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Abstract

This paper provides exchange economies, construed as Shapley—Shubik
strategic market games, where no equilibrium features trade, and no conver-
gence takes place towards competitive outcomes. A knife-edge separates the
qualitative nature of some results. On one hand, a minor reduction in an
agent’s endowment can ensure the realization of Walras equilibrium to any
desirable approximation. On the other hand, slightly enhanced endowment
may suffice to bring about autarky. Satiation in preferences plays a key role
in establishing these results. To illustrate their relevance, I consider emissions
trading under the Kyoto Protocol.

Keywords: strategic market games, Nash and Walras equilibrium, conver-
gence, satiation, emissions trading.

1 Introduction

Perfect competition continues to hold a central place in economic analysis. Dur-
ing the last three decades, and reflecting a surge in noncooperative game theory, a
number of major research programs have arisen concerned with the strategic foun-
dations of perfect competition. Of particular promise and note in this regard is the
Shapley—Shubik strategic market game [12]. A simple and tractable instance of this
game is the main object of the current paper, the impetus for which is a passage in
Shapley and Shubik’s (op. cit.) original work:

“we do not assume that the utility of the payment commodity is additively separable...
But it is possible that such an assumption might simplify some of our results or proofs
or ensure uniqueness or other good behavior on the part of the noncooperative equilibria
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just as it does for the classical competitive equilibria.1 At least the question merits further
study.”

Following this suggestion, I accommodate here just two goods and let all utility
functions be quasi-linear. Moreover, each agent displays satiation in his use of the
nonmonetary good.? Regrettably, even this much simplification may yield little of
the good behavior hoped for. To wit, identified below are exchange economies where
autarky is the only Nash equilibrium in the strategic market game. That particular
finding is not novel, as others have concluded likewise (e.g., Busetto and Codognato
[2] and Cordella and Gabszewicz [3]). The reasons for the result obtained here dif-
fer, however, from this literature. Therefore, some implications are worth bringing
out further. A Kyoto-type example suits this purpose. Readers who prefer to shy
away from that particular case may instead consider two more tractable examples
provided below. These make use of the following standing notation.

I is a finite set of agents, all regarded as producers. Fach i € I is endowed
with a; units of a commodity good—in the nature of a production factor—which
generates payoff u; (). The other good serves as money and is in ‘sufficient’ supply
in the Shapley—Shubik sense.

Example 1. There are four agents, and each has marginal production payoff
w, (x;) = max {10 — z;,0}. The initial allocation of the commodity good (a1, ..., as) =
(8,8 +¢,12,12).

The results for this case appear after a second example:

Example 2. There are three agents with the same payoff functions as in Ex-
ample 1, and the initial allocation = (8,8, 15).

Results of both examples (On existence) A competitive equilibrium exists in
both examples for any value of €. If € < 0, then both economies also possess Nash
equilibria (up to first-order optimality conditions) that feature trade in the strategic
market game. Such trading equilibria are eliminated when ¢ > 0 in Example 1; it
is also eliminated in Example 2 if the setting is replicated once or more.

(On convergence) When ¢ — 0~ in Example 1, then a Nash equilibrium with trade
converges to a Walras equilibrium.

(On destruction) If e = 1, every agent in Example 1 will benefit from (unilaterally)
destroying 1.5 units of the commodity good before playing the game. [

'With an additively separable ‘u-money’ in sufficient supply, the competitive allocations of the
other goods are just those that maximize [the aggregate utility of the nonmoney commodities];
thus a “fixed point” situation reduces to a simpler maximization problem.

>This final feature complies with some literature dealing with the market for rights to release
greenhouse gases under the Kyoto Protocol, meaning marginal products eventually become nil.



The results on existence and destruction are more or less direct consequences of
Theorem 1, provided shortly. The convergence result will only be shown via a
Kyoto-type simulation, displayed in Section 3. Section 4 collates some bibliographic
remarks.

2 The game and the result

Before spelling out the strategic market game, recall (from Footnote 2) that a
competitive equilibrium allocation (z;);c; solves

max{zui (:Ci):Z:Ei:Zai} (1)

el el el

while an equilibrium price p can be modeled as a Lagrange multiplier (shadow
price) associated with the constraint. This equilibrium exists under quite weak
and plausible assumptions (including those specified in the upcoming Assumption).
Moreover, if u; is concave for all 7 € I, then a sufficient condition for an equilibrium
allocation (price) to be unique is that each wu; is strictly concave (continuously
differentiable). Finally, an interior equilibrium is characterized by all agents having
the same marginal payoff equal to the clearing price.

The version of the strategic market game adopted here goes as follows. Each
agent ¢ € I places ¢; € [0,a;] units of the good and b; > 0 units of money on the
trading post. Suppose each has enough money so that there are no upper bounds
on b;. Name aggregate supply and bid

Q= Zqi and B := Zbi’
icl icl
respectively. The commodity good is traded at the unit price

p:a (2)

when ) > 0; otherwise p = 0. Because our interest is in equilibria with trade, we
proceed under the hypothesis that p > 0. Agent ¢ € I is paid pg; for his own supply
and takes home % units of the good. Each agent cares for the sum of his production
payoff u; (-) plus market revenues pg; — b;. A profile (g, b;);c; is declared a Nash

equilibrium of the game iff (¢;, b;)
- bi
maximizes{u;(a; — ¢; + ;) +pgi — bi} (3)

for all ¢ € I with (g, bj)je[\{i} regarded as given.



Write II; (-) for the objective function in (3) so that
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In (5), A; is the shadow price associated with ¢; < a;. By the Karush-Kuhn-Tucker
conditions, a Nash equilibrium profile (g;, b;);c; must comply with
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for all ¢ € I, with
1

o _1 and@:—ﬁ. 9)

b Q 0q; Q

Definition (On first-order Nash and satiation).

(i) A set of choices (g;,b;);c; that satisfies the first-order optimality conditions is
called a first-order Nash equilibrium of the game.

(7i) A smallest satiation point &;, is a strictly positive finite number for which
u; (z3) < w; (T;) when x; € [0,%;) and u; (x;) = u; (%;) when z; > &;.

(797) An agent has excess endowments if a; > &; while an agent is short if a; < ;.
(iv) The economy has excess endowment in aggregate, if >,y a; > Y ;.

Remark (On Nash and first-order Nash).

While a genuine Nash equilibrium is of first order, I cannot exclude the possibility
that first-order equilibria may exist that are not Nash. My analysis relies on the
broader first-order concept. This implies that the results of Theorem 1 and Cases 2
& 3 in Section 3 are more general than when dealing exclusively with genuine Nash
equilibria. Moreover, Cases 1, 4 & 5 in Section 3 are not necessarily Nash, as I have
only verified that they are of first order.

Assumption (Standing till the end of this section).

() u; (+) is nondecreasing, concave and continuously differentiable for each ¢ € I;
(1) there exists a smallest satiation point z; > 0 for all i € I;

(7i1) there is at least one agent who is short and at least two agents with excess
endowments; and



(iv) there is excess endowment in aggregate.

The first part of Assumption (iii) only serves to provide an (interesting) econ-
omy where autarky is Pareto inefficient. The concavity assumption in (i) is never
explicitly used but guarantees the existence of a competitive equilibrium.

Theorem 1 (On lack of existence of equilibrium with trade). A Nash equilib-
rium with trade does not exist.

The proof follows after four lemmas.

Lemma 1 (On vanishing margins). Any feasible allocation implies that u;»(aj —

qj+%):0for at least one j € I.

Proof. Suppose on the contrary that w)(a; — ¢; + %) > 0 for all + € I. For

the latter to be true, a; — ¢; + % < @; must hold for all ¢ € I. Final consumption
summed over all agents then amounts to

b; .
dlai—q+—=)=> <) i
iel p iel iel
The equality follows by (2), while the inequality contradicts Assumption (iv) on ag-
gregate excess. Thus, there exists at least one agent j € I with u;(aj —qj+ %) = 0.
]

Lemma 2 (On bids and supply when the margin is nil). Suppose there exists an
equilibrium where at least two agents have offered strictly positive supplies. Then,
any agent j who is satiated in equilibrium, i.e., u; (a; —qﬂ—%) = 0, will bid nothing
and must have supplied at least a; — ;.

Proof. (4) for agent j amounts to

b Pbige 1
u;(aj—Qj+;j)'T%+a—ZQj—l:aq]‘—l<0

as u; () = 0 and ¢; < Q. Hence, for condition (6) to hold for agent j, we must

have b; = 0. Concerning his supply, if a; < Z;, and because ¢; > 0, statement

qj > aj — &; follows trivially. Should a; > %; and ¢; < aj — &, then by the

definition of Z; and by Assumption (i7), it must be true that u; = 0 in equilibrium,

so that the right-hand side of (5) reduces to

p-( —%)—Aj. (10)
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Because Z; by definition is strictly positive, the constraint ¢; > 0 cannot bite when
¢; < aj — &, hence A\; will be nil. Because by assumption ¢; < @, expression (10)
becomes strictly positive, this contradicts condition (7). Thus, ¢; < a; — &; is a
contradiction yielding ¢; > a; — ;. 0

Lemma 3 (On agents who bid). Suppose there exists an equilibrium allocation

where u; (a; —qj + %) =0 for at least one j € I. Then the total final consumption

among i € 1\ {j} is strictly greater than their aggregate smallest satiation points.

Proof. Because there is one agent j with a vanishing margin, then by Lemma
2,b; =0 and
2ien g bi
p= .
Diengy & T4

Suppose now, and contrary to what is claimed, that

b;
0 < > #i— > (ai—g+—)
i€NG} e} b
Diengy 4+ 4
= T — 25 — i i — bi
Zx 2 ,Z‘afz,q S Z
icl €Ny e} €Y engyy
< Zai—ij— Z a; + Z Qi—ZQi(*)
iel ieI\{j} 1eI\{j} el
= Z ai—Q—a]’—@j— Z a; — q;
i€\{j} ie\{j}

= aj—:i"j—qjg(),

a contradiction. The inequality in (*) follows by Assumption (iv), while the last
inequality comes from Lemma 2. [

Lemma 4 (On the number of suppliers). If an equilibrium profile with trade exists,
then there are at least two agents with strictly positive supplies.

Proof. Because there is trade, () > 0. Suppose now, on the contrary, that ¢; = @
for exactly one ¢ € I with ¢; = 0 for all else. By Assumption (i7i) an agent k # ¢
with excess endowments must then exist, i.e., ar — Zr > 0. Because g = 0, agent k
will in equilibrium have uj, (-) = 0. This implies that the right-hand side of (5) for
agent k reduces to p - (1 - %) — A =p— A =p > 0 because A\, = 0 (by the same

argument as in Lemma 2). The last inequality contradicts (7) for agent k. [

Proof of Theorem 1. Suppose that a Nash equilibrium with trade exists, i.e.,



B,Q and p are all > 0. By Lemma 1, there will exist at least one agent with

u}(aj —qj+ %) = 0. From Lemma 4, there must be more than one supplier. Thus,
Lemma 2 comes into effect and an agent with u; = 0 must have offered a bid b; = 0
and supplied ¢; > a; — ;. By Lemma 3, there will be excess endowments in aggre-
gate among all ¢ € I\ {j}, and by Lemmas 1 and 2, there will once again exist at
least one agent ¢ € I\ {j}, with «/(a; —g; + %) =0, b; =0and ¢; > a; — Z;; and so
on. By the logic of induction, this implies that all agents will choose b; = 0, which

contradicts B > 0. O

3 The Kyoto case

This section considers the exchange of rights to emit greenhouse gases under the
1997 Kyoto Protocol [14] and brings out some results that are qualitatively speaking
akin to the examples in Section 1.

3.1 Parameters

The parameters of the model stem originally from the (intertemporal CGE) model
MERGE of Manne and Richels [8] as reported in Godal and Klaassen [6]. In line
with the implementation of the Kyoto Protocol, the period under consideration
is 2008-2012. While the player set I should ideally be those governments with
quantified commitments that have ratified the agreement, the available parameters
cover only the relevant regions. These are CANZ (Canada, Australia and New
Zealand), EEFSU (Eastern Europe and the former Soviet Union)?, OECDE (Euro-
pean OECD countries) and Japan. Payoff functions are normalized to u; (Z;) = 0
and therefore measure what is sometimes referred to as (negative) abatement costs.
The functional form is given by

i (25) = { —2[131_ (o — Bywi)®  when ;€ [0,0:/;)
L 0 when x; > «;/5;
where oy, 5; > 0. Hence, the smallest satiation point (also known as ‘business-as-
usual emissions’) are given by &; = «;/;, while the marginal payoff becomes equal
to max{«a; — B;x;,0}. The values of «;, 3, endowments a;, the computed z;, and
the marginal (and total) payoff in autarky for the Kyoto-relevant MERGE regions
are given in Table 1.4

3The Kyoto countries in this group comprise Bulgaria, the Czech Republic, Estonia, Hungary,
Latvia, Lithuania, Poland, Romania, the Russian Federation, Slovakia, Slovenia and the Ukraine.

4Throughout, units are abbreviated with M-million, B-billion, t-metric ton, C-carbon, USD-
1997 US dollars and yr-year.



Table I. Parameter values of the model, smallest satiation points, marginal payoff and pay-

off in autarky.”

Variable Payoff functions Endow. | S.S.P M.P. P.P.

Symbol a; B a; T w) (a;) | wi(a)
Units US$/tC | US$yr/M(tC)? MtC/yr US$/tC | BUS$/yr
CANZ 693 2.216 215 | 312.7 216.6 —10.6
EEFSU 1410 1.569 1314 | 898.7 0.0 0.0
Japan 1727 4.933 258 | 350.1 454.3 —20.9
OECDE 1883 1.813 860 | 1038.6 323.8 —28.9
Total 2647 2600 —60.4

*¢S.S.P.” is the smallest satiation point; ‘M.P.” is marginal payoff; ‘P.P.” is the production
payoft.

Table I illustrates that the EEFSU has so much excess endowment that this also
holds in aggregate (2647 > 2600). It is also clear that with this parameterization
of the model, a competitive equilibrium (as in Montgomery [9] i.e., a solution to
(1)) exists where all agents have the same vanishing marginal payoff (= p = 0).°
The associated allocation belongs to the interior (z; > 0 for all 4 € I), but is not
unique.’

3.2 On existence

Case 1 (A first-order Nash equilibrium with trade). If the four regions play a strate-
gic permit market game, then a first-order Nash equilibrium exists as in Table II.

Table II. A first-order Nash equilibrium with trade in the strategic market game.*

Variable | Supply Bid Demand | Cons. | Sold M.P. M.R. P.P. T.P.
Symbol gi bi bi/p u; () u; ()

Units MtC/yr | MUSS$/yr MtC/yr US$/tC BUS$/yr

CANZ 0 2546 17.3 232 | —17.3 1783 | =25 | =72 | —=9.7
EEFSU 99.6 0 0| 1214 99.6 0.0 | 14.7 0.0 14.7
Japan 0 6115 41.5 299 | —41.5 252.6 | —6.1 | —6.5 | —12.6
OECDE 0 6019 40.8 901 | —40.8 249.8 | —6.0 | —17.2 | —23.2
Total 99.6 14679 99.6 | 2647 0.0 147.4 0.0 | —=30.8 | —30.8

* ‘Cons.” is final consumption and amounts to a;—q;+b;/p; ‘Sold’ is ¢;—b; /p; ‘M.P.’ is
marginal payoff evaluated at final consumption; ‘M.R.” is market revenue; ‘P.P.” is the

®This seemingly odd result is in line with other studies of the Kyoto agreement without US
participation (see, e.g., Springer [13]) which project either a low or vanishing price. The explanation
lies with the economic setbacks of the former Soviet states.

5The allocation z; = 2; + u, > jer (aj — ;) for all ¢ € I where p; is any number satisfying
p; > 0forallie I, and 37, pu; = 1 will be competitive (for our parameters).




production payoff evaluated at final consumption, and total payoffs ‘T.P.” are production
payoffs plus market revenue. The equilibrium price is located in the column M.P. and row
Total.

The figures in Table II illustrate that the EEFSU gives a positive supply of permits
and no bid, while the other regions give positive bids and no supply. This equilib-
rium therefore satisfies the so-called ‘no-wash-sale’ condition, signifying that both
supply and bids cannot be strictly positive for any agent (see Shapley and Shubik
[12, p. 964]). It should be emphasized, however, that in this and subsequent sim-
ulations, the no-wash-sale condition is not a binding constraint and only serves to
help compute equilibrium. The results in Table II also demonstrate that all agents
are better off with trade than in autarky.

Case 2 (On replication and autarky). For theoretical interest (not realism), suppose
now that the economy is replicated exactly once. Then, the Assumption (including
the last part of (iii)), becomes satisfied, and autarky becomes the only equilibrium
in the game. Clearly, a perfectly competitive equilibrium exists with a price p = 0.
If the economy is replicated time and again, autarky will prevail.

A not so appealing feature of the parameterization of the model is that coun-
tries (governments) are aggregated into regions. This may be reasonable for a
group like OECDE, because the members of the European Union have agreed as a
group to comply with the Protocol. However, for the EEFSU, no such agreement
is commonly known to exist. It therefore appears better to split the EEFSU before
modeling trade.

Case 3 (On disaggregation and autarky). The MERGE-projected emissions for
the EEFSU suggest that this region will have excess endowments in 2008-2012 (Ta-
ble I). This is supported by actual 2005 emissions available at www.unfccc.org.”
Moreover, also according to this site, Russia has a little less than two-thirds of
the total emissions for this region. To improve the modeling slightly, we split the
EEFSU into two agents: Russia and the remainder (called Ukraine+). Write

QRussia *— XEEFSU; QUkraine+ ‘= XEEFSU;
3 ._ Begrsu. 3 ) ._ Beersu.
Russia *— 2/3 Ukraine+ *— 1/3

QRussia *= (2/3) agersv and  aykraine+ = (1/3) apersu.

With these definitions, the region’s endowment remains unchanged, and for any
common marginal payoff for the two subregions, total emissions will equal aggregate

"More specifically, the data on
http://unfcce.int/ghg  emissions data/ghg data from unfcec/time series annex i/items/3814.php
for 2005 show that Russian emissions are about 28-29% below 1990 emissions, while the same
figures for the Ukraine are 55-58% (depending on whether so-called Land Use, Land-Use Change
and Forestry (LULUCF) activities are included).



EEFSU for the same marginal payoff. When adopting this method of disaggregation
(and now replacing the EEFSU with Russia and Ukraine+), then the Assumption
is satisfied (again including the last part of (iii)), and no Nash equilibrium with
trade exists.® The results of other simulations (not shown) demonstrate that by
excluding either Russia or Ukraine+ from the game, a first-order equilibrium with
trade exists. Therefore, this is an instance where adding one agent to an economy
leads to the elimination of trade in the strategic market game.

3.3 On convergence

Case 4 (From Nash to Walras). Continuing now with Russia and Ukraine+ as
separate players. I next remove a sufficient amount of the endowment of one agent
in the economy so that Assumption (iv) does not come into effect. The chosen agent
is Japan, which has the highest willingness to pay for a permit in autarky (any other
agent could have been picked in its place). Japan’s new (reduced) endowment will
then be increased in small steps to see the effect on the trading equilibrium in the
game. For ease of interpreting the results, write

Dicr % — Dier T
D ier Ti
for the degree of excess endowments available in the economy. Thus, D > 0 means

that there is excess endowments in aggregate, while D < 0 signifies that there is no
such excess.

D =

Table III. From Nash to Walras when perturbing the endowment of Japan.*

End. Exc. end. Nash marg. payoff, ui(ai—qi+bi/p) Prices
Japan D CANZ | Russia | Ukr.+ | Japan | OECDE | Nash | Walras
MtC/yr US$/tC

10 | —0.0775 | 108.22 | 33.01 | 63.26 | 271.23 127.44 | 96.27 | 109.38
110 | —0.0391 | 59.23 | 16.73 | 32.70 | 101.41 72.93 | 49.44 | 55.12
160 | —0.0198 | 30.93 8.33 | 16.46 | 43.54 39.44 | 24.79 | 27.98
185 | —0.0102 | 16.09 4.22 8.39 | 20.53 20.98 | 12.62 14.42

197.5 | —0.0054 8.55 2.21 4.41 10.39 11.29 | 6.63 7.63

203.75 | —0.0030 4.76 1.22 2.44 5.64 6.33 | 3.67 4.24
206.875 | —0.0018 2.86 0.73 1.46 3.35 3.81 | 2.20 2.55
208.4375 | —0.0012 1.91 0.49 0.98 2.22 2.55 1.46 1.70

209.21875 | —0.0009 1.43 0.37 0.73 1.66 1.92 1.10 1.28

8The same conclusion follows for any disaggregation that satisfies the following conditions (.J
a; = apprsu and a; > &; for at least
two members of J. Note that disaggregating other regions has no effect on the conclusion. Hence,
even if all governments decide to allocate permits to firms, and trade is subsequently modeled as
a strategic market game between (thousands of) firms, no equilibrium with trade will exist.

being the set of subregions the EEFSU is split into):

JjE€J




* “Exc.’ is short for ‘Excess’; ‘End.” for ‘endowment’; ‘marg.’” for ‘marginal’ and ‘Ukr.” for
‘Ukraine’. Observe that D is free of units.

For comparisons of Nash and Walras, recall that the marginal payoffs in a com-
petitive equilibrium are identical across agents and equal the associated price. Ta-
ble IIT demonstrates that the marginal payoffs in the strategic market game differ
substantially across agents when the economy is not so well furnished (first row).
As the endowment of Japan increases, so that the degree of excess endowment in
aggregate (D) approaches zero, the marginal payoffs in Nash get closer and closer
to the associated equilibrium price along with the competitive price. The table also
shows that in the strategic market game equilibrium, permit sellers (Russia and
Ukraine+) have a lower marginal payoff than the Nash equilibrium price, while the
opposite is the case for those that come forward as buyers. This feature confirms
intuition, and can be shown to hold more generally.

A more interesting variable to examine when it comes to convergence is overall
efficiency. Therefore, write W4, W¢ and W for the welfare (aggregate produc-
tion payoff) evaluated in autarky, the competitive equilibrium and in the strategic
market game (when there is trade) respectively. More precisely

b;
w4 = Zuz (a;), W .= Zuz (x;) and WS = Zuz <ai —q + ;) .

iel il iel
Clearly, each of these welfare functions depend on ajgpen- The number

WS—WA
E::WC’_WA

then serves as an efficiency index for the strategic market game relative to the
competitive equilibrium for any given ajupen. Thus, £ = 0 when there is no trade
in the strategic market game, and ££ = 1 when that game is as equally efficient as
a competitive equilibrium.

Figure 1 shows how the efficiency index E varies with the degree of excess en-
dowments D, for the same values of @ jgpqen as in Table IIT (10 million tons of carbon
per year is represented by the leftmost point).
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Figure 1. Efficiency of the strategic market game relative to that of competitive
equilibrium (F, y-axis) versus the degree of excess endowments (D, x-axis) when
perturbing the endowment of Japan.

We can see from Figure 1 that when Japan’s endowment is 10 million tons of carbon
per year, then the strategic market game generates about 98.7% of the potential
gains from trade. When increasing Japan’s endowment towards about 210, so that
D approaches zero, then the efficiency index becomes close to one, i.e., the welfare
in the strategic market game approximates that of Walras. With further increases
in ajgpan, making D > 0, the Assumption (including part (iv)) comes into effect
and £ = 0.

3.4 On destruction

Case 5 (Profitable endowment destruction). Consider next the parameterization of
the economy in Case 3. If Japan destroys 48 units of its endowment before playing
the game, then a first-order Nash equilibrium with trade exists with the character-
istics given in Table IV (D = —0.0002).

12



Table IV. A first-order Nash equilibrium when Japan destroys 48 units of its endowment.*

Variable Supply Bid Demand | Cons. | Sold M.P. M.R. P.P. T.P.
Symbol q; bi bi/p 'LL{L () Uq ()

Units MtC/yr | MUSS/yr MtC/yr US$/tC BUS$/yr

CANZ 0 71.3 97.3 312 | =97 0.956 | —0.071 | —0.0002 | —0.0715
Russia 277.1 0 0 599 277 0.244 0.203 0 0.2030
Ukraine + 138.5 0 0 299 138 0.488 0.101 0 0.1015
Japan 0 102.9 140.5 350 | —140 1.106 | —0.102 | —0.0001 | —0.1030
OECDE 0 130.3 177.9 | 1038 | —177 1.280 | —0.130 | —0.0005 | —0.1308
Total 415.7 304.4 415.7 | 2599 0 0.732 0 | —0.0008 | —0.0008

* ‘Cons.” is final consumption and amounts to a;—q;+b;/p; ‘Sold’ is ¢;—b;/p; ‘M.P.’ is
marginal payoff evaluated at final consumption; ‘M.R.” is market revenue; ‘P.P.” is the
production payoff evaluated at final consumption, and total payoffs ‘T.P.” are production
payoffs plus market revenue. The equilibrium price is located in the column M.P. and row
Total.

A perfectly competitive equilibrium with this parameterization produces a clearing
price p = 0.561. Not surprisingly, Table IV demonstrates that Japan is substan-
tially better off compared to autarky (see Table I). Had some other agent instead
destroyed the 48 units, the qualitative nature of the results would remain unchanged.

4 Bibliographic remarks

On existence. Dubey and Shubik [5] provided sufficient conditions for the exis-
tence of at least one Nash equilibrium in strategic market games. Peck et al. [10]
showed that such an equilibrium can entail trade. On at least one account, this
paper is in line with Cordella and Gabszewicz [3] and Busetto and Codognato [2]
by providing a two-good, quasi-linear exchange economy where autarky is the only
Nash equilibrium. On other accounts, they differ. First, because of satiation the
economies brought out here do not satisfy the Dubey—-Shubik [5] assumptions. Sec-
ond, in Cordella and Gabszewicz’s [3] no-trade economy, a finite replica number
exists for which there eventually are Nash equilibria with trade. Here, (Ex. 1,
Sec. 1 & Case 2, Sec. 3) the opposite was the case as we started with a trading
equilibrium which was eliminated when replicated any number of times. Third,
the competitive equilibrium in Cordella and Gabszewicz [3] has the property that
the marginal rate of substitution between the two goods is not equalized across
all agents. Therefore, such an equilibrium does not belong to the interior of the
commodity sets. Presented above are economies where the perfectly competitive
allocation is in the interior of the commodity sets—hence margins are equalized,
but the competitive price is on the boundary of the price set.

The main result of this paper also has the implication that the sufficient condi-
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tions given by Peck et al. [10] for the existence of an equilibrium with trade cannot
generally be extended to cases where the indifference curves are not in the interior
of the commodity sets. Thus, the question posed by Busetto and Codognato [2, p.
301] concerning this matter is partially addressed.

On convergence. Positive results on convergence from Nash to Walras in
Shapley—Shubik strategic market games are found in Dubey and Geanakoplos [4],
Dubey and Shubik [5] and Sahi and Yao [11], among others. Koutsougeras [7] also
adds to this topic from a somewhat different perspective. As shown above, and in
contrast to Cordella and Gabszewicz [3], no such convergence may result here.

On destruction. Aumann and Peleg [1] identified an exchange economy with
the property that an agent could benefit from destroying some of his endowment of
a good in which he subsequently would become a competitive seller. Brought out
above (Ex. 1, Sec. 1 & Case 5, Sec. 3) are instances where the strategic market
game mechanism could profitably be manipulated via endowment destruction by
every agent in the economy.

References

[1] R.J. Aumann, B. Peleg, A note on Gale’s example, J. Math. Econ. 1 (1974),
209-211.

[2] F. Busetto, G. Codognato, ‘Very nice’ trivial equilibria in strategic market
games, J. Econ. Theory 131 (2006), 295-301.

[3] T. Cordella, J.J. Gabszewicz, ‘Nice’ trivial equilibria in strategic market games,
Games Econ. Behav. 22 (1998), 162-169.

[4] P. Dubey, J. Geanakoplos, From Nash to Walras via Shapley—Shubik, J. Math.
Econ. 39 (2003), 391-400.

[5] P. Dubey, M. Shubik, The non-cooperative equilibria of a closed trading econ-
omy with market supply and bidding strategies, J. Econ. Theory 17 (1978),
1-20.

[6] O. Godal, G. Klaassen, Carbon trading across sources and periods constrained
by the Marrakesh Accords, J. Environ. Econ. Manage. 51 (2006), 308-322.

[7] L.C. Koutsougeras, Convergence of strategic behavior to price taking, Games
Econ. Behav. (2008) (doi: 10.1016/j.geb.2007.10.012).

[8] A. Manne, R. Richels, Buying greenhouse insurance: The economic costs of
carbon dioxide emission limits, MIT Press, Cambridge, Massachusetts, 1992.

[9] D.W. Montgomery, Markets in licenses and efficient pollution control programs,
J. Econ. Theory 5 (1972), 395-418.

14



[10]

[11]

[12]

[13]

[14]

J. Peck, K. Shell, S.E. Spear, The market game: Existence and structure of
equilibrium, J. Math. Econ. 21 (1992), 271-299.

S. Sahi, S. Yao, The non-cooperative equilibria of a trading economy with
complete markets and consistent prices, J. Math. Econ. 18 (1989), 325-346.

L.S. Shapley, M. Shubik, Trade using one good as a means of payment, J. Polit.
Economy 85 (1977), 937-968.

U. Springer, The market for tradable GHG permits under the Kyoto Protocol:
A survey of model studies, Energy Econ. 25 (2003), 527-551.

UNFCCC, Kyoto Protocol to the United Nations Framework Convention on
Climate Change. Report of the Conference of the Parties, Third Session, Kyoto,
1-10 December, 1997 (available at http://unfccc.int/).

15



