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Abstract: we design, for a broad class of rational-expectations dynamic stochastic general-
equilibrium models, �bubble-free�interest-rate rules that not only ensure the local determinacy of
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economy from gradually leaving this neighbourhood. We show that these rules can still be e¤ect-
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Introduction

Today�s most common practice to design monetary policy in a rational-expectations dynamic

stochastic general-equilibrium (DSGE) model proceeds in two steps. First, the exogenous stochastic

disturbances are assumed to be small enough for the targeted equilibrium to be found in the

neighbourhood of the targeted steady state. Second, an interest-rate rule is chosen such that

the system of equations linearised in this neighbourhood admits that equilibrium as its unique

stationary solution. Such an interest-rate rule, whose locally linearised form is often a Taylor rule

satisfying the Taylor principle, enables the central bank to preclude the kind of macroeconomic

�uctuations that, according to Clarida, Galí and Gertler (2000) and Lubik and Schorfheide (2004),

occurred in the U.S. before 1979. However, as �rst shown by Benhabib, Schmitt-Grohé and Uribe

(2001a), these interest-rate rules can be consistent with equilibrium trajectories that originate

from the neighbourhood of the targeted steady state and gradually leave this neighbourhood �

for instance to fall eventually into the neighbourhood of another steady state interpreted as the

liquidity trap, as arguably did the Japanese economy in the 1990s-2000s.
�This paper is a revised version of Loisel (2006). I am grateful in particular to Klaus Adam, Lawrence Christiano,

Daniel Cohen, Harris Dellas, Jordi Galí, Marc Giannoni, Michel Juillard, Hubert Kempf, Guy Laroque, Philippe
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those of the author and should not be interpreted as re�ecting those of the Banque de France.
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This paper designs locally linearised interest-rate rules that preclude all the undesirable devel-

opments mentioned above by not only ensuring the local determinacy of the targeted equilibrium

in the neighbourhood of the targeted steady state, but also preventing the economy from gradu-

ally leaving this neighbourhood. To that aim, we consider a broad class of rational-expectations

dynamic stochastic linear systems of equations, meant to represent the locally linearised reduced

form of rational-expectations DSGE models. Provided that the exogenous stochastic disturbances

are small enough, a necessary condition for the economy to gradually leave the neighbourhood

of a steady state is that the locally linearised system admit at least one unstable eigenvalue, i.e.

one eigenvalue of modulus higher than or equal to one. By removing all unstable eigenvalues

from the locally linearised system, the interest-rate rules put forward in this paper therefore pre-

vent the economy from gradually leaving the neighbourhood of the steady state considered. They

moreover manage to ensure the existence and uniqueness of a local equilibrium by removing all

non-predetermined variables from the locally linearised system, thus making this system satisfy

Blanchard and Kahn�s (1980) conditions. We call them �bubble-free interest-rate rules�because,

in the �ctitious linear model corresponding to this locally linearised system, they would eliminate

all mean-divergent rational bubbles of the type �rst identi�ed by Blanchard (1979), unlike the

interest-rate rules commonly considered in the literature.

Loosely speaking, bubble-free interest-rate rules manage to remove all non-predetermined vari-

ables from the locally linearised system by mimicking the locally linearised structural equations,

i.e. the locally linearised system without the interest-rate rule, so as to disconnect current variables

� other than the current interest rate � from the private agents�expectations of future variables.

We point out that, as a consequence, under a certain condition (likely to be met by most DSGE

models of the broad class considered), these interest-rate rules are forward-looking, i.e. make the

current interest rate conditional on the private agents�current expectations of future variables. We

moreover show that, for any given stationary solution of the locally linearised structural equations,

there also exists a backward-looking interest-rate rule consistent with this solution, ensuring its

local determinacy and preventing the economy from gradually leaving the neighbourhood of the

targeted steady state. These two �ndings enable us to both generalize and qualify existing results

on whether an interest-rate rule should be backward- or forward-looking to ensure equilibrium

determinacy. The consideration of bubble-free interest-rate rules also enables us to contribute to

the literature on how much forward-looking a forward-looking interest-rate rule should be in order

to ensure equilibrium determinacy.

Since, loosely speaking, bubble-free interest-rate rules mimic the locally linearised structural

equations, some of their coe¢ cients are tied to the structural parameters by equality constraints,

rather than by inequality constraints as is typically the case for the coe¢ cients of interest-rate rules
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ensuring only local equilibrium determinacy. This naturally raises the issue of what happens when

the central bank has imperfect knowledge of the structural parameters and accordingly follows an

interest-rate rule close to, but not exactly coinciding with a bubble-free interest-rate rule. We show

that such a rule still ensures local equilibrium determinacy and, by using the structural equations

as a lever on private agents�expectations, still prevents the economy from gradually leaving the

neighbourhood of the targeted steady state. We also show that bubble-free interest-rate rules

can still be e¤ective when the private agents form myopic rational expectations and when the

central bank cannot credibly commit to forever following an interest-rate rule, while by contrast

conventional interest-rate rules then prove even more problematic.

The remaining of the paper is organized as follows. Section 1 presents our general framework.

Section 2 designs bubble-free interest-rate rules. Section 3 uses both the results and the methods

of section 2 to examine whether and to what extent an interest-rate rule should be forward-looking

to ensure equilibrium determinacy. Section 4 discusses the robustness of the results of section 2 to

departures from various assumptions. We then conclude and provide a technical appendix.

1 A general locally linearisable model

This section presents our general framework.

1.1 Locally linearised system

We consider a rational-expectations DSGE model with one policy-maker and many private agents,

whether in�nitely-lived or in overlapping generations. This model has N + 1 endogenous scalar

variables, where N 2 N�1 . Only one of them, called the control variable or policy instrument, is

directly controlled by the policy-maker. We make this restriction because we will consider only

monetary policy applications in the paper and most central banks use the short-term nominal

interest rate as their single monetary policy instrument. But this restriction is without any loss in

generality since, in the case of several control variables, the policy-maker could always exogenize

all but one.

The model admits at least one steady state. If there are several steady states, then we call

�targeted steady state� the one that is preferred by the policy-maker, e.g. the social-welfare-

maximizing steady state. If there is only one, then for simplicity we call it �targeted steady state�

too. The model is linearisable in the neighbourhood of the targeted steady state. The reduced form

of the model, linearised in this neighbourhood, is made of N + 1 time-invariant linear equations

that can be further decomposed into N structural equations, which describe the private agents�

1 In the following, we sometimes use for convenience notations that implicitly assume N � 2. In such cases, the
reader should easily infer the notation rigorously adapted to the case N = 1.
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behaviour, and one policy feedback rule. Time being discrete, indexed by t 2 Z, let zt denote

the deviation of the control variable at date t from its value at the targeted steady state, Yt the

N -dimension vector made of the deviations of the non-control variables at date t from their values

at the targeted steady state, L the lag operator, �t a N -dimension vector of exogenous shocks and

Et f:g the rational-expectations operator conditionally on fYt�k; zt�kgk�1 and
�
�t�k

	
k�0.

The N structural equations are written as follows2 :

Et fA (L)Yt +B (L) ztg+C (L) �t = 0 (1)

with A (L)
(N�N)

�
Xna

k=�ma
AkL

k, B (L)
(N�1)

�
Xnb

k=�mb
BkL

k and C (L)
(N�N)

�
Xnc

k=0
CkL

k,

where
�
ma;mb; na; nb; nc

�
2 N5, all Ak, Bk and Ck have real numbers as elements and all the

eigenvalues of C (L) are of modulus strictly lower than one. Each exogenous shock is assumed to

follow a centered stationary autoregressive process of �nite order3 :

D (L) �t = "t with D (L)
(N�N)

�

266664
D1 (L) 0 : : : 0

0
. . .

. . .
...

...
. . .

. . . 0
0 : : : 0 DN (L)

377775
and Di (L) �

Pnd

k=0 di;kL
k for 1 � i � N , where nd 2 N, all di;k are real numbers, D (0) is

invertible, all the eigenvalues of D (L) are of modulus strictly lower than one and "t is a N -

dimension white noise vector that has a bounded probability distribution.

Let us call �fundamental shocks� the exogenous stochastic disturbances that feature in the

model�s equilibrium conditions and �sunspot shock�any exogenous stochastic process that is in-

dependent from all fundamental shocks. We de�ne an equilibrium of the model as a sequence for

the endogenous variables, conditional on current and past fundamental and/or sunspot shocks,

that satis�es all the model�s equilibrium conditions. Importantly, we assume that (1) is a valid

�rst-order approximation of the structural equations at date t provided that, at the equilibrium

considered, all Yt�k and zt�k for k 2
�
1; :::;max

�
na; nb

�	
and all possible realizations of Yt+k and

zt+k for k 2
�
0; :::;max

�
ma;mb

�	
are close enough to zero, even when there exist some realizations

of Yt+k and zt+k for k > max
�
ma;mb

�
that substantially di¤er from zero.

Finally, we consider the set of policy feedback rules whose locally linearised form can be written

as follows:

Et fF (L)Ytg+G (L) zt +H (L) �t = 0 (2)
2The focus of the paper, namely the design and the study of policy feedback rules in a general framework, forbids

us to start from the commonly used expression with only one lag and one lead for the locally linearised system.
3This assumption is not restrictive in the sense that if each element of �t followed instead a centered sta-

tionary �nite-order ARMA process, then C (L) �t could easily be rewritten in the form C� (L) ��t with C
� (L) �Pnc�

k=0C
�
kL

k, where nc� 2 N, all C�k are N�N matrices with real numbers as elements, all the eigenvalues of C� (L)
are of modulus strictly lower than one and each element of ��t follows a centered stationary autoregressive process
of �nite order.
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with F (L)
(1�N)

�
Xnf

k=�mf
FkL

k, G (L) �
Xng

k=0
gkL

k and H (L)
(1�N)

�
Xnh

k=0
HkL

k,

where
�
mf ; nf ; ng; nh

�
2 N4, all gk are real numbers, g0 6= 0 and all Fk, Hk have real numbers

as elements. Such rules qualify as �instrument rules�since their zt-coe¢ cient g0 is non-zero. We

assume throughout the paper, except in subsection 4.3, that the policy-maker can credibly commit

to forever following a policy feedback rule whose locally linearised form is of type (2).

1.2 Three additional assumptions

This subsection presents three additional assumptions that we make about the N structural equa-

tions (1). To that aim, let ei denote, for all i 2 f1; :::; Ng, the N -element vector whose ith element

is equal to one and whose other elements are equal to zero. Let IA denote the set of i 2 f1; :::; Ng

such that e0iA (L) 6= 0 and IB the set of i 2 f1; :::; Ng such that e0iB (L) 6= 0. Let ma
i �

�min [k 2 f�ma; :::; nag , e0iAk 6= 0] for i 2 IA and mb
i � �min

�
k 2

�
�mb; :::; nb

	
, e0iBk 6= 0

�
for i 2 IB . Lastly, let us note, when IA = f1; :::; Ng,

bA (L) �
264 e01L

ma1

...
e0NL

maN

375A (L) .
We make the following two assumptions4 :

Assumption 1: (i) IA = f1; :::; Ng; (ii) 8i 2 f1; :::; Ng, ma
i � 0; (iii) bA (0) is invertible.

Assumption 2: (i) 1 2 IB; (ii) mb
1 � 0; (iii) 8i 2 IB r f1g, ma

i �mb
i > max

�
0;ma

1 �mb
1

�
.

Moreover, let �i (X) 2 R [X] for i 2 f1; :::; N + 1g denote the determinant of the N�N matrix ob-

tained by removing its ith column from N � (N + 1) matrix Xmax[na;nb] � A �X�1� B
�
X�1� �,

and let D (X) 2 R [X] denote the greatest common divisor, de�ned up to a non-zero multiplicative

scalar, of all non-zero �i (X) for i 2 f1; :::; N + 1g. We make the following assumption:

Assumption 3: all roots of D (X) have their modulus strictly lower than one.

To our knowledge, rational-expectations DSGE models whose locally linearised structural equa-

tions are of type (1) typically satisfy assumptions 1 and 3. We view assumption 2 as slightly more

restrictive. However, the speci�cation made of (1) together with assumptions 1, 2 and 3 is gen-

eral enough to encompass the suitably rewritten locally linearised structural equations of many

rational-expectations DSGE models, and in particular of all those models whose locally linearised

4All the propositions of the paper would still hold if assumption 2.iii were replaced by 8i 2 IB r f1g, ma
i �mb

i >

ma
1 �mb

1: we make the assumption 8i 2 IB r f1g, ma
i �mb

i > 0 for convenience only, to keep the proofs of these
propositions simple.

5



structural equations are written in a form of type (1) satisfying assumption 1 and 3 and featuring

the short-term nominal interest rate only as a current variable (i.e. such that mb = nb = 0),

for instance in the Euler equation, the Tobin�s Q equation or the uncovered interest-rate parity.

Indeed, the locally linearised structural equations of these models can easily be rewritten in an

equivalent form of type (1) satisfying assumptions 1, 2 and 3, by re-ordering these equations so

that 1 2 IB and 8i 2 IB r f1g, ma
i � ma

1 and by replacing e
0
i (1) by e

0
iB0e

0
1 (1)� e01B0e0i (1) for all

those i 2 IB r f1g such that ma
i = ma

1 , where, for any N -equation system (S), e0i(S) denotes the

ith equation of (S).

1.3 Targeted and non-targeted equilibria

In most rational-expectations DSGE models, the targeted equilibrium (e.g. the globally-social-

welfare-maximizing equilibrium) does not depend on sunspot shocks, and the fundamental shocks

are assumed to be small enough for this equilibrium to be found in the neighbourhood of the

targeted steady state. As a consequence, the targeted equilibrium can typically be locally linearised

in a stationary VARMA form that does not involve white noises other than those featuring in the

structural equations. We accordingly assume that the policy-maker seeks to implement a given

sequence fYt; ztgt2Z that satis�es (1) for t 2 Z and can be written in the form�
Yt

zt

�
= S (L)

�
Yt

zt

�
+T (L) "t (3)

with S (L)
((N+1)�(N+1))

�
Xns

k=1
SkL

k and T (L)
((N+1)�N)

�
Xnt

k=0
TkL

k

where ns 2 N�, nt 2 N , all Sk and Tk have real numbers as elements and all eigenvalues of

the systems I � S (L) and T (L) are of modulus strictly lower than one, where I denotes the

(N + 1)� (N + 1) identity matrix.

Let � � max
�
ma
1 ;m

b
1

�
+
PN
i=2m

a
i . Let N denote the neighbourhood of the targeted steady

state within which (1) is deemed an acceptable approximation of the model�s structural equations,

and n a given open neighbourhood of the targeted steady state such that: i) n � N; ii) whatever

the realization of the exogenous shocks, the endogenous variables constantly remain in n at the

targeted equilibrium. The global interest-rate rule chosen should ideally not only be consistent

with the targeted local equilibrium presented above, but also eliminate all other equilibria. In this

paper, we focus on the following two kinds of non-targeted equilibrium:

De�nition 1 (type-A equilibria): an equilibrium of the model is said to be of type A if: i)

whatever the realization of the exogenous shocks, the endogenous variables constantly remain in N

at this equilibrium; and ii) this equilibrium di¤ers from the targeted equilibrium.

6



Type-A equilibria correspond to the non-targeted local equilibria. As is well-known, they may exist

only if the locally linearised system admits more stable eigenvalues (i.e. eigenvalues of modulus

strictly lower than one) than required by Blanchard and Kahn�s (1980) conditions.

De�nition 2 (type-B equilibria): an equilibrium of the model is said to be of type B if there

exists t 2 Z such that, at this equilibrium: i) whatever the realization of the exogenous shocks, the

endogenous variables remain in n up to date t � 1; ii) the endogenous variables are in N n n at

date t; iii) whatever the realization of the exogenous shocks, the endogenous variables are in N

from date t to date t+ � ; and iv) the endogenous variables are outside N at some date later than

t+ � .

Type-B equilibria correspond to the equilibria that originate from the neighbourhood of the tar-

geted steady state and gradually leave this neighbourhood. The possibility of their existence

has been shown, among others, by Benhabib and Eusepi (2005), Benhabib, Schmitt-Grohé and

Uribe (2001a, 2001b, 2002a, 2002b, 2003) and Christiano and Rostagno (2001). In these frame-

works, type-B equilibria take the form of equilibrium trajectories originating arbitrarily close to

the targeted steady state and gradually leaving its neighbourhood to eventually converge towards a

deterministic cycle, a chaotic cycle or a non-targeted steady state interpreted as the liquidity trap.

In Benhabib, Schmitt-Grohé and Uribe�s (2001a) framework, notably, they exist for empirically

plausible parameterizations and are robust to wide parameter perturbations.

Importantly, provided that the exogenous shocks are small enough, a necessary condition for

type-B equilibria to exist is that the locally linearised system admit at least one unstable eigenvalue,

i.e. one eigenvalue of modulus higher than or equal to one (otherwise all equilibria originating

locally would remain local). Note, interestingly, that Benhabib, Schmitt-Grohé and Uribe (2001a,

2002a, 2002b, 2003) provide one reason to suspect that type-B equilibria exist in many frameworks

satisfying this condition. Indeed, they point out that when the interest-rate rule respects the zero

nominal interest-rate lower bound and makes the interest rate react positively and, at the targeted

steady state, more than one-to-one to the in�ation rate, there typically exist equilibrium trajectories

originating arbitrarily close to the targeted steady state and gradually leaving its neighbourhood

to eventually converge towards a second steady state at which the in�ation rate is lower than its

targeted value and the interest rate reacts less than one-to-one to the in�ation rate.

Naturally, type-B equilibria do not constitute the only possible kind of non-local equilibria.

In particular, equibria may exist that abruptly leave the neighbourhood of the targeted steady

state, as opposed to gradually, or that may not even originate from this neighbourhood. However,

these other equilibria seem to us less relevant than type-B equilibria, for essentially the same

reason as the one put forward by Benhabib, Schmitt-Grohé and Uribe (2001a, p. 43): �in major
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industrialized countries [...] observed in�ation dynamics are in general quite smooth, giving little

credence to a model in which movements in in�ation at business-cycle frequency are due to jumps

from one steady state to another�.

2 Design of bubble-free interest-rate rules

This section designs locally linearised interest-rate rules of type (2) that not only are consistent

with the targeted local equilibrium and eliminate type-A equilibria, but also eliminate type-B

equilibria as well. We call them �bubble-free interest-rate rules� because, in the �ctitious linear

model corresponding to our locally linearised system, they would eliminate all mean-divergent

rational bubbles of the type �rst identi�ed by Blanchard (1979), unlike the interest-rate rules

commonly considered in the literature.

2.1 Bubble-free policy feedback rules

Let us adopt the convention
Pv
i=u f:g = 0 for u > v. Consider the policy feedback rules of the

following form:

Et

n
Lm

b
1e01A (L)Yt

o
+ Lm

b
1e01B (L) zt + L

mb1e01C (L) �t + e
0
1O (L)D (L) �t

+
XN

i=2
Lm

b
1+
Pi
j=2m

a
j

h
e0iA (L)Yt + e

0
iB (L) zt + e

0
iC (L) �t + L

�mai e0iO (L)D (L) �t

i
+Lm

b
1+
PN
i=2m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0, (4)

where O (L), P (L), Q (L) and R (L) satisfy the following conditions:

Condition 1: O (L)
(N�N)

�

266664
Pmb1�1
k=0 O1;kL

kPma2�1
k=0 O2;kL

k

...PmaN�1
k=0 ON;kL

k

377775, where all Oi;k have real numbers as elements.

Condition 2: P (L)
(1�N)

�
Pnp

k=0PkL
k, where np 2 N and all Pk have real numbers as elements, and



(N�N)

�

26664
P0

e02
bA (0)
...

e0N
bA (0)

37775 is invertible.

Condition 3: Q (L) �
Pnq

k=max[0;ma1�mb1+1]
qkL

k, where nq 2 N and all qk are real numbers.

Condition 4: the system �
A (L) B (L)
P (L) Q (L)

�
(5)

has all its eigenvalues of modulus strictly lower than one.

8



Condition 5: R (L)
(1�N)

�
Pnr

k=0RkL
k, where nr 2 N and all Rk have real numbers as elements.

Rules of type (4) satisfying conditions 1 to 5 belong to the class of rules (2), in particular because

their zt-coe¢ cient e01B�mb1 is non-zero. Two features of these rules, which may seem unpleasant at

�rst sight, are worth acknowledging at this stage: �rst, their use requires perfect knowledge of the

structural parameters, since some of their coe¢ cients are linked to these parameters by equality

constraints; second, they rapidly become more and more complex as the number of forward-looking

structural equations increases. These two points are addressed in subsections 4.1 and 4.2 of the

paper.

For any system of equations (S), let L(S) denote the system obtained by applying operator L

on both the left- and the right-hand sides of each equation of (S). We �rst show that the �ctitious

linear model corresponding to our locally linearised system made of (1) and any rule of type (4)

satisfying conditions 1 to 5 admits a unique solution and that this solution is non-explosive:

Proposition 1 (determinacy): whatever t 2 Z and O (L), P (L), Q (L), R (L) satisfying con-

ditions 1 to 5, the system made of Lk(1) and Lk(4) for all k � �� admits a unique solution

fYt�j ; zt�jgj2N and this solution is stationary.

Proof : cf appendix A. �

As made clear in appendix A, rules of type (4) satisfying conditions 1 to 5 achieve the existence and

uniqueness of the solution fYt; ztg by insulating Yt from Et fYt+kg and Et fzt+kg for k � 1, thus

pinning down Yt uniquely, and by making zt uniquely recoverable from Yt. Since the structural

equations may express Yt as a function of Et fYt+kg and Et fzt+kg for k � 1, these rules are

designed to �mimic� the structural equations in such a way that, when combined with these

structural equations, they disconnect Yt from Et fYt+kg and Et fzt+kg for k � 1. More precisely,

the expectation at date t of one of these rules taken at date t+mb
1 has the same forward-looking

part as the �rst structural equation, so that subtracting one from the other leads to a backward-

looking equation; similarly, the expectation at date t of this backward-looking equation taken at

date t+ma
2 has the same forward-looking part as the second structural equation, and so on. This

explains why the time needed by these rules to be e¤ective, equal to � periods, is a function of the

length of the forward-looking part of the structural equations. Since the system made of Lk(1)

and Lk(4) for all k � �� would be a valid �rst-order approximation of the model�s equilibrium

conditions along a candidate type-B equilibrium trajectory, proposition 1 implies that rules of type

(4) satisfying conditions 1 to 5 not only ensure local equilibrium determinacy, but also eliminate

all type-B equilibria.
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We then show that whatever targeted local equilibrium of type (3) satisfying (1) can be imple-

mented by a suitably chosen policy feedback rule of type (4) satisfying conditions 1 to 5:

Proposition 2 (controllability): for any sequence fYt; ztgt2Z of type (3) that satis�es (1) for

all t 2 Z, there exist O (L), P (L), Q (L) and R (L) satisfying conditions 1 to 5 and such that

fYt; ztgt2Z is the unique solution of the system made of (1) and (4) for all t 2 Z.

Proof : cf appendix B. �

Technically speaking, after choosing O (L) satisfying condition 1, appendix B uses the generalized

identity of Bezout and the Euclidian division to choose some P (L) and Q (L) that satisfy conditions

2, 3 and 4 and are such that the eigenvalues of I�S (L) are also eigenvalues of the system made of

(1) and (4), and Cramer�s rule to residually choose an R (L) that satis�es condition 5 and is such

that the unique solution of this system coincides with the targeted stationary VARMA process

(3). Hence, propositions 1 and 2 together imply that rules of type (4) satisfying conditions 1 to 5

not only are consistent with the targeted local equilibrium, but also eliminate all type-A and -B

equilibria.

2.2 A New Keynesian illustration

Our assumption that the linearization of the model�s equilibrium conditions in the neighbourhood

of the targeted steady state is valid even when endogenous variables are expected to leave this

neighbourhood at some su¢ ciently distant point in the future forbids us to consider models with a

Calvo-type price-setting mechanism, such as the New Keynesian model5 . Nevertheless, we feel that

the best way to illustrate propositions 1 and 2 is to consider this well-known model and proceed

as if it satis�ed this assumption.

Let us therefore consider the New Keynesian model, for simplicity in its deterministic version,

and assume that the targeted steady state is the globally social-welfare-maximizing steady state.

The structural equations linearised in the neighbourhood of this steady state are then of type (1),

with N = 2, ma
1 = ma

2 = 1 and m
b
1 = 0, and satisfy assumptions 1, 2 and 3. They consist of an IS

equation and a Phillips curve whose reduced forms are respectively written:

xt = Et fxt+1g � � (it � Et f�t+1g) , (6)

�t = �Et f�t+1g+ �xt, (7)

where xt, �t and it respectively denote the deviations at date t of the output gap, the in�ation

rate and the short-term nominal interest rate from their values at the targeted steady state, while
5 In such models, although they may well not be able to eliminate type-B equilibria, bubble-free interest-rate

rules can still be useful, as argued in subsection 4.3, by eliminating another kind of non-targeted equilibria called
�type-C equilibria�.
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�, � and � are three parameters such that 0 < � < 1, � > 0 and � > 0. The targeted equilibrium,

assumed to be the globally social-welfare-maximizing equilibrium, here coincides with the targeted

steady state, i.e. corresponds to �t = xt = it = 0 for t 2 Z.

Suppose for a moment that the central bank sets the short-term nominal interest rate according

to a contemporaneous Taylor rule

it = ���t + �xxt (8)

with (��; �x) 2 R2. The locally linearised system is then made of (6), (7) and (8). As can be easily

seen by putting it into Blanchard and Kahn�s (1980) form, this system has two non-predetermined

variables and two eigenvalues whatever the value taken by (��; �x) 2 R2. As a consequence, if

(��; �x) is chosen so that these two eigenvalues are unstable, then Blanchard and Kahn�s (1980)

conditions are satis�ed, i.e. type-A equilibria are eliminated, but type-B equilibria may exist6 .

Alternatively, if (��; �x) is chosen so that these two eigenvalues are stable, then the economy

jumps out of the frying pan into the �re as type-B equilibria can no longer exist but type-A

equilibria do. In other words, contemporaneous Taylor rules do not enable the central bank to

have the cake and eat it. This result naturally holds for any interest-rate rule that is not designed

to control the number of non-predetermined variables of the locally linearised system and explains

why Benhabib, Schmitt-Grohé and Uribe (2001a, 2002a, 2002b, 2003) �nd that type-B equilibria

exist precisely when type-A equilibria are eliminated by a locally �active�interest-rate rule.

By contrast, bubble-free interest-rate rules manage to eliminate both type-A and -B equilibria

by removing all non-predetermined variables and all unstable eigenvalues from the locally linearised

system. Such is the case, for instance, of the following kind of interest-rate rules:

it = Et f�t+1g+  �t +
1

�
Et f�xt+1g (9)

where � denotes the �rst-di¤erence operator and  2 R�, that is to say that, as an illustration of

proposition 1, the system made of (6), (7) and (9) taken at dates t to t + 2 pins down (�t; xt; it)

uniquely. Indeed, the replacement of it in (6) by the right-hand side of (9) leads to �t = 0, as

the terms in Et f�t+1g, Et fxt+1g and xt cancel each other out; the same reasoning conducted one

period ahead implies Et f�t+1g = 0; the replacement of Et f�t+1g and �t in (7) by 0 then leads to

xt = 0; the same reasoning conducted one period ahead implies Et fxt+1g = 0; �nally, (6) or (9)

then leads to it = 07 .

6Under Woodford�s (2003) standard calibration (� = 0:99, � = 0:024 and � = 6:25), when both eigenvalues of
the system are of modulus higher than one, the lowest modulus of these eigenvalues is typically strikingly close to
one. Indeed, this modulus is equal to 1:03 when (�� ; �x) = (1:5; 0:5), as in Taylor�s (1993) original formulation, and
does not exceed 1:39 for (�� ; �x) 2 [0; 2]2. This result suggests that equilibria that leave the neighbourhood of the
targeted steady state, if they exist, can do so gradually and therefore correspond to type-B equilibria.

7The simplicity of this proof is partly due to the fact that the New Keynesian Phillips curve makes xt directly
recoverable from �t and Et f�t+1g. However, as should be clear from the previous section, such a property is by no
means necessary for the existence of bubble-free interest-rate rules. Indeed, bubble-free interest-rate rules would still
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It is worth noting that, by making it react to Et f�t+1g with a coe¢ cient unity and to �t with

an arbitrary non-zero coe¢ cient, rules (9) do not necessarily satisfy the so-called Taylor principle,

which makes it react strictly more than one-to-one to the current or the expected future in�ation

rate. This result is due to the fact that, in the standard New Keynesian model considered, the

Taylor principle is a necessary condition to eliminate type-A equilibria for speci�c parametric

families of interest-rate rules, for instance rules of type it = ��t or it = �Et f�t+1g that make the

locally linearised system have two non-predetermined variables whatever � 2 R; but it ceases to be

one for slightly more general parametric families of interest-rate rules, as shown e.g. by Woodford

(2003, chap. 4), even though these rules do not a¤ect the number of non-predetermined variables

of the locally linearised system; and it is de�nitely not one for parametric families of interest-rate

rules general enough to include rules (9) that remove all non-predetermined variables from the

locally linearised system.

2.3 Related literature

This subsection brie�y reviews the literature on how monetary policy can eliminate type-B equi-

libria and positions our paper within this literature.

The literature has mostly proposed two-tier monetary policies to eliminate type-B equilibria,

in the spirit of Obstfeld and Rogo¤�s (1983) fractional-backing proposal to rule out speculative

hyperin�ations. These two-tier monetary policies, advocated most notably by Benhabib, Schmitt-

Grohé and Uribe (2002a, 2002b, 2003), Christiano and Rostagno (2001) and Woodford (2003,

chap. 2), consist in switching from an interest-rate rule eliminating type-A equilibria to another

rule such as a money growth rate peg (possibly accompanied by a non-Ricardian �scal policy)

when the endogenous variables go outside a speci�ed neighbourhood of the targeted steady state.

However, as argued by Green (2005) and Cochrane (2006), one drawback of these two-tier policies

is that their credibility, and consequently their e¤ectiveness in eliminating type-B equilibria, cannot

be taken for granted, in particular because they are typically aggressive out of equilibrium when

the endogenous variables go o¤ track. Given that they are immune from this drawback, since they

act while the endogenous variables are still in the neighbourhood of the targeted steady state,

bubble-free interest-rate rules represent a particularly interesting alternative or complement to

these two-tier policies.

To our knowledge, only four papers make other monetary policy proposals enabling the central

bank to eliminate type-B equilibria. First, Currie and Levine (1993, chap. 4) design �overstable

feedback rules� that remove all unstable eigenvalues from linear systems without a¤ecting the

exist if, for instance, a term �Et fxt+1g were arti�cially added to the right-hand side of (7), leaving (6) unchanged,
provided that � 6= �

�
so as to satisfy assumption 1.iii.
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number of non-predetermined variables. Applied to locally linearised systems, these rules would

eliminate type-B equilibria but would fail to eliminate type-A equilibria. Second, Antinol�, Az-

ariadis and Bullard (2006) propose, in a particular framework, interest-rate rules that similarly

eliminate type-B equilibria but fail to eliminate type-A equilibria. Third, Benhabib, Schmitt-Grohé

and Uribe (2003) propose, in a speci�c model, an interest-rate rule which they show eliminates all

type-A equilibria and some (but perhaps not all) type-B equilibria. Fourth, Adão, Correia and

Teles (2005) design monetary policy rules ensuring global equilibrium determinacy in a simple non-

linear cash-in-advance model. Although these rules are global and non-linear, and although their

working mechanism is presented in a very di¤erent way (with emphasis laid on �nite vs. in�nite

model horizon), this working mechanism could be considered similar to that of our bubble-free

interest-rate rules in a particular, simple case8 .

3 Forward- and backward-looking interest-rate rules

This section uses both the results and the methods of the previous section to shed some new

light on the answers to the following two questions: should the interest-rate rule be forward- or

backward-looking in order to ensure equilibrium determinacy? And how much forward-looking

should a forward-looking interest-rate rule be in order to ensure equilibrium determinacy?

3.1 Forward-looking vs. backward-looking rules

This subsection deals more speci�cally with the question whether the interest-rate rule should be

forward- or backward-looking to ensure equilibrium determinacy. Let us �rst de�ne the concepts

of forward-looking and backward-looking rules:

De�nition 3 (forward- and backward-looking rules): a policy feedback rule of type (2) is

said to be forward-looking when mf � 1 and 9k 2
�
1; :::;mf

	
, Fk 6= 0, and backward-looking

otherwise.

On the one hand, if ma
1 > mb

1, then rules of type (4) satisfying conditions 1 to 5 are forward-

looking. Propositions 1 and 2 therefore imply that, when ma
1 > mb

1, there exists a forward-looking

interest-rate rule that is consistent with the targeted equilibrium and eliminates both type-A and

-B equilibria. This result matters because the condition ma
1 > mb

1 is typically met by rational-

expectations DSGE models encompassed within our general speci�cation, in particular because

their structural equations typically include an Euler equation.

8The two works were conducted independently from each other. The �rst versions of the present paper go back
to Loisel (2003, 2004).
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On the other hand, whether ma
1 > mb

1 or not, there exists a backward-looking interest-rate

rule that is consistent with the targeted equilibrium and eliminates both type-A and -B equilibria.

Indeed, let us consider the following proposition:

Proposition 3: for any � 2 R+ n [0; 1] and any sequence fYt; ztgt2Z of type (3) that satis�es (1),

there exists a rule of type (2) that is backward-looking and such that the system made of (1) and this

rule: i) admits fYt; ztgt2Z as its unique stationary solution; ii) has at most � non-predetermined

variables; and iii) has no eigenvalue whose modulus is between 1 and �.

Proof : cf appendix C. �

Technically speaking, appendix C largely draws on appendix B as it uses the generalized identity

of Bezout and the Euclidian division to choose F (L) with mf = 0 and G (L) such that: i) the

system made of (1) and (2) admits one unique stationary solution and has no eigenvalue whose

modulus is between 1 and �, and ii) the eigenvalues of I�S (L) are also eigenvalues of this system;

and Cramer�s rule to residually choose H (L) such that the unique local solution of this system

coincides with the targeted stationary VARMA process (3).

For any � 2 R+ n [0; 1], let us note (R�) the rule whose existence is stated in proposition 3. Let

us consider a given � 2 R+ n [0; 1]. Since the system made of (1) and (R�) admits the targeted

equilibrium as its unique stationary solution and has at most � non-predetermined variables, and

since n includes all the possible realizations of the endogenous variables at the targeted equilibrium,

any candidate type-B equilibrium needs to involve, in its locally linearised analytical expression,

at least one unstable eigenvalue of the system in order to leave n while remaining in N for at least

� more periods. However, for � large enough, all the unstable eigenvalues of the system have too

large a modulus for any candidate type-B equilibrium to remain in N for at least � periods after

leaving n. Therefore, provided that � is large enough, (R�) eliminates all type-B equilibria. As a

consequence, proposition 3 implies that there exists a backward-looking interest-rate rule that is

consistent with the targeted equilibrium and eliminates both type-A and -B equilibria.

When ma
1 > mb

1, to sum up, there exist both a forward-looking (bubble-free) interest-rate rule

and a backward-looking interest-rate rule that are consistent with the targeted equilibrium and

eliminate all type-A and -B equilibria. The next proposition suggests one reason to prefer the

forward-looking rule to the backward-looking one in this case:

Proposition 4: if ma
1 > mb

1 then, for any n 2 N and M 2 R�, there exists � 2 R+ n [0; 1] such

that there exists no backward-looking rule of type (2) such that: i) nf � n and ng � n; ii) g0 is

normalized to one and all the other coe¢ cients of this rule are of modulus lower than M ; and iii)
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the system made of (1) and this rule admits a unique stationary solution and has no eigenvalue

whose modulus is between 1 and �.

Proof : cf appendix D. �

In this proposition, n and M represent how much �long-tailed� and aggressive respectively the

policy-maker is prepared to choose her rule. She may want to restrict her choice in such a way

because, if chosen beyond these limits, the rule would be too complex or, by magnifying her data-

measurement errors, would generate too much macroeconomic volatility. Proposition 4 therefore

suggests that, whenma
1 > mb

1, if the � whose existence is stated in this proposition is lower than the

lowest � required to eliminate all trajectories gradually leaving the neighbourhood of the targeted

steady state, then there exists no backward-looking rule that: i) eliminates both type-A and -B

equilibria; and ii) is su¢ ciently short-tailed and non-aggressive. By contrast, proposition 1 implies

that, when ma
1 > mb

1, provided that n and M are large enough, whatever the lowest � required to

eliminate all trajectories gradually leaving the neighbourhood of the targeted steady state, there

exists a forward-looking rule that: i) eliminates both type-A and -B equilibria; and ii) is su¢ ciently

short-tailed and non-aggressive.

3.2 Related literature

This subsection brie�y reviews two closely related strands of the literature and positions our paper

within each of these strands.

The �rst strand of the literature deals with the issue of whether the interest-rate rule should

be forward- or backward-looking in order to eliminate type-A equilibria. This strand of the lit-

erature has usually come in favour of the use of a backward-looking rule. For instance, Bernanke

and Woodford (1997) show that some commonly considered forward-looking rules lead to type-A

equilibria in the New Keynesian model and therefore warn against following forward-looking rules

without �rst developing a structural model of the economy. Carlstrom and Fuerst (2000, 2002,

2005) similarly show that some commonly considered forward-looking rules lead to type-A equilib-

ria in various models, contrary to some commonly considered backward-looking rules, and therefore

advocate the use of backward-looking rules. However, this strand of the literature usually restricts

its analysis to speci�c models and, in particular, to speci�c low-dimensional parametric families of

rules (typically Taylor-type rules). We thus generalize the results obtained by this strand of the

literature by showing that not only type-A equilibria, but also type-B equilibria can be eliminated

by a backward-looking rule in all models of the broad class considered and by a forward-looking

rule in most of these models.
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The second strand of the literature focuses on the issue of how much forward-looking a forward-

looking interest-rate rule should be in order to eliminate type-A equilibria. Batini and Pearlman

(2002), Batini, Levine and Pearlman (2004), Batini, Justiniano, Levine and Pearlman (2006) and

Leitemo (2006) consider interest-rate rules of type it = �+ �it�1+ Et f�t+�g with (�; �; ) 2 R3

and � 2 N, where it and �t respectively denote the short-term nominal interest rate and the in-

�ation rate at date t, and �nd that the more forward-looking the interest-rate rule or equivalently

the more distant the forecast horizon (i.e. the higher �), the higher the risks of type-A equilib-

ria or macroeconomic instability � the latter arising when the locally linearised system admits

more unstable eigenvalues than required by Blanchard and Kahn�s (1980) conditions9 . Worryingly

enough, these risks often materialise for the one- to two-year forecast horizons typically adopted by

in�ation-targeting central banks. Similarly, Giannoni and Woodford (2003) show, in some simple

models, that interest-rate rules that eliminate type-A equilibria, are consistent with the targeted

equilibrium and are independent of the statistical properties of the exogenous shocks can be found

that are only modestly (if at all) forward-looking, that is to say that the forward-looking part

of these rules mainly features current expectations of only one- or two-quarter ahead endogenous

variables. They point out that this result provides little support for monetary policies that make

the current short-term nominal interest rate respond primarily to one- to two-year-ahead in�ation

forecasts, such as those of in�ation-targeting central banks. Interestingly, our requirement that

interest-rate rules should eliminate both type-A and -B equilibria and be consistent with the tar-

geted equilibrium leads to a similar result (though for a di¤erent reason) in those of their models

that are encompassed within our speci�cation, namely the result that the forward-looking part of

interest-rate rules can be limited to only one-quarter-ahead forecasts.

4 Robustness of bubble-free interest-rate rules

This section discusses the robustness of the e¤ectiveness of bubble-free interest-rate rules to de-

partures from three assumptions in turn: i) that the policy-maker has perfect knowledge of the

structural parameters; ii) that the private agents form rational expectations; iii) that the policy-

maker can credibly commit to locally following a given interest-rate rule.

9Levin, Wieland and Williams (2003) obtain a similar result while considering a slightly more general fam-
ily of interest-rate rules. Technically speaking, this result can be interpreted as follows: the choice of a more
forward-looking interest-rate rule (i.e. of a higher �) is most likely to increase the number of eigenvalues and non-
predetermined variables of the locally linearised system and hence the risk that no (�; ) exists such that Blanchard
and Kahn�s (1980) condition is satis�ed. By contrast, the Calvo-type interest-rate rules put forward by Levine,

McAdam and Pearlman (2007), of the kind it = �+�it�1+Et
nP+1

k=0 '
k�t+k

o
with (�; �; ) 2 R3 and ' 2 ]0; 1[,

manage to be in�nitely forward-looking while making the locally linearised system have a �nite (and possibly even
small) number of eigenvalues and non-predetermined variables, which might well explain why these rules are much
more successful in eliminating type-A equilibria.
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4.1 Policy-maker�s imperfect knowledge

This subsection examines the sensitivity of propositions 1 and 2 to the assumption that the policy-

maker has perfect knowledge of the structural parameters, i.e. the coe¢ cients featuring in the

structural equations (1). This robustness analysis is particularly welcome as some of the coe¢ cients

of rules (4) are tightly tied to the structural parameters by equality constraints. By contrast, all the

coe¢ cients of interest-rate rules ensuring only local equilibrium determinacy are more loosely tied

to the structural parameters by inequality constraints, as exempli�ed by the well-known Taylor

principle or by Rotemberg andWoodford�s (1999) �superinertia principle�(generalized by Giannoni

and Woodford, 2002, and Woodford, 2003, chap. 8).

Let us �rst de�ne the metric d by 
X1 (L)
(N1�N2)

; X2 (L)
(N1�N2)

!
�
�Xnx

k=�mx
X1;kL

k;
Xnx

k=�mx
X2;kL

k

�
7! d (X1 (L) ;X2 (L))� sup

�mx�k�nx

�
max

1�i�N1

�
max

1�j�N2

��e01;i (X1;k �X2;k) e2;j
���� ,

where (mx; nx) 2 N2, (N1; N2) 2 N�2, all X1;k, X2;k have real numbers as elements and, for

h 2 f1; 2g and l 2 f1; :::; Nhg, eh;l is the Nh-element vector whose lth element is equal to one and

whose other elements are equal to zero. Let us then consider a rule of type (4) satisfying conditions

1 to 5, noted (R), which is consistent with the targeted local equilibrium of type (3) satisfying (1).

Let us also rewrite this targeted equilibrium as�
Yt

zt

�
= X (L) "t with X (L)

((N+1)�N)
�
X+1

k=0
XkL

k, (10)

where all Xk have real numbers as elements. Lastly, let ( eR) denote the rule corresponding to
the expression (4) of rule (R) where some exogenous measurement errors, each of them randomly

drawn from a continuous probability distribution supported on a bounded interval including zero10 ,

are added to the elements of Ak for �ma � k � na, Bk for �mb � k � nb, Ck for 0 � k � nc and

to di;k for 1 � i � N and 0 � k � nd, and let " denote the maximal length of the distribution-

supporting intervals. We get the following proposition:

Proposition 5: (i) 9� 2 R+ n [0; 1] such that, �rst, for " close enough to 0, with probability

one, the system made of (1) and ( eR) admits a unique stationary solution and has at most �
non-predetermined variables and no eigenvalue whose modulus is between 1 and � and, second,

� �! +1 as " �! 0; (ii) noting�
Yt

zt

�
= eX (L) "t with eX (L)

((N+1)�N)
�
X+1

k=0
eXkL

k, (11)

10This continuous-probability-distribution assumption enables us to disregard degenerate cases as they are of
measure zero.
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where all eXk have real numbers as elements, the unique stationary solution (with probability one)

of the system made of (1) and ( eR) for " close enough to 0, we have: d(X (L) ; eX (L)) �! 0 as

" �! 0.

Proof : cf appendix E. �

In other words, if the policy-maker�s knowledge of the structural parameters is su¢ ciently accurate,

then ( eR) ensures local equilibrium determinacy with probability one. Moreover, as the policy-

maker�s knowledge of the structural parameters becomes perfect, the unique local equilibrium

trajectory (with probability one) gets arbitrarily close to the targeted path for the endogenous

variables. Finally, if the policy-maker�s knowledge of the structural parameters is su¢ ciently

accurate, then ( eR) also eliminates type-B equilibria by using the structural equations as a lever on
the private agents�expectations (as made clear in appendix E) to make all equilibrium trajectories

leaving the neighbourhood of the targeted steady state do so too abruptly to qualify as type-B

equilibria. In short and loosely speaking, both propositions 1 and 2 hold asymptotically with

probability one. Therefore, the equality constraints tying some of the coe¢ cients of bubble-free

rules to the structural parameters, thus making the policy-maker manoeuvre on a Wicksellian-type

razor�s edge, prove not as restrictive as they may seem at �rst sight.

4.2 Private agents�myopic rational expectations

One way to relax the rational-expectations assumption is to suppose instead that the private agents

form myopic rational expectations, i.e. rational expectations up to a given �nite horizon h 2 N�.

Interestingly, this alternative assumption may make the economy more bubble-prone11 , that is to

say in our context type-B equilibria more likely, under conventional interest-rate rules. By contrast,

bubble-free interest-rate rules would remain e¤ective in eliminating both type-A and -B equilibria

provided that h � � , as clear from proposition 1.

4.3 Policy-maker�s inability to commit

Instead of assuming that the policy-maker can credibly commit to forever following a policy feed-

back rule, suppose now more realistically that she can credibly commit only to following a policy

feedback rule during at most d periods, where d 2 N�. As clear from proposition 1, bubble-free

interest-rate rules then remain e¤ective in eliminating both type-A and -B equilibria provided that

d � � .

By contrast, under conventional interest-rate rules, not only type-B equilibria, but also inter-

estingly a third kind of non-targeted equilibria may then exist, which we call type-C equilibria.

11This point was �rst made by Tirole (1982).
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Indeed, suppose that the central banker credibly commits at a given date t to follow, during the

next d periods, an interest-rate rule that makes the locally linearised system have at least one

unstable eigenvalue. If the economy started to embark, during these d periods, on a path leaving

the neighbourhood of the targeted steady state, then the stability-concerned central banker would

change its interest-rate rule at some date after t+d in order to keep the variables within this neigh-

bourhood or to bring them back into this neighbourhood, because she would �nd it both possible

and desirable. Though initially diverging, the resulting boom-and-bust path remains bounded, and

even local if the triggered interest-rate-rule adjustment occurs before the linear approximation of

the structural equations becomes invalid. As a consequence, when the original non-linear model

features in�nitely-lived utility-maximizing private agents, this path does not violate the transvers-

ality condition typically required and hence typically quali�es as an equilibrium of this model. This

�stabilization of last resort�raises a moral hazard problem since private agents, rightly expecting

this reaction from the central banker, can settle on an initially diverging path even in the case

where this path would not be an equilibrium if the central banker were compelled to stick forever

to its interest-rate rule. In other words, these type-C equilibria, which the existing literature has

so far ignored, can exist even when type-B equilibria do not12 .

Conclusion

This paper aims to give a new insight into the design of interest-rate rules in a broad class of

rational-expectations DSGE models. The literature has so far mostly focused on particular kinds

of interest-rate rules that preclude unintended �uctuations around the targeted steady state (type-

A equilibria), e.g. Taylor rules satisfying the Taylor principle. However, as �rst acknowledged

by Benhabib, Schmitt-Grohé and Uribe (2001a), such rules do not prevent the economy from

embarking on a path gradually leaving the neighbourhood of the targeted steady state and leading

for instance to the liquidity trap (type-B equilibria). By contrast, the bubble-free interest-rate rules

put forward in this paper manage to eliminate both types of equilibria, even when the perfect-

information, rational-expectations and forever-commitment assumptions are slightly relaxed.

Obviously, bubble-free interest-rate rules make sense only insofar as the behaviour of private

agents is at least partly forward-looking, since equilibrium indeterminacy would not be an issue

otherwise. But most, if not all rational-expectations DSGE models based on explicit microeco-

nomic foundations imply such a forward-looking behaviour for the private agents13 , which has led

12A parallel could be drawn between this escape-clause approach to interest-rate rules and the escape-clause
approach to �xed exchange rate systems (i.e. the second-generation models of currency crises).
13Such a forward-looking behaviour is even less disputed for participants in asset markets than for private agents

in macroeconomic models. Loisel (2006) therefore discusses the role that bubble-free interest-rate rules could play
in a monetary policy reaction to perceived asset-price bubbles or exchange-rate misalignments.
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Woodford (2003, chap. 1) to view the essence of central banking as the management of expecta-

tions. However, this now conventional view does not go as far as arguing that central banks should

react to private agents� expectations through a forward-looking interest-rate rule: for instance,

Bernanke and Woodford (1997) have famously warned against following forward-looking interest-

rate rules without �rst developing a structural model of the economy. In this paper, we thus carry

this view further still by arguing for the use of forward-looking (bubble-free) interest-rate rules on

the basis of a broad class of structural models of the economy.
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Appendix

For any system of equations (S), let Et f(S)g denote the system obtained by applying operator Et

on both the left- and the right-hand sides of each equation of (S). For any polynomial H (X) 2

R [X], let dH denote the degree of H (X). Let j:j denote the determinant operator. Lastly, for any

scalar �, any non-zero integers n and p and any n� p matrix K, let �K denote the product of the

n� n matrix whose diagonal elements are all equal to � and whose non-diagonal elements are all

equal to 0 by matrix K, and let K� denote the product of matrix K by the p � p matrix whose

diagonal elements are all equal to � and whose non-diagonal elements are all equal to 0 (note that

�K = K�).

A Proof of proposition 1

Consider a given t 2 Z and suppose that Lk(1) and Lk(4) hold for all k � �max
�
ma
1 ;m

b
1

�
�PN

i=2m
a
i . The substraction of e

0
1(1) from Et

n
L�m

b
1(4)

o
leads to equation (

�!
1 ):

XN

i=2
e0iL

Pi
j=2m

a
j

h
A (L)Yt +B (L) zt +C (L) �t + L

�maiO (L)D (L) �t

i
+ L

PN
i=2m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0. (

�!
1 )

Similarly, 8k 2 f2; :::; Ng, equation (�!k ) can be derived from equation (
���!
k � 1) by substracting
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e0k(1) from Et

n
L�m

a
k(
���!
k � 1)

o
:

XN

i=k+1
e0iL

Pi
j=k+1m

a
j

h
A (L)Yt +B (L) zt +C (L) �t + L

�maiO (L)D (L) �t

i
+ L

PN
i=k+1m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0 (

�!
k )

and in particular

P (L)Yt +Q (L) zt +R (L)D (L) �t = 0. (
�!
N )

8k 2 f2; :::; Ng, the substraction of Lmak(�!k ) from (
���!
k � 1) leads to equation ( �k ):

e0k

h
Lm

a
k [A (L)Yt +B (L) zt +C (L) �t] +O (L)D (L) �t

i
= 0. (

 �
k )

Equations
�!
N and

 �
k for k 2 f2; :::; Ng together can be re-written as follows:

U (L)Yt +V (L) zt +W (L) �t = 0 (12)

with U (L)
(N�N)

=

26664
P (L)

e02
bA (L)
...

e0N
bA (L)

37775�Xnu

k=0
UkL

k, V (L)
(N�1)

=

26664
Q (L)

e02L
ma2B (L)
...

e0NL
maNB (L)

37775�Xnv

k=max[0;ma1�mb1+1]
VkL

k

due to assumption 2.iii andW (L)
(N�N)

=

26664
R (L)D (L)

e02
�
Lm

a
2C (L) +O (L)D (L)

�
...

e0N
�
Lm

a
NC (L) +O (L)D (L)

�
37775�Xnw

k=0
WkL

k,

where (nu; nv; nw) 2 N3 and all Uk, Vk, Wk have real numbers as elements. Since U (0) = 


is invertible, (12) can be used to express Yt as a function of Yt�1�k, zt�max[0;ma1�mb1+1]�k and

�t�k for k � 0. If ma
1 � mb

1, this expression can be used to sequentially replace Et fYt+jg for

j 2
�
0; :::;ma

1 �mb
1

	
in (4) and thus get zt as a function of Yt�1�k, zt�1�k and �t�k for k � 0.

Alternatively, if ma
1 < mb

1 then (4) directly expresses zt as a function of Yt�1�k, zt�1�k and �t�k

for k � 0. In both cases, the system thus obtained, made of this equation for zt and (12) for Yt,

is backward-looking and non-degenerate and hence uniquely determines Yt and zt as a function of

Yt�1�k, zt�1�k and �t�k for k � 0. This system, noted (S), and the systems Lk(S) for all k � 1

that can be similarly obtained, then uniquely determine Yt�j and zt�j for j 2 N as a function of

�t�j�k for k � 0. Given that the system made of Lk(S) for all k � 0 is implied by the system

made of Lk(1) and Lk(4) for all k � �� , the latter admits either zero or one unique solution for

fYt�j ; zt�jgj2N. Finally, given that the system made of Lk(S) for all k 2 Z admits one unique

solution for fYt�k; zt�kgk2Z and, as can be readily checked (using notably assumption 2.ii), is

equivalent to the system made of Lk(1) and Lk(4) for all k 2 Z, we conclude that the system made

of Lk(1) and Lk(4) for all k � �� admits one unique solution for fYt�j ; zt�jgj2N. This solution is

stationary because the eigenvalues of the system made of Lk(1) and Lk(4) for all k 2 Z are those

of (5) which, given condition 4, are stable.
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B Proof of proposition 2

For the sake of expositional clarity, we omit the expression �for all t 2 Z�throughout this appendix.

We prove proposition 2 by showing that, for any (3) satisfying (1), there exist O (L), P (L), Q (L)

and R (L) satisfying conditions 1 to 5 and such that (3) implies (1) and (4) and therefore, following

proposition 1, such that (3) is the unique solution of the system made of (1) and (4). To that aim,

suppose that a given (3) holds that satis�es (1).

Step 1: then, (1) holds as well. Moreover, there exists O (L) satisfying condition 1 and such that266664
Et

n
e01L

mb1A (L)Yt

o
e02L

ma2A (L)Yt

...
e0NL

maNA (L)Yt

377775+
26664
e01L

mb1B (L)
e02L

ma2B (L)
...

e0NL
maNB (L)

37775 zt +
266664
e01

h
Lm

b
1C (L) +O (L)D (L)

i
e02
�
Lm

a
2C (L) +O (L)D (L)

�
...

e0N
�
Lm

a
NC (L) +O (L)D (L)

�

377775 �t = 0.
(13)

Step 2: the generalized identity of Bezout implies that there exists (U1 (X) ; :::;UN+1 (X)) 2

R [X]N+1 such that XN+1

i=1
Ui (X)�i (X) = D (X) . (14)

Let �(X) 2 R [X] denote the polynomial, de�ned up to a non-zero multiplicative scalar, which

has the same roots (whose modulus is strictly lower than one) with the same multiplicity as

the eigenvalues of the system I � S (L) corresponding to the autoregressive part of the targeted

stationary VARMA process (3). Let Z (X) 2 R [X] be a given polynomial that: i) has all its roots

of modulus strictly lower than one; and ii) is such that �(X) is a divisor of Z (X)D (X). Given

that assumption 1.iii implies the existence of I 2 f1; :::; Ng such that26664
e0I

e02
bA (0)
...

e0N
bA (0)

37775
is invertible, let n 2 N be such that

n � 2d�I � dD +max
�

max
i2f1;:::;Ng

(dUi) ; dUN+1
+max

�
�1;ma

1 �mb
1

��
� dZ .

Let Q (X) 2 R [X] and R (X) 2 R [X] be respectively the quotient and the remainder of the

Euclidian division of XnZ (X) by �I (X), i.e. the unique polynomials such that XnZ (X) =

�I (X)Q (X) +R (X) with dR < d�I . Multiplying the left-hand side and the right-hand side of

(14) by R (X), we obtain

R (X)
XN+1

i=1
Ui (X)�i (X) = R (X)D (X)

and thereforeXN+1

i=1
i 6=I

[R (X)Ui (X)]�i (X) + [R (X)UI (X) +Q (X)D (X)]�I (X) = XnZ (X)D (X) .
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Let us note Pi (X) � R (X)Ui (X) for i 2 f1; :::; N + 1g r fIg and PI (X) � R (X)UI (X) +

Q (X)D (X). Given that8>><>>:
n � 2d�I � dD +max

�
max

i2f1;:::;Ng
(dUi) ; dUN+1

+max
�
�1;ma

1 �mb
1

��
� dZ

n = d�I + dQ � dZ
d�I > dR

=) dQ + dD > dR +max

�
max

i2f1;:::;Ng
(dUi) ; dUN+1

+max
�
�1;ma

1 �mb
1

��

=)

8><>:
dQ + dD > dR + dUI
dQ + dD > dR + max

i2f1;:::;NgrfIg
(dUi)

dQ + dD > dUN+1
+max

�
�1;ma

1 �mb
1

� =)

8<: dPI = dQ + dD
dPI > dPi for i 2 f1; :::; Ngr fIg
dPI � dPN+1

+max
�
0;ma

1 �mb
1 + 1

� ,

the choice of

P (L) =
XN

i=1
(�1)N+1�i LdPIPi

�
L�1

�
e0i and Q (L) = LdPIPN+1

�
L�1

�
satis�es conditions 2 and 3.

Step 3: the non-zero eigenvalues of (5) are those of the system

	 (L)
((N+1)�(N+1))

�
Xn 

k=�m 
	kL

k =

2666664
Lm

b
1e01A (L) Lm

b
1e01B (L)

Lm
a
2e02A (L) Lm

a
2e02B (L)

...
...

Lm
a
Ne0NA (L) Lm

a
Ne0NB (L)

P (L) Q (L)

3777775 ,

where
�
m ; n 

�
2 N2 and all 	k have real numbers as elements. If mb

1 > ma
1 then m

 = 0 and

	0 =

2666664
0 � � � 0 e01B�mb1

e02
bA (0) 0
...

...
e0N
bA (0) 0
P0 Q (0)

3777775
is invertible (since condition 2 is satis�ed). Therefore, according to a standard matricial result of

time series analysis (cf e.g. Hamilton, 1994, chap. 10, prop. 10.1), the eigenvalues of 	 (L) are

the roots of polynomial
���Xn 	

�
X�1���� 2 R [X]. Alternatively, if mb

1 � ma
1 then the eigenvalues

of 	 (L) are those of the system that is obtained by using the last N lines of 	 (L) (given that

condition 2 is satis�ed) to sequentially remove the terms in Lk for k 2 f�m ; :::; 0g from the �rst

line of	 (L). This system, noted � (L), is of the form
Pn 

k=0�kL
k, where all �k have real numbers

as elements and

�0 =

2666664
0 � � � 0 e01B�mb1

e02
bA (0) 0
...

...
e0N
bA (0) 0
P0 Q (0)

3777775
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is invertible. Therefore, according to a standard matricial result of time series analysis (cf e.g.

Hamilton, 1994, chap. 10, prop. 10.1), the eigenvalues of � (L) � and hence those of 	 (L) � are

the roots of polynomial
���Xn �

�
X�1����, which is equal to polynomial ���Xn 	

�
X�1����. To sum up,

whethermb
1 > ma

1 orm
b
1 � ma

1 , the non-zero eigenvalues of (5) are the non-zero roots of polynomial���Xn 	
�
X�1����, that is to say those ofXN

i=1

h
(�1)N+1�iP

�
X�1� eii�i (X) + �Q �X�1���N+1 (X)

and hence, by construction of P (L) and Q (L), those of Z (X)D (X). By de�nition of Z (X) and

given assumption 3, all non-zero roots of Z (X)D (X) are of modulus strictly lower than one, so

that the P (L) and Q (L) constructed at step 2 satisfy condition 4.

Step 4: (3) implies that there exists a unique R (L)
(1�N)

�
P+1
k=0RkL

k, where all Rk have real numbers

as elements, such that

P (L)Yt +Q (L) zt +R (L) "t = 0 (15)

where P (L) and Q (L) are the ones constructed at step 2. If mb
1 > ma

1 then multiplying both (15)

and (13) by D (L) �
YN

i=1
Di (L) leads to

D (L)P (L)Yt +D (L)Q (L) zt +D (L)R (L) "t = 0 and (16)

D (L)

26664
e01L

mb1A (L) e01L
mb1B (L)

e02L
ma2A (L) e02L

ma2B (L)
...

...
e0NL

maNA (L) e0NL
maNB (L)

37775
�
Yt

zt

�
+

26664
e01L

mb1C (L)
e02L

ma2C (L)
...

e0NL
maNC (L)

37775
26666664

YN

i=2
Di (L) 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0
YN�1

i=1
Di (L)

37777775 "t +D (L)O (L) "t = 0 (17)

since, as a scalar, D (L) is such that D (L)K = KD (L) for any matrix K. The system made of

(16) and (17) is backward-looking (since ma
1 > mb

1) and non-degenerate (since D (0) = jD (0)j 6= 0

and j	0j 6= 0). Cramer�s rule then implies that there exist (n1; :::; nN+1) 2 NN+1 with ni � d�i

for i 2 f1; :::; N + 1g and �1 (L)
((N+1)�N)

�
Pn�1

k=0�1;kL
k, where n�1 2 N and all �1;k have real numbers

as elements, such that this system can be rewritten

D (L)LdZ+dDZ
�
L�1

�
D
�
L�1

� � Yt

zt

�
=

�1 (L) "t +D (L)

264 Ln1�1
�
L�1

�
R (L) "t

...
LnN+1�N+1

�
L�1

�
R (L) "t

375 (18)
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given step 3. But Cramer�s rule also implies that there exists �2 (L)
((N+1)�N)

�
Pn�2

k=0�2;kL
k, where

n�2 2 N and all �2;k have real numbers as elements, such that the targeted stationary VARMA

process (3) can be rewritten

Ld��
�
L�1

� � Yt

zt

�
= �2 (L) "t,

which implies

D (L)LdZ+dDZ
�
L�1

�
D
�
L�1

� � Yt

zt

�
= D (L)

LdZ+dDZ
�
L�1

�
D
�
L�1

�
Ld��(L�1)

�2 (L) "t (19)

where
XdZ+dDZ(X�1)D(X�1)

Xd��(X�1)
2 R [X] by de�nition of Z (X). Given that �N+1 (X) 6= 0 due to

assumption 1.iii, the identi�cation of (18) with (19) shows that 9nr 2 N, 8k > nr, Rk = 0, so that

R (L) satis�es condition 5. Alternatively, if mb
1 � ma

1 then a similar reasoning (based on � (L)

instead of 	 (L), along the lines of step 3) shows that R (L) satis�es condition 5 again. To sum

up, whether mb
1 > ma

1 or m
b
1 � ma

1 , there exists R (L) satisfying condition 5 and such that (15)

holds. Finally, steps 1 to 4 together imply that (1) holds and that there exist O (L), P (L), Q (L)

and R (L) satisfying conditions 1 to 5 and such that (4) holds. Following proposition 1, we then

conclude that (3) is the unique solution of the system made of (1) and (4).

C Proof of proposition 3

Let � 2 R+ n [0; 1]. If ma
1 � mb

1 then, given propositions 1 and 2, there exists a rule of type (4)

that: i) satis�es conditions 1 to 5; ii) is backward-looking; iii) ensures the local determinacy of

the given sequence of type (3) satisfying (1); and iv) is such that the system made of (1) and

this rule has no non-predetermined variables and no eigenvalue whose modulus is between 1 and

�. The remaining of the proof therefore deals with the case where ma
1 > mb

1. We proceed in four

steps: �rst, we show that (1) together with a backward-looking rule of type (2) can be written in

Blanchard and Kahn�s (1980) form with � non-predetermined variables; second, we construct some

particular F (L) and G (L) such that mf = 0, so that whatever H (L) the corresponding rule (2) is

backward-looking; third, we show that whatever H (L) the system made of (1) and this rule admits

at most one stationary solution and has no eigenvalue whose modulus is between 1 and �; fourth,

we show that a suitable choice of H (L) makes this system admit exactly one stationary solution

and makes this solution coincide with the targeted stationary VARMA process (3). Note that steps

2 to 4 of this appendix largely draw on steps 2 to 4 of appendix B, with F (L), G (L), � (L) and

H (L) playing respectively the roles of P (L), Q (L), R (L) and R (L)D (L). In particular, we use

in this appendix the polynomials Ui (X) for i 2 f1; :::; N + 1g and �(X) introduced in appendix

B.
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Step 1: consider a system (S) of type (1) and a backward-looking rule ( bR) of type (2). Let us
rewrite (S) step by step and keep for simplicity the same notation (S) at each step. Re-order the

lines of (S) so that ma
1 � ::: � ma

N . Let K 2 f1; :::; Ng and fi1; :::; iKg 2 f1; :::; Ng
K be such that

ma
1 = ::: = ma

i1
> ma

i1+1
= ::: = ma

i2
> ::: > ma

iK�1+1
= ::: = ma

iK
= ma

N . Re-order the elements of

Yt and accordingly the columns of A (L) so that 8i 2 f1; :::; N � 1g, the (N � i)� (N � i) matrix

noted Mi obtained by removing the �rst i lines and the �rst i columns from bA (0) is invertible,
this re-ordering being made possible by assumption 1.iii. Replace e0i (S) by

e0i
bA (0)�1Et

266664
1 0 � � � 0

0 Lm
a
2�m

a
1

. . .
...

...
. . .

. . . 0
0 � � � 0 Lm

a
N�m

a
1

377775 (S)

for i 2 f1; :::; i1g. If K = 1 then replace sequentially Et
n
zt+mai1�k

o
for k 2

�
1; :::;ma

i1

	
(if they

appear) in (S) by their expressions in Et
n
Lk�m

a
i1 ( bR)o. The resulting system (S) is equivalent

to the original one and together with ( bR) can easily be written in Blanchard and Kahn�s (1980)
form with i1ma

i1
=
XN

i=1
ma
i � m non-predetermined variables. Otherwise (i.e. if K � 2), let us

set k = 1. Replace Et
n
zt+mai1�k

o
(if it appears) in e0i (S) for i 2 f1; :::; i1g by its expression in

Et

n
Lk�m

a
i1 ( bR)o. Then, replace Et ne0iYt+mai1

�k

o
for i 2 fi1 + 1; :::; Ng (if they appear) in e0i (S)

for i 2 f1; :::; i1g by their expression in

M�1
i

266664
0 0 � � � 0 Lm

a
i1+1

�mai1+k 0 � � � 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 � � � 0 0 0 � � � 0 Lm
a
N�m

a
i1
+k

377775 (S) .

If ma
i1
> ma

i2
+ 1 then repeat these last two steps sequentially for k 2

�
2; :::;ma

i1
�ma

i2

	
. Proceed

in a similar way as previously to transform e0i (S) for i 2 fi1 + 1; :::; i2g, then (if K � 3) e0i (S)

for i 2 fi2 + 1; :::; i3g and so on up to e0i (S) for i 2 fiK�1 + 1; :::; iKg. The �nal system (S) is

equivalent to the initial one and together with ( bR) can easily be written in Blanchard and Kahn�s
(1980) form with

XK

j=1
ijm

a
ij
=
XN

i=1
ma
i = m non-predetermined variables. Note �nally that

this numberm of non-predetermined variables does not depend on the particular backward-looking

rule ( bR) of type (2) considered and, since ma
1 > mb

1, is equal to � .

Step 2: let Z (X) 2 R [X] be a given polynomial that: i) has exactly m roots (taking into account

their multiplicity) whose modulus is strictly higher than �; ii) has no root whose modulus is

between 1 and �; and iii) is such that �(X) is a divisor of Z (X)D (X). Let n 2 N be such that

n � 2d�N+1
� dD + max

i2f1;:::;N+1g
(dUi)� dZ .
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Let Q (X) 2 R [X] and R (X) 2 R [X] be respectively the quotient and the remainder of the

Euclidian division of XnZ (X) by �N+1 (X), i.e. the unique polynomials such that XnZ (X) =

�N+1 (X)Q (X) + R (X) with dR < d�N+1
. Multiplying the left-hand side and the right-hand

side of (14) by R (X), we obtain

R (X)
XN+1

i=1
Ui (X)�i (X) = R (X)D (X)

and thereforeXN

i=1
[R (X)Ui (X)]�i (X) + [R (X)UN+1 (X) +Q (X)D (X)]�N+1 (X) = XnZ (X)D (X) .

Let us note Fi (X) � R (X)Ui (X) for i 2 f1; :::; Ng and G (X) � R (X)UN+1 (X)+Q (X)D (X).

The choice of F (L) ei = (�1)N+1�i LdGFi
�
L�1

�
for i 2 f1; :::; Ng and G (L) = LdGG

�
L�1

�
is

admissible as it satis�es the requirements G (X) 2 R [X] and g0 6= 0. Moreover, we have8><>:
n � 2d�N+1

� dD + max
i2f1;:::;N+1g

(dUi)� dZ
n = d�N+1

+ dQ � dZ
d�N+1

> dR

=) dQ + dD > dR + max
i2f1;:::;N+1g

(dUi)

=)
(

dQ + dD > dR + dUN+1

dQ + dD > dR + max
i2f1;:::;Ng

(dUi)
=) dG = dQ + dD > dFi for i 2 f1; :::; Ng ,

so that the F (L) constructed at step 2 is such that 8i 2 f1; :::; Ng, F (X) ei 2 R [X], in other words

mf = 0, i.e. any rule (2) with the F (L) and G (L) constructed at step 2 is backward-looking.

Step 3: the non-zero eigenvalues of the system made of (1) and any rule (2) with the F (L) and

G (L) constructed at step 2 are those of the corresponding perfect-foresight deterministic system

	 (L)

�
Yt

zt

�
= 0 where 	 (L)

((N+1)�(N+1))
�
Xn 

k=0
	kL

k =

26664
Lm

a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

F (L) G (L)

37775 ,
n 2 N and all 	k have real numbers as elements. Given that ma

1 > mb
1, assumptions 1.iii and

2.iii together with g0 6= 0 make

	0 =

26664
0bA (0) ...
0

F (0) g0

37775
invertible, so that according to a standard matricial result of time series analysis (cf e.g. Hamilton,

1994, chap. 10, prop. 10.1) this system�s eigenvalues are the roots of polynomial
���Xn 	

�
X�1���� 2

R [X]. As a consequence, the system�s non-zero eigenvalues are the non-zero roots ofXN

i=1

h
(�1)N+1�iF

�
X�1� eii�i (X) + �G �X�1���N+1 (X)
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and hence, by construction of F (L) and G (L), the non-zero roots of Z (X)D (X). By de�nition of

Z (X) and given assumption 3, Z (X)D (X) has no root whose modulus is between 1 and �, and

exactly m roots whose modulus is strictly higher than �. Given step 1, this implies that the system

made of (1) and any rule (2) with the F (L) and G (L) constructed at step 2 admits either one

or zero stationary solution, depending on whether Blanchard and Kahn�s (1980) rank condition is

satis�ed or not, and has no eigenvalue whose modulus is between 1 and �.

Step 4: if the targeted stationary VARMA process (3) holds for t 2 Z, then: i) there exists a

unique � (L)
(1�N)

�
P+1
k=0�kL

k, where all �k have real numbers as elements, such that

F (L)Yt +G (L) zt +� (L) "t = 0 (20)

where F (L) and G (L) are the ones constructed at step 2; and ii) there exists a unique

� (L)
(N�N)

�

266664
Pma1�1
k=0 �1;kL

kPma2�1
k=0 �2;kL

k

...PmaN�1
k=0 �N;kL

k

377775 ,
where all �i;k have real numbers as elements, such that264 Lm

a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

375� Yt

zt

�
+

264 Lm
a
1e01C (L)
...

Lm
a
Ne0NC (L)

375 �t +� (L) "t = 0. (21)

Multiplying both (20) and (21) by D (L) �
YN

i=1
Di (L) leads to

D (L)F (L)Yt +D (L)G (L) zt +D (L)� (L) "t = 0 and (22)

D (L)

264 Lm
a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

375� Yt

zt

�
+

264 Lm
a
1e01C (L)
...

Lm
a
Ne0NC (L)

375
26666664

YN

i=2
Di (L) 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0
YN�1

i=1
Di (L)

37777775 "t +D (L)� (L) "t = 0 (23)

since, as a scalar, D (L) is such that D (L)K = KD (L) for any matrix K. The system made of

(22) and (23) is backward-looking (since ma
1 > mb

1) and non-degenerate (since D (0) = jD (0)j 6= 0

and j	0j 6= 0). Cramer�s rule then implies that there exist (n1; :::; nN+1) 2 NN+1 with ni � d�i

for i 2 f1; :::; N + 1g and �1 (L)
((N+1)�N)

�
Pn�1

k=0�1;kL
k, where n�1 2 N and all �1;k have real numbers
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as elements, such that this system can be rewritten

D (L)LdZ+dDZ
�
L�1

�
D
�
L�1

� � Yt

zt

�
=

�1 (L) "t +D (L)

264 Ln1�1
�
L�1

�
� (L) "t

...
LnN+1�N+1

�
L�1

�
� (L) "t

375 (24)

given step 3. But Cramer�s rule also implies that there exists �2 (L)
((N+1)�N)

�
Pn�2

k=0�2;kL
k, where

n�2 2 N and all �2;k have real numbers as elements, such that the targeted stationary VARMA

process (3) can be rewritten

Ld��
�
L�1

� � Yt

zt

�
= �2 (L) "t,

which implies

D (L)LdZ+dDZ
�
L�1

�
D
�
L�1

� � Yt

zt

�
= D (L)

LdZ+dDZ
�
L�1

�
D
�
L�1

�
Ld��(L�1)

�2 (L) "t (25)

where
XdZ+dDZ(X�1)D(X�1)

Xd��(X�1)
2 R [X] by de�nition of Z (X). Given that �N+1 (X) 6= 0 due to

assumption 1.iii, the identi�cation of (24) with (25) shows that 9n� 2 N, 8k > n�, �k = 0.

The choice of H (L) = � (L)D (L) is therefore admissible. We have thus shown that, for any (3)

satisfying (1), there exist F (L), G (L) and H (L) with mf = 0 such that: i) (3) implies (1) and

(2); and ii) the system made of (1) and (2) admits at most one stationary solution and has �

non-predetermined variables and no eigenvalue whose modulus is between 1 and �. Since there

exists at least one (3) satisfying (1), due to assumption 3, proposition 3 follows.

D Proof of proposition 4

Suppose ma
1 > mb

1 and consider some given n 2 N and M 2 R�. Let us note Sn;M the set of

backward-looking rules of type (2) such that nf � n, ng � n, g0 = 1, all gk for k 2 f1; :::; ngg (if

ng � 1) and all elements of Fk for k 2
�
0; :::; nf

	
have an absolute value lower than M . Whatever

the rule belonging to Sn;M considered, the non-zero eigenvalues of the system made of (1) and this

rule are those of the corresponding perfect-foresight deterministic system

	 (L)

�
Yt

zt

�
= 0 where 	 (L)

((N+1)�(N+1))
�
Xn 

k=0
	kL

k with 	0 =

26664
0bA (0) ...
0

F0 g0

37775 ,
n 2 N, all 	k have real numbers as elements and the zero elements in the last column of 	0

come from assumptions ma
1 > mb

1 and 2.iii. Assumption 1.iii and the normalization g0 = 1

make 	0 invertible, so that according to a standard matricial result of time series analysis (cf
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e.g. Hamilton, 1994, chap. 10, prop. 10.1) this system�s eigenvalues are the roots of polynomial

� (X) �
���Xn 	

�
X�1���� 2 R [X]. Three results are then easily obtained: i) the coe¢ cient j	0j =��� bA (0)��� g0 = ��� bA (0)��� of X(N+1)n in � (X) is non-zero and independent of the rule belonging to

Sn;M considered; ii) there exists n0 2 N such that, whatever the rule belonging to Sn;M considered,

the degree (N + 1)n of � (X) is lower than n0; iii) partly as a consequence of the second result,

there existsM 0 2 R� such that, whatever the rule belonging to Sn;M considered, all the coe¢ cients

of � (X) have an absolute value lower thanM 0. These three results together imply that there exists

� 2 R+ n [0; 1] such that, whatever the rule belonging to Sn;M considered, all the roots of � (X)

have an absolute value lower than � and, therefore, all the eigenvalues of the system made of

(1) and this rule have a modulus lower than �. However, given assumptions 1 and 2 and since

ma
1 > mb

1, whatever the rule belonging to Sn;M considered, the system made of (1) and this rule

has at least one non-predetermined variable. As a consequence, there exists no rule belonging to

Sn;M and such that the system made of (1) and this rule admits a unique stationary solution and

has no eigenvalue whose modulus is between 1 and �.

E Proof of proposition 5

We proceed in three steps: �rst, we show that, with probability one, the system made of (1) and ( eR)
can be written in Blanchard and Kahn�s (1980) form with at most � non-predetermined variables;

second, we show that this system admits a unique stationary solution and has no eigenvalue whose

modulus is between 1 and �, with � �! +1 as " �! 0; third, we show that d(X (L) ; eX (L)) �! 0

as " �! 0.

Step 1: consider a given system (S) of type (1). Replace Et
n
zt+mb1

o
in e01 (S) by its expression

in Et
n
L�m

b
1( eR)o; if ma

1 < mb
1, in which case ( eR) is backward-looking, then replace sequentially

Et

n
zt+mb1�k

o
for k 2

�
1; :::;mb

1 �ma
1

	
(if they appear) in the resulting equation by their expres-

sions in Et
n
Lk�m

b
1( eR)o; note ( eE) the resulting equation. Consider

(eS) �
8>>><>>>:

( eE)
e02 (S)
...

e0N (S)

and beA (L) �
264 e01L

ma1

...
e0NL

maN

375 eA (L)
where eA (L) is de�ned by writing (eS) in the form Et

neA (L)Yt + eB (L) zto+ eC (L) �t = 0. Given
that the probability distributions of the exogenous additive measurement errors are assumed to

be continuous, beA (0) is invertible with probability one14 . Rewrite then (eS) in a similar way as in
step 1 of appendix C, with (eS), eA (L), beA (0) and ( eR) playing the roles of (S), A (L), bA (0) and
( bR) respectively. If ma

1 � mb
1 then this rewriting enables us to put the system made of (eS) and

14 In the remaining of the proof, for simplicity, we may sometimes drop the expression �with probability one�.
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( eR) in Blanchard and Kahn�s (1980) form since ( eR) is backward-looking and since ma
i > mb

i for

i 2 IB r f1g due to assumption 2.iii. Alternatively, if ma
1 > mb

1 then this rewriting also enables us

to put the system made of (eS) and ( eR) in Blanchard and Kahn�s (1980) form, even though ( eR) is
forward-looking, because ma

i �mb
i > ma

1�mb
1 for i 2 IBrf1g due to assumption 2.iii and because

the only variable of type Et fzt+kg with k 2 N appearing in the system made of the rewritten

system (eS) and ( eR) is zt in ( eR). In both cases the number of non-predetermined variables is equal
to m�

XN

i=1
ma
i . Since the system made of (S) and ( eR) is equivalent to the system made of (eS)

and ( eR), we have thus shown that, with probability one, the system made of (S) and ( eR) can be
written in Blanchard and Kahn�s (1980) form with m non-predetermined variables. Note �nally

that m � � .

Step 2: for any system or equation (x), let (x) denote the perfect-foresight deterministic form of

(x). The same reasoning as the one conducted at the beginning of appendix A, this time starting

from ( eE) instead of (�!1 ) and using ( eR) instead of (R), leads to an equation (f�!N ), corresponding to
equation (

�!
N ) in appendix A, such that (

f�!
N ) is of the form

eP (L)Yt + eQ (L) zt = 0 with eP (L)
(1�N)

�
Xnep

k=�m
ePkLk and eQ (L)�Xneq

k=�m+1+max[ma1�mb1, 0]
eqkLk,

where
�
nep; neq� 2 N2, all ePk have real numbers as elements, all eqk are real numbers, eP�m = e01 beA (0),

d(eP (L) ;P (L)) �! 0 and d( eQ (L) ; Q (L)) �! 0 as " �! 0. The non-zero eigenvalues of the system

made of (S) and ( eR) are those of the system made of
�
S
�
and ( eR) which in turn are those of the

system made of
�
S
�
and (

f�!
N ). The latter system can be rewritten

e�1 (L) � Yt

zt

�
= 0 with e�1 (L) �

26666664
LmeP (L) Lm eQ (L)

e01L
max[ma1 ;m

b
1]A (L) e01L

max[ma1 ;m
b
1]B (L)

e02L
ma2A (L) e02L

ma2B (L)
...

...
e0NL

maNA (L) e0NL
maNB (L)

37777775�
Xne1

k=0
e�1;kLk

where ne1 2 N and all e�1;k have real numbers as elements. Let us de�ne

J1
(N�(N+1))

�

266664
1 0 0 � � � 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 � � � 0 0 1

377775 , J2
((N+1)�N)

�

26666664

1 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0
0 � � � 0 1
0 � � � � � � 0

37777775 ,

J3
((N+1)�1)

�

26664
0
...
0
1

37775 and J4
(N�(N+1))

�

266664
0 1 0 � � � 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 � � � 0 0 1

377775 .
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If ma
1 � mb

1 then replace sequentially Yt�k for k 2
�
0; :::;ma

1 �mb
1

	
in the second line ofe�1 (L) � Yt zt

�0
= 0 by its expression in (J1e�1;0J2)�1J1e�1 (L)Lk � Yt zt

�0
= 0, given

that jJ1e�1;0J2j = jbeA (0) j 6= 0, and note e�2 (L) � Yt zt
�0
= 0 the resulting system, withe�2 (L)�Pne2

k=0
e�2;kLk where ne2 2 N and all e�2;k have real numbers as elements (e�2 (L) = e�1 (L)

if ma
1 < mb

1). Given that J1e�1;kJ3 = 0 for k 2 �0; :::;max �ma
1 �mb

1; 0
�	
due to assumption 2.iii,

we have

e�2;0 =
266666664

e01
beA (0) 0
0 e01B�mb1

e02
beA (0) 0
...

...

e0N
beA (0) 0

377777775
.

Since beA (0) is invertible, e�2;0 is invertible as well so that according to a standard matricial result
of time series analysis (cf e.g. Hamilton, 1994, chap. 10, prop. 10.1) the non-zero eigenvalues ofe�2 (L), which are those of e�1 (L), are the roots of polynomial eE (X) � ���Xne2 e�2 �X�1���� 2 R [X].
Now eE (X) = eE1 (X) + eE2 (X) where

eE1 (X) �
����� Xne2�mP�1

k=�m
ePkX�k Xne2�mP�1

k=�m eqkX�k

J4X
ne2 e�2 �X�1�

�����
and eE2 (X) �

����� Xne2�mPnep
k=0

ePkX�k Xne2�mPneq
k=0 eqkX�k

J4X
ne2 e�2 �X�1�

����� .
If m = 0 then eE1 (X) = 0. Otherwise the degree of eE1 (X) is equal to ne2 (N + 1) since the

coe¢ cient of Xne2 (N+1) in eE1 (X) is ���e�2;0��� 6= 0. For " su¢ ciently close to 0, the degree of eE2 (X)
is equal to ne2 (N + 1)�m since the coe¢ cient of Xne2 (N+1)�m in eE2 (X) is������������

eP0 eq0
0 e01B�mb1

e02
bA (0) 0
...

...
e0N
bA (0) 0

������������
�! (�1)N+1 e01B�mb1 j
j 6= 0 as " �! 0.

Let us note ex1, ..., exne2 (N+1) the roots of eE (X), ranked �rst by increasing modulus (i.e. jex1j �
::: �

���exne2 (N+1)���) and second by increasing complex argument (i.e. if 9i 2 �1; :::; ne2 (N + 1)� 1
	
,

jexij = jexi+1j, then ' (exi) � ' (exi+1), where ' : C �! [0; 2�[ denotes the complex argument

function). Similarly, let us note x1, ..., xn the non-zero eigenvalues of system (5) ranked �rst by

increasing modulus and second by increasing complex argument, which are all of modulus strictly

lower than one since (R) satis�es condition 4. Since eE1 (X) �! 0 as " �! 0, we have�ex1; :::; exne2 (N+1)�m� �! (0; :::; 0; x1; :::; xn) as " �! 0
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and 8k 2 f0; :::;m� 1g ,
���exne2 (N+1)�k��� �! +1 as " �! 0,

which implies: i) that the system made of (1) and ( eR) has no eigenvalue whose modulus is between
1 and �, with � �! +1 as " �! 0; ii) given step 1, that this system admits either one or zero

stationary solution, depending on whether Blanchard and Kahn�s (1980) rank condition is satis�ed

or not. Since assumption 3 and the continuous-probability-distribution assumption together ensure

that this rank condition is satis�ed with probability one, we further get that this system admits

one unique stationary solution.

Step 3: let us write equations (
�!
k ) for k 2 f1; :::; Ng, obtained in appendix A, in the form

�!
U (L)Yt +

�!
V (L) zt +

�!
W (L) �t = 0

with
�!
U (L)
(N�N)

�
Xn

�!u

k=0

�!
UkL

k,
�!
V (L)
(N�1)

�
Xn

�!v

k=max[0;ma1�mb1+1]

�!
VkL

k and
�!
W (L)
(N�N)

�
Xn

�!w

k=0

�!
WkL

k,

where
�
n
�!u ; n

�!v ; n
�!w
�
2 N3 and all �!Uk,

�!
Vk,

�!
Wk have real numbers as elements. For all (i; j) 2

f1; :::; Ng2 such that i � j, let �i;j be de�ned by �i;j = 1 if 8k 2 fi; :::; jg, ma
k = 0 and �i;j = 0

otherwise. We then have

�!
U (0) =

26666664

�2;N 1 �2;2 � � � �2;N�1
... 0 1

. . .
...

...
...

. . .
. . . �N�1;N�1

�N;N 0 � � � 0 1
1 0 � � � � � � 0

37777775U (0) ,

so that since U (0) = 
 is invertible,
�!
U (0) is invertible as well. In this case, the same reasoning

as the one conducted at the end of appendix A, this time using
�!
U (L),

�!
V (L) and

�!
W (L) instead

of U (L), V (L) andW (L), leads to a system of the form

Et

�
�1 (L)

�
Yt

zt

�
+�2 (L) �t

�
= 0 (26)

with �1 (L)
(N+1)�(N+1)

�
Xn�1

k=0
�1;kL

k and �2 (L)
(N+1)�N

�
Xn�2

k=0
�2;kL

k,

where
�
n�1 ; n�2

�
2 N2, all �1;k, �2;k have real numbers as elements, �1;0 is invertible and all

eigenvalues of �1 (L) are of modulus strictly lower than one. Since (26) is equivalent to the system

made of (S) and (R), (10) is the unique solution of (26).

Similarly, let us follow the same reasoning as the one conducted at the beginning of appendix

A, this time starting from ( eE) instead of (�!1 ) and using ( eR) instead of (R), to get equations
(
f�!
2 ) to (

f�!
N ) corresponding to equations (

�!
2 ) to (

�!
N ) in appendix A. Equations ( eE) and (f�!k ) for

k 2 f2; :::; Ng can then be re-written in the form

Et

�f�!
U (L)Yt +

f�!
V (L) zt +

f�!
W (L) �t

�
= 0
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with
f�!
U (L)
(N�N)

�
Xn

f�!u
k=�mf�!u

f�!
UkL

k,
f�!
V (L)
(N�1)

�
Xn

f�!v
k=�mf�!v

f�!
VkL

k and
f�!
W (L)
(N�N)

�
Xn

f�!w
k=�mf�!w

f�!
WkL

k,

where (m
e�!u ;m e�!v ;m e�!w ; n e�!u ; n e�!v ; n e�!w ) 2 N6, allf�!Uk,

f�!
Vk,

f�!
Wk have real numbers as elements, d(

f�!
U (L) ;

�!
U (L)) �!

0, d(
f�!
V (L) ;

�!
V (L)) �! 0 and d(

f�!
W (L) ;

�!
W (L)) �! 0 as " �! 0. Given that

f�!
U (0) �! �!U (0) as

" �! 0,
f�!
U (0) is invertible for " su¢ ciently small, so that the same reasoning as the one conducted

at the end of appendix A leads to a system of the form

Et

�e�1 (L) � Yt

zt

�
+ e�2 (L) �t� = 0 (27)

with e�1 (L)
(N+1)�(N+1)

�
Xn

e�1
k=�me�1 e�1;kLk and e�2 (L)

(N+1)�N
�
Xn

e�2
k=�me�2 e�2;kLk,

where
�
m
e�1 ;me�2 ; ne�1 ; ne�2� 2 N4, all e�1;k, e�2;k have real numbers as elements, d(e�1 (L) ;�1 (L)) �!

0 and d(e�2 (L) ;�2 (L)) �! 0 as " �! 0. Since (27) is implied by the system made of (S) and

( eR), (11) is one solution of (27).
Finally, let us note (�1; :::; �n� ), where

n� � (ma + na + 1)N2 +
�
mb + nb + 1

�
N + (nc + 1)N2 +

�
nd + 1

�
N ,

the list (in a given order) of the true structural parameters, i.e. the elements of Ak for �ma � k �

na, Bk for �mb � k � nb and Ck for 0 � k � nc and di;k for 1 � i � N and 0 � k � nd. Similarly,

let us note (e�1; :::;e�n� ) the list (in the corresponding order) of the measured structural parameters,
and let us consider a given in�nite sequence of (e�1; :::;e�n� ) converging towards (�1; :::; �n� ). This
sequence corresponds to a unique sequence of " converging towards zero and a unique sequence ofeX (L). If eX0 did not converge towards X0 along this sequence of eX (L), then there would exist a
strictly positive real number !0 and an extracted sequence of (e�1; :::;e�n� ) such that eX0 �X0

 �
!0 for every element of the corresponding extracted sequence of eX (L), where k:k denotes a given
norm on matrices. From (26) and (27) it is easy to see, but tedious to show formally, that for

any element of this extracted sequence of (e�1; :::;e�n� ) su¢ ciently close to (�1; :::; �n� ) there would
then exist a strictly increasing sequence extracted from the sequence (

eXk

)k2N corresponding to
this element, which is impossible given that eXk �! 0 as k �! +1, so that we conclude thateX0 �! X0 along the sequence of eX (L) considered. By the same reasoning we obtain that 8k 2 N,
if (eX0; :::; eXk) �! (X0; :::;Xk) along the sequence of eX (L) considered then eXk+1 �! Xk+1 along

this sequence. By recurrence on k 2 N we therefore conclude that 8k 2 N, eXk �! Xk along

this sequence. Given that there exists (p; q) 2 N2 such that every element of the sequence ofeX (L) considered is the Wold form of a VARMA(p; q) process with p � p and q � q, as implied by

Blanchard and Kahn�s (1980) results in our context, this �simply continuous�convergence (8k 2 N,
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eXk �! Xk) implies in turn the �absolutely continuous�convergence d(eX (L) ;X (L)) �! 0 along

the sequence of eX (L) considered.
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