulty. We present in
the next section the concepts of Rationalizable States and Point-Rationalizable States, where
forecasts and the process of elimination are now taken over the set of states A.

2.3 The Economic Concepts

2.3.1 State Rationalizability

Below we present the mathematical formulation of Point-Rationalizable States and Rational-
izable States, and explore the relation between Point-Rationalizability and Rationalizability
in our context. We aim at clarifying the different perspectives on equilibrium stability and
the connections between the notions of local and global Strong Rationality (Section 2.4)). For
the proofs of the results herein stated and a more detailed treatment the reader is referred to
Jara (2007).

Analogously to what is done in subsection 2.2, given the optimal strategy correspondence
defined in equation (2.1) we can define the process of non reachable or non generated states,
considering forecasts as points in the set of states, as follows:

P̃ r (X) :=
∫

I
B (i, X) di (2.9)

This is, if initially agents’ common knowledge about the actual state of the model is a subset
X ⊆ A we have that forecasts are constrained by X. Then, if expectations are restricted to
point-expectations, agents deduce that the possible actions of each agent i ∈ I are in the set
B (i, X) :=

⋃
a∈X B (i, a). Since all agents know this, each agent can only discard the strategy

profiles s ∈ SI that are not a selection of the mappings that assign each agent to the these
sets. Finally, they would conclude that the actual state outcome will be restricted to the set
obtained as the integral of this set valued mapping.

Definition 2.6. The set of Point-Rationalizable States is the maximal subset X ⊆ A that
satisfies the condition:

X ≡ P̃ r (X)

and we note it PA.

We define similarly the set of Rationalizable States. The difference between Rationalizabil-
ity and Point-Rationalizability is that in Rationalizability forecasts are no longer constrained
to points in the set of outcomes. To asses Rationalizability we consider the correspondence
B (i, · ) : M (A) ⇒S defined in (2.2). The process of elimination of non expected-utility
maximizers is described with the mapping R̃ : P (A) → P (A):

R̃ (X) :=
∫

I
B (i,M (X)) di (2.10)
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If it is common knowledge that the actual state is restricted to a subset X ⊆ A, then agents
will use strategies only in the set B (i,M (X)) := ∪µ∈M(X)B (i, µ) where M (X) stands for
the set of probability measures whose support is contained in X. Forecasts of agents can
not give positive weight to points that do not belong to X. Strategy profiles then will be
selections of the correspondence i⇒B (i,M (X)). The state of the system will be the integral
of one of these selections.

Definition 2.7. The set of Rationalizable States is the maximal subset X ⊆ A that satisfies:

R̃ (X) ≡ X (2.11)

and we note it RA.

The difference between P̃ r and R̃ is that the second operator considers expected utility
maximizers and so for a given set X ⊆ A we have P̃ r (X) ⊆ R̃ (X). We get directly the result
in Proposition 2.14 below.

2.3.2 Cobweb Mapping and Equilibrium

Given the optimal strategy correspondence, B (i, · ), defined in (2.1) we can define the cobweb
mapping10 Γ : A⇒A:

Γ (a) :=
∫

I
B (i, a) di (2.12)

This correspondence represents the actual possible states of the model when all agents react
to the same state a ∈ A. Following Definition 2.1 we see that the equilibria of the economic
system are identified with the fixed points of the cobweb mapping.

Definition 2.8. The set of Aggregate Cournot Tâtonnement Outcomes, CA, is defined by:

CA :=
⋂
t≥0

Γt (A)

where Γt is the tth iterate11 of the correspondence Γ.

From the proof of Theorem 2.4 (see Rath (1992)) we get that in our framework the cobweb
mapping Γ is upper semi continuous as a set valued mapping, with non-empty, compact and
convex values Γ (a).

2.3.3 Stability

In Evans and Guesnerie (1993), two stability concepts of Rational Expectations Equilibria
are compared: Iterative Expectational Stability, based on the convergence of iterations of
forecasts; and Strong Rationality, based on the uniqueness of the Rationalizable Outcomes
(Guesnerie 1992) of an economic model. In what follows, we define these two concepts for
our setting.

10The name cobweb mapping comes from the familiar cobweb tâtonnement although in this general context
the process of iterations of this mapping may not necessarily have a cobweb-like graphic representation.

11This is:
Γ0 := A Γt := Γ

�
Γt (A)

�
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Strongly Rational Equilibrium The concept of Strong Rationality or Eductive Stability
associates the plausibility of a rational expectations equilibrium with the rationalizability of
outcomes, as stressed above. It puts emphasis on the “eductive process” associated with the
mappings defined above.

Definition 2.9. We will say that an equilibrium state a∗ is Locally Strongly Rational (Gues-
nerie 1992) if there exists a non-trivial neighborhood V 3 a∗ such that the eductive process
started at V leads to a∗. This is, ⋂

t≥0

R̃t (V ) ≡ {a∗} .

The equilibrium is (globally) Strongly Rational if

RA ≡ {a∗}

We can give analogous definitions using point forecast

Definition 2.10. We will say that an equilibrium state a∗ is Locally Strongly Point Rational
if there exists a neighborhood V 3 a∗ such that the process governed by P̃ r started at V
leads to a∗. This is, ⋂

t≥0

P̃ r
t
(V ) ≡ {a∗} .

The equilibrium is (globally) Strongly Point Rational if

PA ≡ {a∗}

Strong Rationality and Strong Point Rationality can be related to heterogeneous beliefs
of agents. Both concepts refer to heterogenous forecasts of agents, (even if these agents were
homogeneous (have the same utility function)). With Strong rationality, forecasts are based
on stochastic expectations, when with Strong Point Rationalizability, we restrict attention to
point expectations.

When we turn to Iterative Expectational Stability (IE-Stability), we drop the possibility
of heterogeneity of forecasts. The iterative process associated with IE-Stability is based on
iterations of the cobweb mapping Γ where we assume that all agents react to the same point
forecast over the set of states.

Iterative Expectational Stability The definition stated below is based on the one given
in Evans and Guesnerie (1993) where the results are obtained from a local linear approxima-
tion of the model. We define then (local) IE-Stability (Lucas 1978, DeCanio 1979, Evans and
Guesnerie 1993) as follows,

Definition 2.11. An equilibrium a∗ is said to be Locally Iterative Expectationaly Stable
if there is a neighborhood V 3 a∗ such that ∀ a0 ∈ V any sequence at ∈ Γ

(
at−1

)
satisfies

limt→∞ at = a∗. If V ≡ A then this equilibrium is (globally) Iteratively Expectationaly
Stable12

As Evans and Guesnerie mention in their paper, a possible interpretation of the recursion
at ∈ Γ

(
at−1

)
is a revision process in notational time t as a result of a tâtonnement process

in expectations.
12In this case it is the unique equilibrium of the system.
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2.4 Some Results

Rationalizability in the context of the games with continuum of players that we are consid-
ering is studied in Jara (2007). Therein it is proved that, in our context, the set of Point-
Rationalizable pure Strategies is paired with the set of Point-Rationalizable States; moreover,
in the context of the original model of Schmeidler13 these sets are also paired with the set of
Rationalizable (pure) Strategies. We state the result that is pertinent to our framework.

Proposition 2.12. We have:

PS ≡
{

s ∈ SI : s is a measurable selection of i⇒B (i, PA)
}

(2.13)

PA ≡
{

a ∈ A : a =
∫

I
s (i) di and s is a measurable function in PS

}
. (2.14)

Equations (2.13) and (2.14) stress the equivalence for point-rationalizability between the
state approach and the strategic approach in games with continuum of players : the sets of
point-rationalizable states can be obtained from the set of point-rationalizable strategies and
vice versa. In (2.13) we see that the strategy profiles in PS are profiles of best responses to
PA. Conversely in (2.14) we get that the points in PA are obtained as integrals of the profiles
in PS .

We will make use of Proposition 2.13 below, which provides, in the continuum of agents
framework, a key technical property of the set of Point-Rationalizable States.

Proposition 2.13. The set of Point-Rationalizable States can be computed as

PA ≡
∞⋂

t=0

P̃ r
t
(A)

The set PA, indeed obtains as the outcome of the iterative elimination of unreachable
states.

We denote by E ⊆ A, the set of equilibria of the economic system. The inclusions below
are unsurprising, in the sense that they reflect the decreasing strength of the expectational
coordination hypothesis, when going from equilibria to Aggregate Cournot outcomes, then to
Point-Rationalizable States, and finally to Rationalizable States.

Proposition 2.14. We have:

E ⊆ CA ⊆ PA ⊆ RA

The first inclusion is direct since fixed points of Γ are obtained as integrals of selections
of the best response correspondence i⇒B (i, a∗) and so will not be eliminated during the
process that characterizes the set CA. We can obtain the two last inclusions of Proposition
2.14 noting that if a set satisfies X ⊆ P̃ r (X) then it is contained in PA and equivalently if
it satisfies X ⊆ R̃ (X) then it is contained in RA. Then, the second inclusion is obtained
from the fact that each point in CA, as a singleton, satisfies {a∗} ⊆ P̃ r ({a∗}) and the third
inclusion is true because the set PA satisfies PA ⊆ R̃ (PA).

An important corollary of Proposition 2.13 is that the set of Point-Rationalizable States
is convex. This is a specific and nice property of our setting with a continuum of agents.

13The functions u (i, · , · ) are defined on a finite strategy set S and depend on the integral of a mixed
strategy profile.
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Theorem 2.15. The set of Point-Rationalizable States is well defined, non-empty, convex
and compact.

The set of Rationalizable States is non-empty and convex.

Proof. The properties are obtained from the convexity of each of the sets that are involved
in the intersection in the characterization of PA in Proposition 2.13. That is, PA is the
intersection of a nested family of non-empty, compact, convex sets. Non-emptiness of PA is
guaranteed by Proposition 2.13 along with Theorem 2.4, since an equilibrium would never be
eliminated, and so there exists a point a∗ ∈ A that belongs to every set P̃ r

t
(A). Proposition

2.14 implies the property for RA, while its’ convexity obtains from the definition.
�

Proposition 2.16. We have:

(i) a∗ is Locally Strongly Rational ⇐⇒ a∗ is Locally Strongly Point Rational.

(ii) a∗ is (Locally) Strongly Rational =⇒ a∗ is (Locally) IE-Stable.

Proof. For (i): to be completed
For (ii) note that

Γ (a) ≡ P̃ r ({a})

and use Proposition 2.14.
�

3 Economic games with strategic complementarities or sub-
stitutabilities.

3.1 Economic games with strategic complementarities.

In this section we want to study the consequences over expectational coordination and educ-
tive stability of the presence of Strategic Complementarities in our Economic System with
a Continuum of Agents. We will say that the economic system presents Strategic Comple-
mentarities if the individual best response mappings of the underlying game are increasing
for each i ∈ I. That is, if we consider the general payoff functions π (i, · , · ) : S × SI → R,
the usual product order in Rn over S and the order ≥SI defined by s ≥SI s′ if and only if
s (i) ≥ s (i)′ for almost all i ∈ I, over SI , then we would like the mappings Br (i, · ) : SI⇒S
defined in (2.5) to be increasing for the induced set ordering in S. That is, if s ≥SI s′ then
Br (i, s) � Br (i, s′).

The most classical representation of complementarity in games is the theory of supermod-
ular games as studied in Milgrom and Roberts (1990) and Vives (1990) (see as well Topkis
(1998)). In a supermodular game, a normal form game with a finite number of players is
embedded within a lattice structure.

A normal form game G :=
〈
I, (Si)i∈I , (πi ( · , · ))i∈I

〉
is supermodular if ∀ i ∈ I:

1.A Si is a complete lattice.

2.A πi (si, s−i) is order upper semi-continuous in si and order continuous in s−i, with finite
upper bound.

11



3.A πi ( · , s−i) is supermodular on si for all s−i ∈ S−i

4.A πi (si, s−i) has increasing differences in si and s−i

We will understand strategic complementarity then, as supermodularity of the underlying
game. Supermodularity (and of course submodularity as in the next section) could be studied
in the context of games with continuum of agents with a broad generality using the strategic
approach (using for instance the tools available from Riesz spaces). However, our present
concern suggests to focus on the set of states and introduce strategic complementarities ideas
directly in this framework. Our objective will then be to understand the consequences of
the assumptions introduced on all the sets under scrutiny (equilibria, Cournot outcomes,
Point-Rationalizable States, Rationalizable States).

Let us proceed as suggested and make, in the economic setting, the following assumptions
over the strategy set S and the utility functions u (i, · , · ).

1.B S is the product of n compact intervals in R+.

2.B u (i, · , a) is supermodular for all a ∈ A and all i ∈ I.

3.B ∀ i ∈ I, the function u (i, y, a) has increasing differences in y and a. That is, ∀ y, y′ ∈ S,
such that y ≥ y′ and ∀ a, a′ ∈ A such that a ≥ a′:

u (i, y, a)− u
(
i, y′, a

)
≥ u

(
i, y, a′

)
− u

(
i, y′, a′

)
(3.1)

Assumption 2.B is straightforward. Assumption 1.B implies that the set of strategies is a
complete lattice in Rn. Since in our model we already assumed that the utility functions
u (i, · , · ) are continuous, we obtain that in particular the functions π (i, · , · ) satisfy 2.A
(endowing SI with the weak topology for instance, this is of no relevance for what follows).
Finally, if we look at A and SI as ordered sets (with the product order of Rn in A and ≥SI

in SI), we see that the aggregation mapping A : SI → A is increasing, and so assumption
3.B implies 4.A.

Proposition 3.1. Under assumptions 1.B through 3.B, the mappings B (i, · ) are increasing
in a in the set A, and the sets B (i, a) are complete sublattices of S.

Proof. The first property is a consequence of Theorem 2 in Milgrom and Roberts (1990) and
the second part we apply Theorem 2.8.1 in Topkis (1998) considering the constant correspon-
dence Sa ≡ S ∀ a ∈ A �

Definition 3.2. We name G, an economic system such that S and u (i, · , · ) satisfy assump-
tions 1.B through 3.B.

One implication of our setting is that since S is a convex complete lattice, then A ≡
co {S} ≡ S is as well a complete lattice. From now on we will refer to the supermodular
setting as G.

Proposition 3.3. In G the correspondence Γ is increasing and Γ (a) is subcomplete for each
a ∈ A.

Recall that the set of equilibria is E ⊆ A and this is the set of fixed points of Γ. For a
correspondence F : A⇒A, we will denote the set of fixed points of F as EF . Consequently
E ≡ EΓ. We see now that under assumptions 1.B through 3.B we get the hypothesis of
Proposition 3.4.
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Proposition 3.4. If A is a complete lattice, Γ is increasing, Γ (a) is subcomplete for each
a ∈ A, then E 6= ∅ is a complete lattice.

Proof. As a consequence of the Theorem 2.5.1 in Topkis (1998) EΓ is a non-empty complete
lattice. �

In the previous proposition we have an existence result, but what is most important is
that the set of equilibria has a complete lattice structure. In particular we know that there
exist points a∗ ∈ A and ā∗ ∈ A (that could be the same point) such that if a∗ ∈ E is an
equilibrium, then a∗ ≤ a∗ ≤ ā∗.

The previous results tell us that when the economic system’s underlying game is super-
modular and since the aggregate mapping is monotone (in this case increasing), then we can
apply Proposition 3.4 and work in a finite dimensional setting (the set A) rather than infinite
dimensional. We state this as a formal result in the next proposition.

Proposition 3.5. In G we have

PA ⊆

[
inf
EΓ

{EΓ} , sup
EΓ

{EΓ}

]

and infEΓ
{EΓ} and supEΓ

{EΓ} are equilibria.

The proof is relegated to the appendix. The intuitive interpretation of the proof is as
follows. Originally, agents know that the state of the system will be greater than inf A and
smaller than supA. Since the actual state is in the image through P̃ r of A, the monotonicity
properties of the forecasts to state mappings allow agents to deduce that the actual state
will be in fact greater than the image through Γ of the constant forecast a0 = inf A and
smaller than the image through Γ of the constant forecast ā0 = supA. That is, it suffices
to consider the cases where all the agents having the same forecasts inf A and supA. The
eductive procedure then can be secluded on each iteration, only with iterations of Γ. Since Γ
is increasing, we get an increasing sequence that starts at a0 and a deceasing sequence that
starts at ā0. These sequence converge and upper semi continuity of Γ implies that their limits
are fixed points of Γ.

There are three key features to keep in mind, that lead to the conclusion. First, the fact
that there exists a set A that, being a complete lattice and having as a subset the whole image
of the mapping A, allows the eductive process to be initiated. Second, monotonic structure of
the model implies that it suffices to use Γ to seclude, in each step, the set obtained from the
eductive process into a compact interval. Third, continuity properties of the utility functions
and the structure of the model allow the process to converge. Now that we have proved this
result for the Point-Rationalizable set, we can use the proof of Proposition 3.5 to get the same
conclusion for the set of Rationalizable States. For this we use the following Lemma.

Lemma 3.6. In G, for a′ ∈ A and µ ∈M (A), if a′ ≤ a, ∀ a ∈ supp (µ). Then ∀ i ∈ I

B
(
i, a′

)
� B (i, µ) ,

equivalently, if a′ ≥ a, ∀ a ∈ supp (µ). Then ∀ i ∈ I

B
(
i, a′

)
� B (i, µ) .
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This is, if the forecast of an agent has support on points that are larger than a point
a′ ∈ A, then his optimal strategy set is larger than the optimal strategy associated to a′ (for
the induced set ordering) and analogously for the second statement.

Proof. Observe first that supermodularity of u (i, · , a) is preserved14 when we take expecta-
tion on a.

Now consider y′ ∈ B (i, a′) and y ∈ B (i, µ) we show that min {y, y′} ∈ B (i, a′) and
max {y, y′} ∈ B (i, µ). Since y′ ∈ B (i, a′) we have that:

0 ≤ u
(
i, y′, a′

)
− u

(
i,min

{
y, y′

}
, a′

)
.

Increasing differences of u (i, y, a) in (y, a) implies that ∀ a ∈ supp (µ),

u
(
i, y′, a′

)
− u

(
i, min

{
y, y′

}
, a′

)
≤ u

(
i, y′, a

)
− u

(
i, min

{
y, y′

}
, a

)
and so if on the right hand side we take expectation with respect to µ we get

u
(
i, y′, a′

)
− u

(
i,min

{
y, y′

}
, a′

)
≤ Eµ

[
u

(
i, y′, a

)]
− Eµ

[
u

(
i, min

{
y, y′

}
, a

)]
.

Supermodularity of u (i, · , a) implies that

Eµ

[
u

(
i, y′, a

)]
− Eµ

[
u

(
i, min

{
y, y′

}
, a

)]
≤ Eµ

[
u

(
i,max

{
y, y′

}
, a

)]
− Eµ [u (i, y, a)]

and the last term is less or equal to 0 since y ∈ B (i, µ).
All these inequalities together imply that max {y, y′} ∈ B (i, µ) and min {y, y′} ∈ B (i, a′)
The second statement is proved analogously.

�

The fact that the points supEΓ
{EΓ} and infEΓ

{EΓ} are equilibria, implies that they are
Point-Rationalizable and Rationalizable states and so Proposition 3.5 states that the inter-
val

[
infEΓ

{EΓ} , supEΓ
{EΓ}

]
is the smallest interval that contains the set PA. Considering

Lemma 3.6 and the proof of Proposition 3.5 we get that this same interval contains tightly
the set RA.

Theorem 3.7. In the economic system with Strategic Complementarities we have:

(i) The set of equilibria E ⊆ A is complete lattice.

(ii) There exist a greatest equilibrium and a smallest equilibrium, that is ∃ a∗ ∈ E and ā∗ ∈ E
such that ∀ a∗ ∈ E, a∗ ≤ a∗ ≤ ā∗.

(iii) The sets of Rationalizable and Point-Rationalizable States are convex sets, tightly con-
tained in the interval [a∗, ā∗]. That is,

PA ⊆ RA ⊆ {a∗}+Rn
+

⋂
{ā∗} −Rn

+

and ā∗ ∈ PA and a∗ ∈ PA.
14If u (i, · , a) is supermodular, then for s, s′ ∈ S, we have for each a ∈ A:

u
�
i, min

�
s, s′

	
, a
�

+ u
�
i, max

�
s, s′

	
, a
�
−
�
u (i, s, a) + u

�
i, s′, a

��
≥ 0

Taking expectation we get the result.
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Figure 1: Strategic Complementarities for A ⊂ R2 with four equilibria.

Proof. Using Lemma 3.6 in the proof of Proposition 3.5 we can see that R̃t (A) ⊆
[
at, āt

]
and

so we get the result.
�

Convexity of PA implies the convex hull of E is contained in PA, in particular the segment

{ a ∈ A : a = αa∗ + (1− α) ā∗ α ∈ [0, 1]} ⊆ PA ⊆ RA

Let us also note :

Corollary 3.8. If in G Γ has a unique fixed point a∗, then

RA ≡ PA ≡ {a∗} .

Our results are unsurprising. In the context of an economic game with a continuum of
agents, they mimic, in an expected way, the standards results obtained in a game-theoretical
framework with a finite number of agents and strategic complementarities. Additional con-
vexity properties reflect the use of a continuum setting.

We see from Theorem 3.7 and Corollary 3.8, that under the presence of strategic comple-
mentarity, uniqueness of equilibrium implies the success of the elimination of unreasonable
states. The unique equilibrium is then Strongly Rational and this stability is global.

Corollary 3.9. In G, the three following statements are equivalent:

(i) an equilibrium a∗ is Strongly Rational.

(ii) an equilibrium a∗ is IE-Stable.

(iii) there exists a unique equilibrium a∗.
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Proof. From the definitions of both concepts of stability we see that Strong Rationality implies
IE-Stability. The relevant part of the corollary is then that under Strategic Complementar-
ities, we have the inverse. If a∗ is IE-Stable, then from the proof of Proposition 3.5 we see
that the sequences

{
at

}
t≥0

and
{
āt

}
t≥0

must both converge to a∗ and so we get that a∗ is
Eductively Stable.

�

This last statement may be interpreted as the fact that in the present setting, heterogeneity
of expectations does not play any role in expectational coordination. This is a very special
feature of expectational coordination as argued in Evans and Guesnerie (1993). Surprisingly
enough, a similar feature appears in the next class of models under consideration.

3.2 Economic games with Strategic Substitutabilities

We turn to the case of Strategic Substitutabilities. We will say that the economic system
presents Strategic Substitutabilities if the individual best response mappings of the underlying
game are decreasing for each i ∈ I. That is, if s ≥SI s′ then Br (i, s) � Br (i, s′). Where
Br (i, · ) and ≥SI are the same as in section 3.1.

To study the consequences of embedding our model in a setting of strategic substitutabil-
ities we use the same structure as in the previous section except that we replace assumption
3.B with assumption 3.B’ below.

1.B S is the product of n compact intervals in R+.

2.B u (i, · , a) is supermodular for all a ∈ A

3.B’ u (i, y, a) has decreasing differences in y and a. That is, ∀ y, y′ ∈ S, such that y ≥ y′

and ∀ a, a′ ∈ A such that a ≥ a′:

u (i, y, a)− u
(
i, y′, a

)
≤ u

(
i, y, a′

)
− u

(
i, y′, a′

)
(3.2)

Assumptions 1.B through 3.B’ turn the underlying game of our model into a submodular
game15 with a continuum of agents. The relevant difference with the previous section is that
now the monotonicity of the mapping A along with assumption 3.B’ implies that the best
response mappings are decreasing on the strategy profiles.

Example 2. : This example is the model described in Guesnerie (2001b). There is a production
sector of L sectors indexed by l, with Nl firms in each sector. Firms hire workers at a fixed
wage w and sell at price pl. Firm i’s in sector l supply function is denoted Sl

i (pl/w).

The following Propositions are the counterparts of Propositions 3.1 and 3.3.

Proposition 3.10. Under assumptions 1.B, 2.B and 3.B’, the mappings B (i, · ) are de-
creasing in a in the set A, and the sets B (i, a) are complete sublattices of S.

Definition 3.11. We name G′, an economic system such that S and u (i, · , · ) satisfy
assumptions 1.B, 2.B, and 3.B’.

15A submodular game is a game under assumptions 1.A to 3.A with assumption 4.A replaced by assumption
4.A’: the payoff functions πi (si, s−i) have decreasing differences in (si, s−i)
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Proposition 3.12. In G the correspondence Γ is decreasing and Γ (a) is subcomplete for each
a ∈ A.

We denote Γ2 for the second iterate of the cobweb mapping, that is Γ2 : A⇒A, Γ2 (a) :=
∪a′∈Γ(a)Γ (a′).

Corollary 3.13. In G the correspondence Γ2 is increasing and Γ2 (a) is subcomplete for each
a ∈ A.

Proof. Is a consequence of Γ being decreasing.
�

The correspondence Γ2 will be our main tool for the case of strategic substitutabilities.
This is because, in the general context, the fixed points of Γ2 are point-rationalizable just as
the fixed points of Γ are. Actually, it is direct to see that the fixed points of any iteration of
the mapping Γ are as well point-rationalizable. The relevance of strategic substitutabilities is
that under their presence it suffices to use the second iterate of the cobweb mapping to seclude
the set of point-rationalizable states. Using Proposition 3.4 we get that under assumptions
1.B, 2.B and 3.B’, the set of fixed points of Γ2, EΓ2 , shares the properties that the set of
equilibria E had under strategic complementarities.

Proposition 3.14. The set of fixed points of Γ2, EΓ2 is a non empty complete lattice.

Proof. Apply Proposition 3.4 to Γ2.
�

The relevance of Proposition 3.14 is that, as in the case of strategic complementarities,
under strategic substitutabilities it is possible to seclude the set of Point-Rationalizable States
into a tight compact interval. This interval is now obtained from the complete lattice structure
of the set of fixed points of Γ2, which can be viewed, in a multi-period context, as cycles of
order 2 of the system.

Proposition 3.15. In G′ we have

PA ⊆

[
inf
EΓ2

{EΓ2} , sup
EΓ2

{EΓ2}

]

and infEΓ2 {EΓ2} and supEΓ2
{EΓ2} are point-rationalizable.

The proof is relegated to the appendix. Keeping in mind the proof of Proposition 3.5, we
can follow the idea of the proof of Proposition 3.15. As usual, common knowledge says that
the state of the system will be greater than inf A and smaller than supA. In first order basis
then, the actual state is known to be in the image through P̃ r of A. Since now the cobweb
mapping is decreasing, the structure of the model allows the agents to deduce that the actual
state will be in fact smaller than the image through Γ of the constant forecast a0 = inf A and
greater than the image through Γ of the constant forecast ā0 = supA. That is, again it suffices
to consider the cases where all the agents having the same forecasts inf A and supA and this
will give a1, associated to ā0, and ā1, associated to a0. However, now we have a difference
with the strategic complementarities case. In the previous section the iterations started in
the lower bound of the state set were lower bounds of the iterations of the eductive process.
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As we see, this is not the case anymore. Nevertheless, here is where the second iterate of Γ
gains relevance. In a second order basis, once we have a1 and ā1 obtained as above, we can
now consider the images through Γ of these points and we get new points ā2, from a1, and
a2, from ā1, that are respectively upper and lower bounds of the second step of the eductive
process. This is, in two steps we obtain that the iterations started at the upper (resp. lower)
bound of the states set is un upper (resp. lower) bound of the second step of the eductive
process. Moreover, the sequences obtained by the second iterates are increasing when started
at a0 and decreasing when started at ā0. The complete lattice structure of A again implies
the convergence of the monotone sequences while Γ2 inherits upper semi continuity from Γ.
This implies that the limits of the sequences are fixed points of Γ2.

The three key features that lead to the conclusion are analogous to the strategic comple-
mentarity case. First, A is a complete lattice that has as a subset its’ image through the
function A and thus allows the eductive process to be initiated. Second, monotonic structure
of the model implies that it now suffices to use Γ2 to seclude, every second step, the set
obtained from the eductive process into a compact interval. Third, continuity properties of
the utility functions and the monotonic structure of the model allow the process to converge.

Note that, also as in the case of strategic complementarities, since the limits of the interval
in Proposition 3.15 are point-rationalizable, this is the smallest interval that contains the set
of point-rationalizable states.

Adapting the proof of Lemma 3.6 to the decreasing differences case, we obtain its’ coun-
terpart for the strategic substitutabilities case stated below.

Lemma 3.16. In G′, for a′ ∈ A and µ ∈M (A), if a′ ≤ a, ∀ a ∈ supp (µ). Then ∀ i ∈ I

B
(
i, a′

)
� B (i, µ) ,

equivalently, if a′ ≥ a, ∀ a ∈ supp (µ). Then ∀ i ∈ I

B
(
i, a′

)
� B (i, µ) .

We are now able to state the main result of the strategic substitutabilities case.

Theorem 3.17. In the economic system with Strategic Substitutabilities we have:

(i) There exists at least one equilibrium a∗.

(ii) There exist greatest and a smallest rationalizable strategies, that is ∃ a ∈ RA and ā ∈ RA
such that ∀ a ∈ RA, a ≤ a ≤ ā, where a and ā are cycles of order 2 of the Cobweb
mapping.

(iii) The sets of Rationalizable and Point-Rationalizable States are convex.

(iv) The sets of Rationalizable and Point-Rationalizable States are tightly contained in the
interval [a, ā]. That is,

PA ⊆ RA ⊆ {a}+Rn
+

⋂
{ā} −Rn

+

and ā ∈ PA and a ∈ PA.
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Proof. Using Lemma 3.16 in the proof of Proposition 3.15 we can see that R̃2t (A) ⊆
[
a2t, ā2t

]
and so we get the two first results.

The last assertion is a consequence of the general setting of Rath (1992). Theorem 2.4
gives the existence of equilibrium.

�

Summing up, we have that in the case of Strategic Substitutabilities we can still use the
correspondence Γ (through its’ second iterate) to seclude to an interval the sets of Point-
Rationalizable and Rationalizable States. This inclusion is tight since the boundaries of this
interval are in fact Point-rationalizable States.

Corollary 3.18. If in G′, Γ2 has a unique fixed point a∗, then

RA ≡ PA ≡ {a∗} .

Proof. Observe that both limits of the interval presented in Theorem 3.17, a and ā, are fixed
points of Γ2. Hence the result.

�

As opposed to the case of strategic complementarities, the optimistic equivalence result
of Corollary 3.9 can not be directly obtained in the setting of strategic substitutabilities. If
the sequences b̄t and bt defined in the proof of Proposition 3.15 converge to the same point,
i.e. b∗ = b̄∗ = a∗, then a∗ is the unique equilibrium of the system, it is strongly rational and
IE-stable. However, under strategic substitutabilities there could well be a unique equilibrium
that is not necessarily strongly rational. Think of the case of A ⊂ R, where a continuous
decreasing function Γ has unique fixed point, that could well be part of a bigger set of Point-
Rationalizable States (see figure 2).

Corollary 3.19. The following statements are equivalent.

(i) an equilibrium a∗ is Strongly Rational.

(ii) an equilibrium a∗ is IE-Stable.

Again heterogeneity of expectations in a sense does not matter, for evaluating the quality
of expectational coordination. However, here uniqueness of equilibrium does not assure its’
global stability. We recover the intuitions stated in (Guesnerie 2005).

4 The differentiable case.

Here, we add two assumptions concerning the cobweb mapping Γ:

H1 Γ : A → A is a C1-differentiable function.

H2 The vector-field (a− Γ (a)) points outwards on A : formally, this means that if p (a) is a
supporting price vector at a boundary point of A (p (a)·A ≤ 0), then p (a)·(a− Γ (a)) ≥
0.
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Γ2 (b∗) = b∗
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b̄∗
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Γ (a∗) = a∗

0 amax
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Figure 2: Strategic substitutes for A ≡ [0, amax] ⊂ R. There exists a unique equilibrium and
multiple fixed points for Γ2

When, as in most applications A is the product of intervals for example [0,Mh], H2 means
Γh (a) ≥ 0, whenever ah = 0, and Mh − Γh (a) ≥ 0, whenever ah = Mh.

The jacobian of the function Γ, ∂Γ, can be obtained from the first order conditions of
problem (2.1) along with (2.12).

∂Γ (a) =
∫

I
∂B (i, a) di

where ∂B (i, a) is the jacobian of the optimal strategy (now) function. This jacobian is equal
to:

∂B (i, a) ≡ −[Duss (i, B (i, a) , a)]−1Dusa (i, B (i, a) , a) (4.1)

where Duss (i, B (i, a) , a) is the matrix of second derivatives with respect to s of the util-
ity functions and Dusa (i, B (i, a) , a) is the matrix of cross second derivatives, at the point
(B (i, a) , a).

4.1 The strategic complementarities case.

Under assumptions 1.B to 3.B, along with C2 differentiability of the functions u (i, · , · ), we
get from (4.1) that the matrices ∂B (i, a) are positive16, and consequently so is ∂Γ (a).

From the properties of positive matrices are well known. When there exists a positive
vector x, such that Ax < x, the matrix A is said “productive” : its eigenvalue of highest
modulus is positive and smaller than one. When a is one-dimensional, the condition says that
the slope of Γ is smaller than 1.

16It is a well know fact that increasing differences implies positive cross derivatives on Dusa (i, B (i, a) , a)
and it can be proved that for a supermodular function the matrix −[Duss (i, · , · )]−1 is positive at (B (i, a) , a)
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In this special case, as well as in our more general framework, the condition has the flavour
that actions do not react too wildly to expectations..

In this case, we obtain :

Theorem 4.1. Uniqueness.
If ∀ a ∈ A, ∂Γ (a) is a “productive” matrix, then there exists a unique Strongly Rational

Equilibrium.

Proof. Compute in any equilibrium a∗ the sign of Det [I − ∂Γ (a∗)]. If ∂Γ (a∗) is productive,
its eigenvalue of highest modulus is real positive and smaller than 1. Hence [I − ∂Γ (a∗)] has
only positive real eigenvalues. It follows that the sign of Det [I − ∂Γ (a∗)] is the sign of the
characteristics polynomial Det{[I − ∂Γ (a∗)] − λI} for λ → −∞, i.e is plus. The index of
ϕ(a) = a − Γ (a) is then +1. The Poincaré-Hopf theorem for vector fields pointing inwards
implies that the sum of indices must be equal to +1, hence the conclusion of uniqueness.
Strong Rationality follows from Corollary 3.9.

�

Our assumptions also have consequences for “eductive” stability.

Theorem 4.2. Expectational coordination.
1- If sign of Det [I − ∂Γ (a∗)] is +, for some equilibrium a∗, then a∗ is locally “eductively”

stable.

Proof. take as initial local hypothetical CK neighbourhood
{
{a−}+Rn

+

}
∩

{
{a+} −Rn

+

}
where a− < a∗ , a+ > a∗, both being close to a∗.

The general argument of Proposition 3.5 works.
�

The above statements generalize in a reasonable way the intuitive findings easily obtainable
from the one-dimensional model.

4.2 The strategic substitutabilities case.

Let us go to the Strategic Substitutabilities case. We maintain the previous boundary as-
sumptions.

When passing from 3.B to 3.B’ we get that now the matrix ∂Γ has negative17 entries. And
I − ∂Γ (a) is a positive matrix. Again, it has only positive eigenvalues, whenever the positive
eigenvalue of highest modulus of -∂Γ is smaller than 1.

Theorem 4.3. Let us assume that ∀ a1, a2 ∈ A, ∂Γ (a1) ∂Γ (a2) is productive,
1- There exists a unique equilibrium.
2- It is globally Strongly Rational.

Proof : (sketch). The assumption implies that ∀a ∈ A, −∂Γ (a) is productive.
Hence I−∂Γ is a positive matrix, and whenever the positive eigenvalue of highest modulus

of −∂Γ is smaller than 1, it has only positive eigenvalues. Then its determinant is positive.
Then the above Poincaré-Hopf argument applies to the first and second iterate of Γ.

17Since the matrix Dusa (i, B (i, a) , a) has only non-positive entries under strategic substitutabilities (see
note 16).
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It follows that there exists a unique equilibrium and no two-cycle.
Then, Theorem 3.17 applies.

�

Also, as above one can show that the “productive” condition when it holds in one equi-
librium ensures local strong rationality.

Next result comes back on uniqueness (to be written).

5 Comments and Conclusions

The Rational Expectations Hypothesis has been subject of scrutiny in recent years through the
assessment of Expectational Coordination. Although the terminology is still fluctuating, the
ideas behind what we call here “Strong Rationality” or “Eductive Stability” has been at the
heart of the study of diverse macroeconomic and microeconomic models of standard markets
with one or several goods, see Guesnerie, models of information transmission (Desgranges
(2000), Desgranges and Heinemann (2005), Ben Porath-Heifetz).

In this work we aimed to address the subject of “eductive stability” with broad generality.
We have presented a stylized framework that encompasses a significant class of economic
models. We have made the connection between what may be called the “economic” viewpoint
and a now standard line of research in game-theory: games with a continuous of players. The
presence of an aggregate variable in the model allowed for us go back and forth between
the economic and game-theoretical point of view, making the connection between different
approaches to the study of Rationalizability.

We have exhibited properties of what we called the set of Rationalizable and Point-
Rationalizable States. The Rationalizable set is proved to be non-empty and convex as the
set of Point-Rationalizable States, with this last set also being compact.

When strategic complementarities are present on our model, we have obtained results
that echo, in the present context, classical game-theoretical results. We have shown that
these results have counterparts for the case of strategic substitutabilities, using the properties
of the second iterate of the Cobweb mapping. We give then simple and appealing conditions
implying uniqueness of equilibria and stability in the sense of Strong Rationality, although in
this case the former does not imply the latter.

In all cases, it turns out that the “eductive process” that allows to obtain Point-Rationalizable
and (locally) Strong Rationalizable States can be achieved tightly with the “iterative expec-
tations process” or “Cournot tâtonnement ” used to explain Iterative Expectational Stability.
In both circumstances, one may argue that heterogeneity of expectations makes no difference
for expectational coordination. This is a most significant feature of these situations that
strikingly contrast the general case studied in Evans and Guesnerie (2005). In this sense, we
hope that these results provide a useful benchmark for a deeper understanding of the role of
the heterogeneity of beliefs in expectational coordination.
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A Proof of Proposition 3.5

Proof. From Propositions 3.4 and 3.3 we get that EΓ is non empty and has a greatest and a
smallest element.

Following the structure of the proof of Theorem 5 in Milgrom and Roberts we prove
that P̃ r

t
(A) is contained in some interval [at, āt] and that the sequences at and āt satisfy

at → infEΓ
{EΓ} and āt → supEΓ

{EΓ}.
Define a0 and at as:

a0 := inf A (A.1)
at := inf

A
Γ

(
at−1

)
∀ t ≥ 1 (A.2)

• P̃ r
t
(A) ⊆

[
at,+∞

[
Clearly it is true for t = 0.
Suppose that it is true for t ≥ 0. That is, at ≤ a ∀ a ∈ P̃ r

t
(A). Since B (i, · ) is increas-

ing, we get that B
(
i, at

)
� B (i, a) ∀ a ∈ P̃ r

t
(A). In particular infS B

(
i, at

)
≤ y, ∀ y ∈

B (i, a), ∀ a ∈ P̃ r
t
(A). This implies that for any selection s ∈ SI of i⇒B

(
i, P̃ r

t
(A)

)
,∫

inf
S

B
(
i, at

)
di ≤

∫
s (i) di (A.3)
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Since B
(
i, at

)
is subcomplete, infS B

(
i, at

)
∈ B

(
i, at

)
and so we get that:

inf
A

Γ
(
at

)
≡ inf

A
{ b ∈ A : ∃ s measurable selection of i⇒B (i, a) such that, b = A (s)}

≤
∫

inf
S

B
(
i, at

)
(A.4)

We conclude then that

at+1 ≡ inf
A

Γ
(
at

)
≤

∫
inf
S

B
(
i, at

)
≤ a ∀ a ∈ P̃ r

t+1
(A) .

The equality is the definition of at+1, the first inequality comes from (A.4) and the
second one is obtained from (A.3) and the definition of P̃ r.

• The sequence is increasing

By definition of a0, a0 ≤ a1. Suppose that at−1 ≤ at, then from Lemma 2.4.2 in Topkis
(1998), at ≡ infA Γ

(
at−1

)
≤ infA Γ

(
at

)
≡ at+1

• The sequence has a limit and limt→+∞ at is a fixed point of Γ

Since the sequence is increasing and A is a complete lattice, it has a limit a∗. Further-
more, since Γ is subcomplete, upper semi-continuity of Γ implies that a∗ ∈ Γ (a∗).

• a∗ ≡ infEΓ
{EΓ}

According to the previous demonstration, since the fixed points of Γ are in the set PA,
all fixed points must be in [a∗,+∞[ and so a∗ is the smallest fixed point.

Defining ā0 and āt as:

ā0 := supA (A.5)
āt := sup

A
Γ

(
āt−1

)
∀ t ≥ 1 (A.6)

In an analogous way we obtain that PA ⊆ ]−∞, ā∗ ], with ā∗ being the greatest fixed point
of Γ.

�

B Proof of Proposition 3.15

Proof. Following the proof of Proposition 3.5, consider the sequence
{
at

}∞
t=0

therein defined,
but let us change the definition of at when t is odd to:

at := sup
A

Γ
(
at−1

)
.

By the definition of a0, we know that ∀ a ∈ A, a ≥ a0. Since the mappings B (i, · ) are
decreasing we have B

(
i, a0

)
� B (i, a) ∀ a ∈ A and in particular

sup
S

B
(
i, a0

)
≥ y ∀ y ∈ B (i, a) ∀ a ∈ A
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Since B
(
i, a0

)
is subcomplete supS B

(
i, a0

)
∈ B

(
i, a0

)
and so

∫
supS B

(
i, a0

)
∈ Γ

(
a0

)
, thus

sup
A

Γ
(
a0

)
≥

∫
sup

S
B

(
i, a0

)
di ≥

∫
s (i) di

for any measurable selection s of i⇒B (i,A). That is a1 ≥ a ∀ a ∈ P̃ r
1
(A); or equivalently,

P̃ r
1
(A) ⊆

]
−∞, a1

]
.

A similar argument leads to conclude that P̃ r
2
(A) ⊆

[
a2,+∞

[
.

Let us define then the sequence bt := a2t, t ≥ 0. This sequence satisfies:

1. P̃ r
2t ⊆

[
bt,+∞

[
. This can be obtained as above by induction over t.

2.
{
bt

}
t≥0

is increasing.

As before, we get that
{
bt

}
t≥0

has a limit b∗. Since Γ is u.s.c. and A is compact, we obtain
that the second iterate of Γ, Γ2 is as well u.s.c.. Moreover, from Proposition 3.13, we get that
bt ∈ Γ2

(
bt−1

)
. This implies that b∗ is a fixed point of Γ2 and so it is a point-rationalizable

state. Consequently we get

1. PA ⊆ [b∗,+∞ [

2. b∗ ∈ Γ2 (b∗) and b∗ is a point-rationalizable state.

Considering the analogous sequence to obtain the upper bound for PA:

ā0 := supA
āt := inf

A
Γ

(
āt−1

)
when t is odd (B.1)

āt := sup
A

Γ
(
āt−1

)
when t is even

We generate a decreasing sequence
{
b̄t

}
t≥0

defined by b̄t := ā2t, t ≥ 0, who’s limit b̄∗, is a
point-rationalizable state and an upper bound for PA, that is:

1. PA ⊆
]
−∞, b̄∗

]
2. b̄∗ ∈ Γ2

(
b̄∗

)
. Which implies that b̄∗ is a point-rationalizable state.

As a summary, we get:

PA ⊆
⋂
t≥0

P̃ r
t
(A) ⊆

⋂
t≥0

P̃ r
2t

(A) ⊆
[
b∗, b̄∗

]
(B.2)

�
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