ECONOM'IA

Le séminaire Econom'IA accueille des intervenants externes invités à présenter des travaux, finalisés ou en cours, contribuant à éclairer la manière dont le développement de l’Intelligence Artificielle et l'accès à de larges corpus de données bouleversent les approches traditionnelles de l’économie.

Le séminaire se tient un jeudi par mois de 11h à 12h30 en salle G614B

Organisation : Rim Bahroun, Nadine Levratto, Saïd Souam

À VENIR

JEUDI 21 NOVEMBRE 2024
Salle G614B de 10h30 à 12h
Bernard Quinio (CEROS, Université Paris Nanterre), Antoine Harfouche (CEROS, Université Paris Nanterre) : Comparaison de deux projets de recherche action utilisant l'IA : enseignements tirés en termes de modèles théoriques et de méthodologie.

Résumé : Nous présentons deux projets de recherche longitudinaux (plus de3 ans) en miroir pour expliciter nos modèles et notre méthodologie. Les deux cas d'applications nous permettent de souligner les différneces et les points de convergence dans notre approche. Un zoom sera fait sur les biais et les conditions d'adoption des outils d'IA.

JEUDI 12 DÉCEMBRE 2024
Salle G614B de 10h30 à 12h
Patrice Bertai (MODAL'X), Melanie Zetlaoui (MODAL'X) : Scaling by Subsampling for big-data

Résumé : Handling large datasets and calculating complex statistics on huge datasets require important computing resources. Using subsampling methods to calculate statistics of interest on small samples is often used in practice to reduce computational complexity, for instance using the divide and conquer strategy. In this talk, we recall some results on subsampling distributions and derive a precise rate of convergence for these quantities and the corresponding quantiles. We also develop some standardisation techniques based on subsampling unstandardised statistics in the framework of large datasets. It is argued that using several subsampling distributions with different subsampling sizes brings a lot of information on the behaviour of statistical learning procedures: subsampling allows to estimate the rate of convergence of different algorithms, to estimate the variability of complex statistics, to estimate confidence intervals for out-of-sample errors and interpolate their values at larger scales. These results are illustrated on simulations, but also on two important datasets, frequently analysed in the statistical learning community, EMNIST (recognition of digits) and VeReMi (analysis of Network Vehicular Reference Misbehavior).

ARCHIVES

JEUDI 10 OCTOBRE 2024
(Salle G614B et sur Zoom de 10h30 à 12h)
Mehdi Ammi (Université Paris 8) : Vers les jumeaux numériques en e-santé

Résumé : Le développement des environnements pervasifs et des jumeaux numériques constituent un tournant important dans le processus de mutation de notre société. Dans le domaine particulier de la santé, ces environnements modèles numériques, permettraient de proposer des solutions crédibles aux nombreux défis auxquels notre société sera confrontée ces prochaines décennies : augmentation et vieillissement de la population, suivi des maladies chroniques, sédentarité croissante, obésité/diabète, etc.

Si les évolutions technologiques récentes permettent de donner corps à ces nouveaux environnements et au concept de jumeau numérique, il reste toutefois un certain nombre de défis scientifiques à résoudre pour rendre cette transformation crédible, efficace et acceptable par la société (traitement robuste des données, éthique, ergonomie et utilisabilité, etc.). Dans cette optique, j’ai adopté une démarche de recherche et d’innovation interdisciplinaire visant à élaborer des solutions de e-santé en partant des besoins des usagers (patients, médecins, etc.) et progressivement remonter aux composantes technologiques, puis à leurs intégrations et aux expérimentations terrains. Mes recherches m’ont ainsi amené à travailler sur des sujets divers mais extrêmement complémentaires tels que la modélisation par les approches de ML, les neurosciences ou encore l’interaction homme-machine.

L’objet de ce séminaire est de vous présenter cette démarche interdisciplinaire dans le cadre de trois applications médicales d’actualité : suivi et rééducation de patients post-AVC, éducation thérapeutique de patients diabétiques, accompagnement social de patients. À travers cette présentation, je mettrai en avant un certain nombre d’avancées scientifiques et technologiques par rapport à l’état de l’art, mais également des problématiques clés qu’il reste à étudier, tout en soulignant le rôle potentiel des jumeaux numériques dans l'amélioration de ces applications.

JEUDI 20 JUIN 2024
(Salle G614A de 10h30 et sur Zoom (contacter Mathieu pour le lien))
Dominique Guellec (Observatoire des sciences et des techniques, HCERES) : NPL vs. NLP: analyzing the links between science and technology
JEUDI 13 JUIN 2024
(Salle G614A de 10h30 à 12h et sur Zoom (contacter Mathieu pour le lien))
Olha Nahorna (Bordeaux School of Economics) et François Maublanc (Thema, Université de Cergy) : AI for classification of job experiences

Résumé: CVs offer the opportunity to get massive data at the individual level that can be employed in economic or sociological studies.
However, these data often need to be pre-processed to be used in regression analysis as dependent or independent variables.
One common pre-processing step consists of classifying text into two or more categories.
In this study, we provide a general methodology for the classification of job experiences, using and comparing different methods such as regular expressions, machine learning, and deep learning techniques.
We illustrate it with a dataset of 10,000 job experiences from Computer Science CVs.

JEUDI 25 AVRIL 2024
(Salle G614B de 10h30)
Rim Bahroun : Traitement automatique du langage naturel en économie

Résumé: Plongez dans l'univers fascinant du traitement automatique du langage naturel (NLP) en économie, où nous explorerons ses méthodes, ses défis et ses applications. De la définition du NLP à son fonctionnement interne, en passant par les techniques de vectorisation et les modèles de langue, ce séminaire offre une vue d'ensemble captivante de l'impact croissant du NLP dans le domaine économique.

JEUDI 28 MARS 2024
(Salle G614B de 10h30 à 12h)
Sami Ben Jabeur, UCLy (Lyon Catholic University), ESDES, Lyon : Explainable Artificial Intelligence Modeling for Finance and Economics

Artificial Intelligence (AI) is becoming increasingly fundamental to various sectors within our society. However, most modern AI methodologies (e.g., Machine Learning and Deep Learning) are black boxes, which makes them difficult for users in many application fields. This challenge has led to the rise of a new field within AI called Explainable Artificial Intelligence (XAI). XAI aims to provide users with AI-based decision-making processes and outcomes that are easily understood, interpreted, and justified. Since 2018, there has been a significant and rapid increase in the number of research papers conducted on XAI. Among these domains, bankruptcy prediction stands out as a crucial area where XAI has begun to profoundly impact. By employing techniques such as feature importance analysis, local interpretable model-agnostic explanations (LIME), and SHapley Additive exPlanations (SHAP) values, researchers and practitioners can now uncover the rationale behind a model’s prediction that a particular firm is at risk of bankruptcy. This transparency enables banks, investors, and regulatory institutions to understand how specific factors, such as ratios and accounting variables, contribute to the model’s predictions. Moreover, XAI has opened new avenues in energy economics, especially in enhancing environmental quality. XAI models, such as the extremely randomized tree model combined with game theory-based SHAP analysis, adeptly handle nonlinear relationships among multidimensional predictors. This capability allows for accurate predictions while avoiding the restrictive assumptions about the distribution of residuals or the non-collinearity of covariates that traditional statistical models often demand in forecasting CO2 emissions.

JEUDI 14 DÉCEMBRE 2023
(Salle G614A de 11h à 12h30)
Benjamin Ooghe-Tabanou (médialab - Sciences Po Paris) : Outils, méthodes et productions numériques à partir de données du web au médialab de Sciences Po

Laboratoire de recherche interdisciplinaire réunissant sociologues, ingénieurs et designers, le médialab de Sciences Po mène des recherches thématiques et méthodologiques exploitant et interrogeant la place prise par le numérique dans nos sociétés. Par la multitude de données qu’il génère sous la forme de traces numériques, le web contribue à élargir les connaissances que nous avons des différents mondes sociaux. Pour alimenter ces travaux, l'équipe technique du médialab développe un écosystème de logiciels libres et de méthodes numériques visant la mise en œuvre simplifiée de toute une chaîne de traitement de la donnée, de la collecte à l'analyse, en passant par le nettoyage et la visualisation. Une présentation générale de ces outils et méthodes sera suivie d'un focus sur quelques cas concrets d'études appliquées à la circulation de l'information sur l'espace public et politique en ligne.

JEUDI 23 NOVEMBRE 2023
(Salle G513 de 10h30 à 12h)
Jérôme Deyris (Sciences Po Paris) : Warning words in a warming world: Central bank communication and climate change

Coauteurs : Emanuele Campiglio (Universita di Bologna) et Davide Romelli (Trinity College Dublin)

Résumé : This paper studies the evolution and drivers of central bank communication on climate-related matters. We build a novel dataset containing 31,249 speeches from 131 central banks, over the 1986-2021 period. Using natural language processing techniques, we identify climate-related discourses and analyse their thematic content. We show how the rapid, but differentiated increase in climate-related communication can be linked to the rise of two distinct narratives, one centred around `green finance' as an opportunity, and the other around the threat represented by `climate-related risks'. We then study the drivers of those strands of climate communication and find that institutional dimensions - most prominently, the degree of involvement of central banks in financial supervision - are more significant in explaining climate-related communication than domestic exposure to physical and transition risks.

JEUDI 12 OCTOBRE 2023
Luigi Celardo (Université de Naples) : Analyse des sentiments géoréférencés pour les points d'intérêt des touristes : le cas de Matera, capitale européenne de la culture.

Résumé : Connue sous le nom de "ville des Sassi", Matera a fait l'objet d'un processus de rénovation impliquant toutes les régions de la Basilicate au cours des dernières années. Les ressources touristiques de la ville étaient pratiquement inconnues au niveau national et international, bien que les Sassi soient inscrits sur la liste du patrimoine mondial de l'UNESCO depuis 1993. La nomination de la Capitale européenne de la culture 2019 a déclenché une régénération intense, ouvrant la ville au tourisme mondial et révélant une grande résilience. Les expériences et les opinions des touristes ont été des ressources précieuses pour concevoir des activités touristiques et créer une nouvelle identité symbolique pour la ville, en particulier à l'ère du Web 2.0. Nous proposons ici de calculer les scores de polarité des avis et de les utiliser avec d'autres caractéristiques (par exemple, le prix, les services offerts et le type d'installations touristiques) pour créer des grappes spatiales selon la logique des indicateurs d'association spatiale locale (LISA). L'orientation sémantique géoréférencée des avis concernant une activité ou une attraction particulière représente une caractéristique quantitative utile pour des analyses ultérieures et la production de statistiques territoriales. La proposition peut être étendue à d'autres cas pour suivre l'évolution des sentiments à l'égard de domaines d'intérêt spécifiques et planifier d'éventuelles politiques d'intervention.

JEUDI 11 MAI 2023
Renaud Aioutz-Lefebvre, Claire Verdier, Nicolas Sauzeat (Open Studio) : L’Atlas des Synergies Productives

Résumé : Travaux appliqués du département recherche d’OpenStudio en IA et Économie : Conception d'outils de modélisation et de simulation des transformations des chaînes de valeur industrielles et d’accompagnement des entreprises pour aller vers des filières industrielles européennes plus autonomes, agiles et résilientes.

https://atlas.productive-synergies.com.

 

JEUDI 11 MAI 2023
Renaud Aioutz-Lefebvre (OpenStudio) : Recherche de synergies productives et synergies inter-entreprises
JEUDI 04 MAI 2023
(Salle G614B à 14h30)
Nejat Anbarci (Durham University) : AI-powered mechanisms as judges: Breaking ties in chess and beyond

Résumé : Recently, Artificial Intelligence (AI) technology use has been rising in sports. For example, to reduce staff during the COVID-19 pandemic, major tennis tournaments replaced human line judges with Hawk-Eye Live technology. AI is now ready to move beyond such mundane tasks, however. A case in point and a perfect application ground is chess. To reduce the growing incidence of draws, many elite tournaments have resorted to fast chess tiebreakers. However, these tiebreakers are vulnerable to strategic manipulation, e.g., in the last game of the 2018 World Chess Championship, Carlsen—in a significantly advantageous position—offered a draw to Caruana (whom accepted the offer) to proceed to fast chess tiebreaks in which Carlsen had even better odds of winning the championship. By contrast, we prove that our AI-based method can serve as a judge to break ties without being vulnerable to such manipulation. It relies on measuring the difference between the evaluations of a player's actual move and the best move as deemed by a powerful chess engine. If there is a tie, the player with the higher quality measure wins the tiebreak. We generalize our method to all competitive sports and games in which AI's superiority is—or can be—established.

JEUDI 20 AVRIL 2023
Odilon Faivre (Enedis) : Prévision de pannes sur le réseau électrique
JEUDI 30 MARS 2023
(Salle : G614B)
Paola Tubaro (CREST) : Artificial intelligence, labour transformations, and inconspicuous inequalities: women's work on digital ‘micro-tasking’ platforms

Abstract:

Around the world, countless workers perform data-driven tasks on online labour platforms to fuel the digital economy. Mostly brief, repetitive, and poorly paid, these so-called ‘micro-tasks’ include, for example, tagging objects in images, recording videos, and transcribing text, mostly for the artificial intelligence industry. Although these platforms have been harshly criticized for precarious working conditions and low wages, access to them is easy and open, even to unskilled people. In principle, women with care duties can be expected to benefit from flexible working hours and the possibility of working from home. However, this new form of online work fails to bridge the digital gender gap and may even exacerbate it. I demonstrate this result in three steps. First, inherited inequalities in the professional and domestic spheres turn platform-mediated micro-tasks into a ‘third shift’ on top of already burdened schedules. Second, the human capital of male and female data workers differs insofar as women are less likely to have received training in scientific and technological fields. Third, their social capital differs: using a ‘position generator’, a specific tool to capture workers' access to information and support resources that can come from their contacts with people in different occupations, I show that women have fewer ties to digital-related professionals who could provide them with knowledge and advice on how to successfully navigate the world of platforms. Taken together, these factors leave women with fewer career prospects in a technology-driven workforce and reproduce their relegation to lower-level computer jobs already observed in the early history of 20th century technology.

JEUDI 02 FÉVRIER 2023
(Salle : G614B)
Aurélien Quignon (Université du Luxembourg) : Crowd-Based Feedback and Early-Stage Entrepreneurial Performance: Evidence from a Digital Platform

Rapporteur : Bastien Lextrait

Résumé : The ability to identify early-stage venture potential, which has traditionally relied on experts, is challenging because new ideas are uncertain. However, judgment from a large number of evaluators can effectively identify promising ventures. This paper empirically studies whether crowd-based information generates informative feedback for entrepreneurs and seed investors. Using data on 701 early-stage founders of new ventures examined by 2,600 evaluators, I estimated the effects of crowd-based ratings on survival and securing seed funds. I find that the crowd rating was uncorrelated with subsequent financing events from seed investors but increased a venture’s probability of continuation by 3.1 percentage points. This effect became stronger as the number of evaluators increased. This finding highlights that a judgment aggregation offers information for nascent venture founders.

 

JEUDI 15 DÉCEMBRE 2022
(Salle G614B)
Matthieu Latapy (LiP6, CNRS / Sorbonne Université) : Résistance -- Perturber les Infrastructures en Réseaux

Rapporteur : Mathieu Bernard
Résumé : Il peut arriver qu'un territoire soit sous l'emprise d'un pouvoir illégitime, contre lequel une partie de la population souhaite résister. De même, une population peut vouloir attirer l'attention d'un gouvernement sourd à ses revendications. Un des principaux moyens est alors la perturbation des infrastructures installées sur le territoire, typiquement les transports (routiers, aériens, maritimes), l'approvisionnement en ressources (énergie, eau), ou les communications (internet, médias). La plupart de ces infrastructures reposent sur des réseaux ; il s'agit donc d'y trouver des points faibles, de les bloquer ou de les saturer. Pour ce faire, plusieurs stratégies sont envisageables. Elles posent des questions de recherche en informatique que je propose de discuter dans cet exposé.

JEUDI 17 NOVEMBRE 2022
Arnold Vialfont (Erudite - U Paris Est) : Information extraction from the French Competition Authority's decisions using machine learning
JEUDI 20 OCTOBRE 2022
Mathieu Bernard : Introduction à l'apprentissage artificiel. Partie 2 : le Deep Learning
JEUDI 13 OCTOBRE 2022
Hugo Le Picard (IFRI) : Le solaire décentralisé à l’assaut des villes africaines, une analyse originale d’imagerie satellite et de Deep Learning
JEUDI 29 SEPTEMBRE 2022
Mathieu Bernard : Introduction à l'apprentissage artificiel
JEUDI 15 SEPTEMBRE 2022
(Salle 301/302 et visio)
Bastien Lextrait : Anticipation du risque des entreprises

Rapporteure : Nadine Levratto

JEUDI 09 JUIN 2022
(ANNULE)
Hugo Le Picard (IFRI) : Le deep learning au service de l'analyse des énergies renouvelables en Afrique

Rapporteur : César Ducruet

Article à l'appui de la présentation : Le solaire décentralisé à l’assaut des villes africaines Une analyse originale d’imagerie satellite et de Deep Learning

JEUDI 12 MAI 2022
(Salle G110)
Sylvain Barthelemy (TAC Economics et université de Rennes) : Le virage de l’économie et de la finance vers l’IA, le machine learning et le big data

Rapporteur : Christophe Boucher

JEUDI 21 AVRIL 2022
(Salle G614A)
Frédéric Marty (GREDEG, CNRS, université de la Côte d'Azur) : IA et manipulations algorithmiques, quelles régulations ?

Rapporteur : Eric Darmon

Article à l'appui de la présentation : Artificial intelligence and consumer manipulations: from consumer's counter algorithms to firm's self‑regulation tools

JEUDI 10 MARS 2022
(14h-16h30, salle G110)
Réunion de lancement du groupe de travail « Intelligence artificielle »
load Veuillez patienter ...